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Abstract

In this paper, we analyse the different parameter choicesfor fitting
B-spline curves. New estimating criteria for dataapproximation are
introduced in order to estimate the results. The definitions of norms
correspondto aglobal analysisof the curve. Other criteria are based
on alocal analysis. We present a new method for data compression
using fitting B-splines and compare it to usual ones.
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1 INTRODUCTION

Data compression relative to curves is afrequent problem in many
applications. Many papershave already been published. Two trends
can be emphasized. Thefirst onedealswith polygonal curvesfor ap-
proximating data (see subsection 4.1.1). Another approach was de-
veloped by Tom Lycheand Knut Morken [18]. Their method is rep-
resentative of knot removal strategies. Matthias Eck and JanHaden-
feld's strategy [10] is complementary to Lyche and Morken's. We
suggest a different technique using fitting B-splines.

In section 2, we remind the reader of the general problem of
data fitting with B-splines: a general form for solving this problem
and the choices of knot vector, approximating parameters and de-
gree. The usual parameterization techniques have been taken into
account as well as the Foley and Nielson methods [12] and the in-
trinsic Hoschek parameterization [13].

In order to estimate the results we introduce two different toolsin
section 3. Thefirst onecorrespondsto aglobal analysisand a defini-
tion of norms. It estimates whether one approximation is better than
another accordingto atolerancecriterion. Thesenormstakeinto ac-
count the oscillating phenomenon which may occur. The other es-
timating tool yields alocal analysis. The notion of local estimation
isintroduced to avoid dependence on parameter values.

Section 4 deals with data compression strategies. In subsection
4.1, we propose a survey of current methods. Our data compres-
sion technique using alocal approach based on curve analysisisin-
troduced in subsection 4.2. A bisection method on the number of
control points can be applied: to decrease errors one hasto globally
increase the number of control points. Lastly, we compare our data
compression techniqueto usual onesin section 5 according to com-
pression rates and computation costs.

2 DATA
CURVES

FITTING WITH B-SPLINE

B-spline functions are often used for curve modelling. This basis
isfairly well conditioned and has many other nice properties which

usually lead to stable and simple algorithms. Basic properties of
splines and B-splines can be foundin [8, 11].

2.1 Least squares fitting

Theformulation of our fitting problem isto define, for aset of (n +
1) different ordered points P = (po, ..., p») in a space IR%, a B-
splinecurve f ascloseaspossibleto datap; . We briefly present our
notations. Let

¢ k bethe B-spline curve order (degree+1) with & < m,
o T = (t;)™}" betheknot vector defined by anon-decreasing

sequenceof numberssothat to = t1 = ... = tr—1 < b,
tn < tma1 = tmg2 = ... = btk andt; < tit1 (k —1<
i <m),

o ((i)y be(n + 1) parameter values,
o (@)X, be(m + 1) control points.

Associated B-spline curve f is defined by:
JO=S"QNurl) @ =(QinQu) € R (D)
2=0

where functions N, x,r are the normalized basis functions com-
puted with the De Boor formula. The least squaresfitting problem
searchesfor control points(Q;)jZ, of curve f sothat (n+1) points
f(¢:) producealeast squares smoothing of the set of pointsp;. The
problemisto find control points @, so that:

> (@)

1=0

— p)? isminimum. %)

We assumethat m < n inorder to really obtain afitting problem.
Since (2) correspondsto the minimization of the sum of d indepen-
dent positive quantities (one per coordinate), it isequivalenttod in-
dependent minimizations, one per coordinate. With amatrix formu-
lation, M, and M, being respectively the (m +1,d) and (n+ 1, d)
matrices of points ¢; and p;, we have to find a matrix M, which
minimizes the norm of each column vector E; (i = 1, ..., d) of the
matrix A.M, — M. The problem is expressed in the matrix form
(system of normal eguations) by:

AT AM, = AT M,

Thisformulation is associated with a square matrix with an often
high condition number involving potential numerical difficulties or
bad results. Actually, the condition number of the matrix AT A is
the square of the condition number of A (in 2-norm). Therefore, the
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results are necessarily better when solving the overdetermined sys-
tem A.M, = M, (system (n + 1, m + 1)) by aleast squares tech-
nique through a Q. R matrix decomposition. This equivalent theo-
retical formulation of the initial problem guarantees far better nu-
merical results, with far fewer computations[7].

We should now specify:

e knot vector T,
e (n + 1) parameter values ¢;,
e order k.

Thesethree componentsare very important for obtaining fair results
in approximation and in interpolation.

2.2 Knot vector

Knot vector T' can be uniform or defined from an extension of the
De Boor formula for interpolation [6]:

to=...=tg—1 = (o

tm-l-l = ... = tm-l-k = Cn (3)
G +...+¢; .

ti+k = w fOT 1207...7771—]@

The extreme values of {; and I> are fixed by the compatibility
with interpolation. If {; and !, areconstants, the number of {; in the
summation dependson m. If this number is fixed (equal to & — 1),
thisimpliesthat {; and i, arefunctionsof ;. Choosing constant val-
uesfor [; andl, isnot satisfactory as soon asanimportant difference
between . and m exists. Asamatter of fact, the number of ¢; in the
summation is then high, and all the knots are located near an aver-
agevalue. Simplerulesof variationfor /; andl, must befound. The
following ones are compatible with the interpolation problem:

L) = B(S-—2i) +1 @
b(i) = BC—i) + k=1 )

E(z) being the truncated integer (x + 0.5).

These functions give all different knots and provide a good dis-
tribution between parameters ¢; and knots¢;. We obtain in the par-
ticular casem = k:

tp = <1+~7~7~l‘|;<1m—1

The number of control points can continuously increase from a
low value upto n + 1. Interpolation and least squaresfitting have
exactly the same processing formulation (3).

2.3 Parameterization

This is a difficult problem and some solutions are proposed. The
poorest oneis a uniform spacing. Points p; are assumed to be dif-
ferent providing the definition of a strictly increasing sequence of
parameters. A parameter distribution using arc lengths was tested.
The possible improvement does not justify this iterative method.
The chord length parameterization is commonly proposed. L ee de-
fined acentripetal parameterization andits general formulation [17]:

Go=0
:
> lps—pi-ll
I 7=1
= =G
G Doy lpi—pialle

We obtain respectively a uniform, chord length and centripetal
model, with a parameter e equal to 0, 1 and 0.5. ¢ is a constant ex-
panding the distribution (to reduce numerical problems).

i=1,..,n (0<e<1) ©)

Two spacings have been proposed by Foley and Nielson [12].
The authors call them respectively the affine invariant chord spac-
ing and the affine invariant angle spacing. They both usea distance
deduced from statistical theory. The second spacing takes into ac-
count theanglesbetween the different line segmentsjoining the data
points. Thelatter is particularly efficient when important variations
inthe anglesoccur. Theauthors provetheinteresting result that with
these parameterizations, the splineinterpolation method is affinein-
variant. This means that we obtain the same result by applying an
affine transformation to a splinefitting curve and by computing the
splinefitting once the affine transformation has been applied to the
givenpoints. Thisisof importancein a CAD systemwhere geomet-
ric transformations often occur. It must be noticed that the parame-
terization defined by (6) satisfiesthis property exceptif the transfor-
mation isanon homogeneousscaling. These propertiesare deduced
from the fact that spacingsare not modified by suchtransformations
[12] (itisobviousthat translations, rotations and homogeneousscal -
ings remain the spacings defined by (6) unchanged).

In Hoschek’s paper [13], an iterative approach is proposed to
find intrinsic parameter values leading to a better approximation.
Hoschek’sconcept isto find a sequenceof new parameter values¢;
for which corresponding pointson f are closer to datap; than latter
¢;. Then we start the least squares process again with the new pa-
rameter valuesand repeat these stepsuntil all error vectorsp; — f(¢:)
are approximately orthogonal to the approximating curve. At each
step of the process correction parameters ¢; are computed. But for a
fixed B-spline curve, they do not correspond to the closest approx-
imations of data p;. We suggest replacing them by parameters ¢;
whose values on the B-spline curve are now the closest approxima-
tions of data [24]. We can apply descent algorithms to move along
thecurve and reach these optimal parameters(; (seesubsection3.2).
Theresultisabetter global approximation with afaster convergence
speed.

2.4 Degree
Order & can be defined with regard to:

e computation speed: the higher the degree, the slowest the
computations.

¢ shapemodelling: the higher the degree, the higher the number
of shapes which could be modelled. An order 2 producesfair
approximations of line segments. An order 4 (cubic B-spline
curves) is commonly used for having fair approximations of
parabolic sections and for producing inflection points.

o differential parameters: order 4 is the lowest for computing
continuous curvatures and tangents.

B-spline order & can be changed. But, the condition number of
the systemincreasesvery quickly when k isrising. Thisimpliesthe
distortion of the control polygon (the line segments connecting con-
trol points ;). Asaresult, k£ cannot increase too much for numer-
ical reasons.

3 CRITERIA FOR ESTIMATING DATA AP-
PROXIMATION

The main problem is now to measure the accuracy for data fitting.
The difficulty is to estimate curve f between given points p;. We
define two estimating criteria for checking whether approximating
curve f satisfies a tolerance criterion. More details on these new
estimating criteria can be found in [24].
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3.1 Definition of norms N, and N,

It is possible to compare different B-spline curves using the norms

Noo(f) = Maz{Maz{|Qi|;i=0,....m}j=1,....d} (7)

N

N2(f): m—+ 1

®

We first consider original polygonal curve P as an interpolating
B-spline curve g of degree one, defined on arbitrary knot vector 7
with parameter values {; [24]. With this hypothesis, ¢ belongs to
linear space .S, 7. Using norms Ne, and V> on f — g requiresthat
B-splinecurves f € Sk, r andg € S, 7 belong to the same lin-
ear space. The common degree is obtained through the degree ele-
vation process[20]. The knot vectors are unified using subdivision
algorithms (Boehm, Oslo, improved Oslo).

Let f};) be the approximating spline segment of line segment
[pi, pi+1]. The extreme points of fi; are f(¢:), f(¢iv1). When
Noo(f — g) isequal to tolerance ¢, all f;; curve segments are in-
cluded in aband. Width L of the half-band is lessthan (or equal to)
V/2¢ (Figure 1 (a)).

For our fitting problem, if the value of No. (f — g) islarge, either
we haveabad correspondencebetween datap; and their approxima-
tions f(¢:), or the control polygonis far from theinitial line. Both
situations are inappropriate. The first situation can be detected by
computing Supi=o,...,» || £(&) — pill.

More generally, if g is not a piecewise linear curve
but an arbitrary B-spline curve, if No.(f — g) equas e,
f is included in a band centred around g (Figure 1 (b)).
More than being a band criterion for data approxima-
tion, we have a band criterion for B-spline approximation.

i) "

Figure 1: (a) Band criterion for datafitting (b) and B-spline fitting.

(e being control points)

If required, additional information concerning the average be-
haviour of curve f can be deduced from norm V.

3.2 Local estimation criteria

Thegoal of the second estimating tool isto obtain alocal estimation
approach independent of parameter values ¢;.

We focus our attention on the definition of accurate measure-
ments which guarantee that approximating B-spline curve f satis-
fiestolerancee. If we call such acriterion d, acondition of valida-
tionisd(P, f) <e.

New criterion d that we introduce is linked to geometric proper-
ties of B-spline f, and more precisely to its control points. They
“roughly” represent the shape of the B-spline. The degree of accu-
racy between f and its control polygon depends on the number of
control points in the representation. Using subdivision algorithms,
the control polygon can be as closed as required of the correspond-
ing curve.

The convex hull property can be used to predict the B-spline po-
sition according to the position of the control points. The defini-
tion of B-splines ensureslocal modelling on each interval [¢;, ¢;41]
(t; < ti41): theB-splinecurveposition dependson & control points
Qi—k+1,...,Q; (Figure 2).

Q
Q\—kﬂ .

ft)= 5 QB (t)
j=I—k+1
f t' f f
Figure 2: Local B-s',pline%odelling: an example
for aninterval [¢;, tiy1].

Such a geometric formulation (Figure 2) does not yield suffi-
cient accuracy. The B-spline curve on interval [¢;,t;41] (or curve
segment [f(t:), f(ti+1)]) isincluded in the convex hull of control
points Q;—x+1, ..., Q. Butitisawideinclusion: curve segment
[£(¢:), f(ti41)] iswithin the convex hull but is not strictly limited
by it.

Our goal is to obtain a measurement between origina curve P
and its B-spline approximation f. An equivalent formulation is to
have a measurement between each line segment [p;, pi+1] and its
approximating curve segment [ £ (i), f (Ci+1)]. If the maximum of
these measurements is within tolerance ¢, we can claim that curve
f satisfies the approximating problem.

Gi Gisa
Figure 3: Convex hull of curve segment [£(¢i), f(Ci+1)]-

Through this approach, we should obtain a control polygon
whose convex hull only contains curve segment [ f({:), f(Civ1)].
Such a polygon provides local estimation values for B-spline be-
haviour. This can be achieved by transforming each curve segment
into its Bézier representation by applying subdivision algorithms,
i.e. by inserting parameters (¢; )i, with (k — 1) multiplicity into
knot vector T. The representation is illustrated in figure 3. We
should note that it is not really a Bézier segment becausethere may
be aknot ¢; within [{;, ¢+1]. The number of control points of this
curve segmentisnb (nb > k).

This stage could be improved in order to obtain a more accu-
rate estimation. Parameter value ¢; islinked to approximating point
f(¢:) of datap;. Generally, f(¢;) does not correspond to the best
approximation of data p; [13]. We call ({:)7-, optimal parameter
values, whose value f((;) is the closest approximation of data p;.
We can apply descent algorithms to move along curve f and reach
theseoptimal parametersor apply Hoschek’stechnique. One should
make sure of the numerical convergence of the descent method by
ensuring that the new approximating point is closer to data p; than
thelatter at eachiteration. By replacing parameters¢; with parame-
ters(; inthelast stage, we obtain amore accurate estimation of data
fitting on each line segment (Figure 4).

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/



"o‘ h
. = I
'v‘ f (cl ) _’/ijnbﬂ
1
1 1
\
]
\ |
[l
I I I

EI E|+1
Figure 4: Convex hull of curve segment [£({:), £(Cog1)]-

Inthelast part, we apply the Hausdorff metric to polygonal curve
P' = (pi,pi41) (i = 0,...,n — 1) and corresponding @’ =
(Qj—nbt1, ..., Q). If the maximum of the Hausdorff distance be-
tween both polygonal curves P* and @ (i = 0,...,n — 1) isequa
to e, then fitting B-spline curve f is at the most at distance ¢ from
original polygonal curve P. Generally, this criterion is more accu-
rate than the previous one defined by No.

By studying the control points on each best curve segment, we
can also obtain local information on the average behaviour of f.

4 DATA COMPRESSION

Let P bethe polygonal curve defined by the original given vertices.
The general problem of datacompressionisto defineacurve f with
aminimal number of parametersso that d( P, f) <  (d beingacri-
terion for estimating data approximation). The number of param-
eters of f ought to be lower than the number of parametersin ini-
tial curve P. In practice, tolerance e is often chosen so that there is
no visual difference between P and f for the given representation
scale.

In subsection 4.1, we present a brief overview of current data
compression methods. Most of them are based on either the repre-
sentation by meansof alist of pointsor the splinerepresentation. We
introduce our datacompression method using fitting B-spline curves
in subsection 4.2.

4.1 Usual methods
4.1.1 Using representation by means of a list of points

The data compression problem using this representation is formu-
lated so that the perpendicular distance of each point on curve P to
thefitting line segmentiswithin apre-defined error tolerance. Many
algorithms have been proposedin thisdirection. Thegoal of thispa-
per isnot to giveataxonomy of thedifferent methods. Many authors
tried to compare these data compression algorithms [3, 5, 15, 19].
Themain conclusionis that there is no reference algorithm. There-
sults often depend on the line morphology [4]. Neverthelesswe can
say that some methods aim at minimizing the number of line seg-
ments at the expense of time [2, 9, 14, 22, 27] to name afew, while
others aim at minimizing time with less emphasis on the number of
line segments [21, 23, 26, 28].

Thedrawbacksarelinked to the broken line effectsresulting from
thisrepresentation (Figure 5). In practice, a solution often used con-
sists of combining asimplification and asmoothing process (for ex-
ample, a Douglas and Peucker algorithm [9] is followed by a cubic
splinecalculation). Cubic approximation seemsto bevery attractive
for modelling complex shapes[1].

Figure 5: Jagged lines of the representation by meansof alist of
points (right): an example for mountain road modelling (l&ft).

The advantage of using fitting B-splines as we suggest in the
following subsection is to be able to treat both compression and
smoothing. In addition, B-spline curves are able to produce more
powerful processingsthrough:

e parametric curves: possibility of combining the curve with the
trajectory of an object,

¢ continuous curves. possibility of computing continuous cur-
vatures and tangents,

¢ B-spline properties: possibility of having curve displacements
through the madification of control points.

4.1.2 Using spline representation

The famous methods based on splines concerning datacompression
are knot removal strategies.

The purpose of these strategies is to reduce the number of knots
inagivensplinewithout perturbing the spline morethan giventoler-
ancee. Such reduction meansthat we approximate the given spline
inaspace .S, by asplineinasubsetof S. In other words the number
of degrees of freedom is reduced and we obtain data compression.

Some knot removal techniques have been aready published.
Lafranche and Le Méhauté propose an approach using a Bézier ap-
proximation of afunctionin /R [16], while Lycheand Morken [18]
aswell as Eck and Hadenfeld [10] consider the problem using a B-
spline representation.

Lycheand Morken’sstrategy

Without going into details, we can summarize Lyche and
Morken’s knot removal strategy. Theinputs are:

e anoriginal curve P to compress,

e atolerancee,

e an interpolating B-spline f of P defined on a knot vector T°
(several choices could be made for 7", as described in subsec-
tion 2.2).

The problem is to build an approximating B-spline g, defined on
a knot vector 7, which is a subset of 7. = is built with a minimal
number of knots so that the difference between g and f islessthan
(or equal to) < (i.e. d(f,g) < e whered could be the criterion in-
troduced in subsection 3.1).

The strategy can be broken down into three main stages:

¢ First, wehaveto assignaweight w; to eachinner knot ¢;. For
this we define an approximating B-spline ¢* defined on 7" in
which we remove inner knot ¢;, and compute the difference
with f. Weight w; = d(f, g") quantifies the significance of ¢;
in the representation of f.

e The second stage selects the knots to be removed on the prin-
ciple that a knot can be removed if and only if its weight is
less than (or equal to) the tolerance. Here we must take into
account the vicinity constraint when close knots should be re-
moved together.

e Thelast stageisreconstructing part of approximating curveg.
It isareconstructing step becausethe control points of approx-
imating curve g are defined using the control points of f.
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Eck and Hadenfeld's strategy

Eck and Hadenfeld's strategy [10] is a complementary method;
it is based on the same principle. The inputs are the same. There
is still an interpolating spline f and the goal is still to find a knot
vector with minimal length. It is also aknot removal strategy. The
three main stages are preserved:

¢ the weight computation part,
¢ the selection of knotsto be removed,
¢ thereconstructing stage.

The difference is in the weight computation part. There are two
methodsfor computing the control points of approximating B-spline
curve g*. We call them a “forward” computation of the control
points which leads to B-spline curve g5, and a*backward” compu-
tation which leads to B-spline curve g5;. These latters stem from
the choiceof the starting control pointsin the computing process: if
we start computing the control pointsof ¢* from the lowest subscript
and increase it, we obtain the “forward” algorithm and conversely.
The computation of the new control points correspondsto areverse
knot insertion process.

Generally, B-spline curves g5 and g%; are not the same. Obvi-
ously, the only exception occurs if a knot has been inserted artifi-
cially before or, in other words, if the continuity order at the respec-
tive knot is higher than it should be according to its multiplicity.
Thus, the necessity of interpreting the knot removal process as an
approximating processis manifest.

If we call A! (respectively A]”) the control points of B-spline
curve g7 (respectively g7;), Lycheand Morken determine ¢* being
the best approximation among these two B-spline curves. Eck and
Hadenfeld defineanew B-spline curve g* whose each control point
Aj iswithin aline segment whose extremities are the control points
of the two methods (i.e. A; € [A], AI']). A set of real numbers
w5 isintroduced for geometric reasons. Control points A; (points
marked with e in figure 6) split the line segmentsfrom A] to A" in
theratio p; : (1 — ).

Q =Al =A! Ay

Q=As =A;

Figure 6: An example for the general construction
of knot removal (k=4, p1; = 1/2).

4.2 Fitting B-spline technique

Fitting B-spline curves are suitable for datacompression. Data usu-
ally come from adigitizing process. Thisleadsto digitizing errors.
We assumethat these are removed by a*“ cleaning” process. “ Clean-
ing” involvestheremoval of spuriouselementssuchaspeaks, loops,
duplicates and other redundant data. Nevertheless, noise cannot be
totally removed, requiring application of fitting techniques.

The quality of the approximation depends on:

e orderk,
e knot vector T,
o parameter values ().

We explained possible choicesin section 2. We are going to dis-
cussthe particular choicesfor data compression. Data p; is not to-
tally independent of its neighboursp; —; and p;+1 . Thisisthereason
why we have to find specific parameters to adjust approximation.

We carried out a preliminary study on the influence of different
parameterizationsand knot vectorson the quality of the approximat-
ing curve [24]. The relationships between knot vectors and parame-
terizationsfor alarge set of data have been studied. We briefly sum-
marize the results.

Order k is an important parameter not for compression but for
approximation. An order 4 is commonly used because a degree 3
generatesinflection points. Thus, it is able to obtain close represen-
tations of complex shapeswith only one spline segment. This order
isalso the lowest for having a continuous curvature along the curve
(see subsection 2.4).

We now have to defineknot vector 7. Equation 3 provides good
distribution between parameters (¢;)_, and knots (¢;)7-*. This
formulais generally used when data distribution is not uniform, in
other words when we have an irregular density of points. A uni-
form knot vector is generally a poor solution in this case. We do
not have such a situation. Rather than using equation 3 we advise
the use of a uniform knot vector. With redundant information, non-
correspondence between approximating parameters and knotsis re-
duced. Even if the approximation is slightly less close to data p;,
a unified distribution generally gives good approximating results.
The main advantage for data compression is that a uniform vector
needs not be stored.

Asregards parameter values, we suggest using Hoschek’sintrin-
sic parameterization [13] starting from a centripetal one (see sub-
section 2.3). The oscillating phenomenon of Hoschek’s parameteri-
zation which can occur between the given points when the distance
between them islarge, is non-existent here dueto the amount of in-
formation.

A natural approach of compression isto determine the minimum
number of control points so that the corresponding B-spline approx-
imation yieldsan error smaller than (or equal to) the given tolerance.
A reasonableassumptionis that the error in the approximating pro-
cessincreases asthe number of control points decreases. If we start
by letting (n + 1) be the number of control points of f (the interpo-
lating curve is assumed to be the curve of reference), the minimum
number of control points can then be determined using a bisection
method [25]. It may happen that a high number of pointsyields an
initial system of non-maximumrank. Insuchacase, theinitial num-
ber of control pointsis chosen slightly smaller than (rn + 1).

5 RESULTS

The fitting strategy described in subsection 4.2 has been imple-
mented and extensively tested. In this section, we present somesig-
nificant tests and statistical summaries. The inputs of the algorithm
areacurve P with acorresponding list of coordinatesand tolerance
e. The output is a B-spline curve f with corresponding knot se-
quence " and control points (Q:);Z, sothat d(f, P) < e. d being
the new estimating criterion introduced in subsection 3.2.

The digitized curves P come from a cartography institute. They
have been chosen for the diversity of their number of points and the
diversity of their shapes.

In order to validate our method, the two following aspects are of
importance:

o first we haveto achieve high compression rates,

e in addition, our data compression algorithm should produce
results with “reasonable” computation costs.
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5.1 Compression rates

We have compared our fitting strategy with polygonal Douglasand
Peucker’s and Arge and Daghlen’s algorithms [9, 2]. The choice of
these algorithms can be explained by first the interest in cartogra-
phy (Douglas and Peucker) and the ability to obtain high compres-
sion rates (Arge and Daehlen). Our strategy is also compared with
knot removal strategies. It isimpossible to present here al the re-
sultswe obtained by applying theseal gorithms at many scalesor tol-
erances. It ismore difficult when the amount of initial linesislarge.
We present in this subsection significant samples of the results. We
refer the reader to our research report [25] for more details.

Tolerancee isfirst set sothat thereisno visual difference between
theinitial curve and its approximation at a fixed scale. £=0.02mm
(set by the institute) correspondsto the real casefor the graphicswe
study in this subsection (Figures 7, 8 and 9).

The compression rates are computed using the following formu-
las (the data are assumed to be within a plane):

o 100 — 120x(m+l) for niecewiselinear curves,

(n+1)
e 100— %iml—;r?’l for B-spline curvesdefined with auniform
knot vector,
e 100 — W for B-spline curves defined with a knot

vector from equation 3.

The second formula is obtained from the storage of order & (1
data), (m + 1) control points (2(m + 1) coordinates). The third
needsto take knots¢; into account ((m + & + 1 — 2(k — 1)) dataif
weremove (k — 1) multiplicity of extremeknotsto and ty,+ ).

3B —

30 —

1 n n n n 1 n n n n 1 n
10 15 20

Figure 7: Initial isobathymetric line* (257 points).

Figure 7 depicts a section of an isobathymetric line around
Brest's roadstead (France). Statistical results corresponding to this
kind of linesare presentedin table 1. Our fitting strategy isanalysed
using different knot vectors and parameterizations.

Method Knots Strategy Compression
Arge Deaehlen 68%
Polygonal
Douglas Peucker 56%
Lyche Morken 13%
De Boor Eck Hadenfeld 51%
B-spline Fitting (€=0.5) 22%
Fit.(Hos. €=0.5) 61%
Uniform
Fitting (€=0.5) 49%

Table 1: Compression statistical results corresponding to a set of
20 isobathymetric lines (¢=0.02mm, k=4).

1line whose points correspondto the same valuein depth

We can hope for higher compression rates by having higher tol-
erance (or lesser accuracy). On the contrary, higher accuracy yields
less compact representations.

As Buttenfield indicates [4], the features of the initial line deter-
mine performance. The compression rate depends mainly on the
tolerance and also on the intrinsic geometry of data. Using Butten-
field'sguidelines, we havetested the method at different scaleswith
complex and smooth lines.

Method Knots Strategy o *
Arge Deaehlen 61% |74%
Polygonal
Douglas Peucker |51% | 65%
Lyche Morken 5% 24%
De Boor Eck Hadenfeld 8% | 58%
B-spline Fitting (€=0.5) 11% | 34%
Fit.(Hos. €=0.5) | 49% |68%
Uniform
Fitting (€=0.5) | 40% |59%

Table 2: Compression statistical results corresponding to a set of
20 complex coastlines (¢) and 20 smooth lines (x)
(¢=0.02mm, k=4).

Many curvature changesin the complex coastlines we compress
(Figure 8) require more elements (control points) for modelling the
shapes than expected for polygonal methods (Table 2). This natu-
rally implies lower compression ratesin comparison with table 1.

65 T

55 - —

50 = —

T T ISR S MO R S
0 5 10 15

Figure 8: An example of coastline which has a complex geometry
(486 points).

On the contrary, smooth shapes lead to higher data compression
(Table 2). Figure 9 (mountain road) is a sample of the lines we
study. The others come from waterway and railway digitalization.
For modelling smooth curves, it may be better to use B-splines (Fig-
ure 11) rather than C° lines (Figure 10).

BT B

L L
10 15

Figure 9: Initial mountain road (251 points).
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Figure 10: mApproxi mati n& polygonal curve obtained
with an higher & (¢=0.2mm).

BT =

26

Figure 11:1°Approxi meati nt:l B-spline curve obtained
with an higher & (¢=0.2mm).

We cannot conclude this subsection without emphasizing the
good compression rates of Arge and Daehlen’s intersecting cones
method and the substantial improvement made by Eck and Haden-
feld as regards knot removal strategies.

5.2 Computation costs

It is difficult to give accurate algorithmic performance measure-
ments. Asin the analysis of compression rates, the main reason is
that computation cost depends on the geometric complexity: differ-
ent valuesare obtained based on datadistribution. Wedo not present
inthis subsection statistical resultssuch asin subsection5.1 because
computing time is more sensitive to the number of data points than
compression rate. Nevertheless, we present characteristic samples
of time required in table 3.

Method Knots Strategy o *
Arge Da&hlen 0.1” 27
Polygonal
Douglas Peucker 0.4” 37
Lyche Morken 4708”7 | 1h 22’
De Boor Eck Hadenfeld 407817 |59 217
B-spline Fitting (e=0.5) | 1727 | 8 27"
Fit.(Hos. €=0.5) | 97387 |13’ 24"
Uniform
Fitting (€=0.5) | 1’527 |4’ 45"

Table 3: CPU time valuation of compression strategies: time
required to compressthe isobathymetric line of figure 7 (o)
and the complex coastline of figure 8 (x) (¢=0.02mm, k=4).

We should first notice that the computing times required by the
polygonal methods are the lowest. It seemsnatural to have such re-
sults. Theiterative construction of these methods selects datawithin
atoleranceband. Thisimplies only one construction of approximat-
ing polygonal curve. On the other hand we apply several local es-
timation criteria and linear system resolutions in the bisection pro-
cess (and also in Hoschek's process) in order to search for best ap-
proximating B-spline curve f. In comparison with the knot removal
strategies, we obtain better results even in this subsection. We refer
to our study [25] for further information on the difference in CPU
time between the different strategies.

We should point out that computing timeisnot proportional tothe
number of initial data. It is natural to increase computing time when
there is more data. Time required to compare initial line segments
[ps, pit1] with approximating curve segments [£(¢:), £(Coy1)] iS
higher in thelocal estimation criterion. In addition, computing time
is greatly dependent on the size of the linear systems through:

¢ the number of lines (r) (i.e. the number of initial data),
o the number of columns (m) (i.e. the tolerance).

The CPU time valuation proposed in table 3 results from the ap-
plication of algorithmswhosefirst interest is amaximum datacom-
pression without time restriction. In order to decrease the comput-
ing time, one can consider the possibility of first reducing the num-
ber of data points before fitting. We advise against using this tech-
nique. Asa matter of fact, important information will thus be re-
moved, which naturally arisesin thefitting strategy. In our research
report [25] we introduce solutions for reducing computing time. We
may impose lower convergence conditions in the local estimation
criterion and in the intrinsic Hoschek parameterization which nec-
essarily lead to less compact representations.

Another advantage of using B-spline curvesis that we can zoom
in on a section of a curve and still have a smooth representation of
it. As amatter of fact, one can compute additional points on the
B-spline curve with (1) to improve the visual quality and the accu-
racy of the line. Such a property could be useful in embarked car-
tographic information systems. It is not possible for the polygonal
representation to do the same: adding points in the line segments
increases neither the visual quality nor the accuracy of the resulting
displayed line.

6 CONCLUSION

In this paper, a general formulation for fitting with B-spline curves
isproposed. Approximating quality depends on the choices of knot
vector, approximating parameters and degree. We summarize the
different choicesfor them.

Estimating the accuracy of the resulting approximation is acom-
plex problem. Criteria such as the maximum difference or the av-
erage quadratic difference are not sufficient. The main problem of
these criteria, dueto alack of information, is their inability to esti-
mate the curve between the given points. They are not able to take
into consideration the deviations which may occur between datap; .
Without intermediate points, this estimation could be judged from
the criteria we set up.

One of the applications of such estimating criteria is data com-
pression. Decreasing the number of control points of B-spline
curves makesit possibleto compact the data. We havealarge num-
ber of datavalues. These meansthat a datais not totally indepen-
dent of its neighbours. That is why we have determined particular
parameter choiceswhich yield both high compression rates and fair
approximations.

Tests show that the compression rates and computation costsrel-
ativeto thisfitting method are better than those associated with knot
removal strategies. We obtain equivalent (or even higher) compres-
sion results with regard to Douglas and Peucker’s polygonal algo-
rithm.

Results about computation costs are necessarily better using the
representation by means of alist of points. But, B-spline represen-
tation offers higher visual results for modelling smooth lines while
increasing tolerance ¢ (or having lesser accuracy). B-spline repre-
sentation offers higher level processingsaswell. Thisneedisimpor-
tant in cartographic line generalization. Generalization is the pro-
cess of abstraction used when the scale of amap is changed into a
smaller scale. Usual representation by means of a list of pointsis
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not sufficient for dealing with some curve operators (displacement
or exaggeration operators for example). Our goal is to include our
data compression method in this context and even go further and to
suggest B-spline modelling in aline generalization process.
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