
Fast generation of Importance-sampled Point Sets with Associated Delaunay
Triangulation.

Charles Donohue, Victor Ostromoukhov
University of Montreal

Abstract

In this paper, we propose a novel method to generate Delaunay-
triangulated point sets from a given density function in 2D. In order
to accomplish this, we employ a Penrose-tiling-based importance-
sampling strategy, which not only provides a good sampling point
pattern with a local blue-noise distribution, but also provides a bal-
anced base geometric structure from which we can efficiently derive
a Delaunay triangulation of the underlying point set. We observe
linear execution time with respect to the number of points. There
are many areas in computer graphics that can benefit from our fast
triangulated point set generator. Typical applications include terrain
rendering, 3D geometry processing, and image compression.

Keywords: Importance Sampling, Delaunay Triangulation, Blue
Noise, Penrose Tiling, Terrain Rendering, Geometry Processing.

1 INTRODUCTION

In this paper, we address a general problem which can be stated
as follows. Given a 2D density function, we want to tessellate the
plane with a triangle mesh which has the following properties: first,
the vertices of the mesh should have a local density that is propor-
tional to the input importance function at their position. Further-
more, we expect these vertices to follow a local blue-noise distri-
bution [Ulichney, 1988; Hiller et al., 2001], which is similar to a
Poisson-disk pattern. Also, we want to have the triangles of the
mesh follow a Delaunay triangulation of its vertices. This con-
straint imposes that no vertex be contained in the circumcircle of
any triangle in the mesh. Finally, we want the whole process to be
fast and to scale well with the number of vertices.

This is a problem that arises in many applications in computer
graphics. Often, it is desirable to have a mesh in which the tri-
angle density can be modulated according to some importance met-
ric, either for reasons of efficiency and/or visual quality. Although
many regular mesh subdivision strategies can be used to this end,
such as the quadtree or

√
3-subdivision [Kobbelt, 2000] schemes,

these tend to permit only large, discrete steps in density, whereas
we would like to have a smooth gradation. Also, the inherent reg-
ularity of these methods creates heavy alignments which are often
undesirable, whereas a blue-noise distribution of the vertices would
preclude such alignments. Another concern that often arises is the
problem of narrow triangles, or ‘slivers’, which are not only ineffi-
cient, but can often lead to visual ‘glitches’. This is why a Delaunay
triangulation can be desirable, for it has the property of maximiz-
ing the minimum angle of the triangles. Finally, generating these
meshes must be quick, in order to permit the interactive rates that
are required in many computer graphics applications.

We propose a novel method of solving this problem. Our
method has its foundations in the Penrose-tiling-based importance-
sampling system proposed in [Ostromoukhov et al., 2004]. The
idea is to use a regular triangle subdivision scheme based on the
Penrose tiling in order to obtain an overly dense set of initial points,
and then to threshold these points against the importance function
in order to obtain the required density. To break the structures and
alignments in the point set, precalculated correction vectors are ap-

plied to each vertex. In our new tessellation system, we exploit
the underlying hierarchical triangle subdivision scheme to build the
triangulation of the resulting point set in a very efficient manner.
We also harness the distribution properties of the original sampling
system in order to enforce a Delaunay constraint on the resulting
triangulation, at a minimal computational cost. We observe that
our system can build the desired Delaunay triangulated point sets
in O(n) with regards to the number of vertices and gives very fast
results in practice.

There are a few instances in computer graphics literature in which
this specific problem is faced, albeit indirectly. One case is in
[Davoine et al., 1996], where an image is tessellated into a Delau-
nay triangulation with a higher density of triangles in the regions
with a higher variance, which serves as a basis for fractal image
compression. They use an incremental insertion approach based on
weighed barycenters, which is fairly expensive and would not scale
well with many vertices. In [Alliez et al., 2003], a similar problem
arises in the context of 3D geometry remeshing. Their approach
consists of using a weighed Lloyd relaxation process, which is very
time consuming. At the other end of the spectrum are methods em-
ployed in many terrain visualization algorithms, such as in ROAM
[Duchaineau et al., 1997], which rely on regular subdivision strate-
gies in order to be very fast and tend to show strong alignments as
a result, as well as only permitting large steps in triangle density.

We expect that the reader is familiar with the abundant literature on
Voronoi diagrams and Delaunay triangulations, which have been
heavily studied and surveyed [Fortune, 1992; Bern and Eppstein,
1992]. Non-randomized incremental insertion algorithms with un-
sophisticated point location can exhibit Θ(n2) running time, where
n is the number of vertices. There are more efficient algorithms
that can run in O(n log n) worst case, such as Clarkson and Shor’s
algorithm [Clarkson and Shor, 1989], or the Shamos and Hoey’s
divide-and-conquer approach [Shamos and Hoey, 1975], Fortune’s
sweep-line algorithm [Fortune, 1987], or a randomized incremental
algorithm augmented with a search structure, such as in [Devillers,
1998]. In some cases, when the vertices exhibit “nice” distribution
properties, e.g. as defined in [Talmor, 1997], some general Delau-
nay triangulation algorithm may run in linear time [Dwyer, 1991].
The algorithm presented in this paper belongs to the latter family of
Delaunay triangulation of the a priori well-distributed point sets.

The rest of the paper is organized as follows. The sampling system
which our method extends is briefly explained in Section 2. Our
Delaunay triangulation algorithm is presented in Section 3. Results
are presented in Section 4. Conclusions and future work follow in
Section 5.

2 SAMPLING SYSTEM

In order to explain how our triangulation algorithm works, we must
first make a brief review of the sampling system, which is based
on Fast Hierarchical Importance Sampling with Blue-Noise Prop-
erties, as introduced in [Ostromoukhov et al., 2004]. The system
shall henceforth be referred to as ‘Penrose-tiling-based sampling
system’ or simply ‘sampling system’. The three basic steps that the
system takes are illustrated in Figure 1.
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Figure 1: Left: Subdivision rules for modified Penrose tiling. The Golden Ratio φ = 1+
√

5
2 ≈ 1.61803. Pairs of orthogonal vectors form the

basis for each tile. Right: Sampling system outline. Active (selected) points are shown as blue dots. Red dots are corrected active points.
Correction vectors are shown as yellow lines that connect blue and red dots.

First, an adaptive tile subdivision scheme is used to build an initial
structure (see Figure 1-right). This results in a subdivision tree in
which the spatial density of the leafs is modulated by the objective
importance function. The subdivision rules are based on the Pen-
rose tiling [Penrose, 1979]; the tiles are all triangular (‘c’ to ‘f’ in
Figure 1-left) save for a pair of infinitesimal pentagonal tiles (‘a’
and ‘b’ in Figure 1-right). This makes for a hierarchic structure
that can be built only out of triangular subdivisions. Also, the sub-
division rules are such that all angles are multiples of π

10 , so the
trigonometric operations can be tabulated for speed. Each tile has
a number of attributes: a pair of orthogonal vectors shown in Fig-
ure 1-left, and a binary code (F-code) that can be interpreted as a
number in the Fibonacci number system [Knuth, 1997] and [Gra-
ham et al., 1994]. Each subdivision left-concatenates two binary
symbols to the parent’s F-code, according to the following scheme:

PPenrose :=



a∗ 7→ {b00∗}
b∗ 7→ {a00∗}
c∗ 7→ { f00∗,c10∗,a10∗}
d∗ 7→ {e00∗,d10∗}
e∗ 7→ { f00∗,c10∗,e01∗,a10∗}
f∗ 7→ {e00∗,d10∗, f01∗,a01∗},

(1)

where xy means a tile of type x having F-code y. The symbol ‘∗’
replaces the parent’s F-code of a tile before subdivision.

As they are created, the vertices of this structure are numbered using
the Fibonacci number system [Knuth, 1997; Graham et al., 1994].
In a process akin to digital halftoning, the numbers are used as a
threshold against the importance function in order to obtain the de-
sired local density of points. The numbering of the vertices reflects
their position in the hierarchy, and the ordinal numbering of the
vertices ensures a linear response of point density with regards to
the importance values. We call the sampling points active when
they are selected according to the thresholding process defined in
[Ostromoukhov et al., 2004].

Finally, the system applies precalculated correction vectors to the
active points. This tends to ‘relax’ the points with respect to their
neighbors and breaks the inherent structures in the point set. But
no proximity queries are required, as the vectors are applied to each
point independently of its neighbors. The correction vectors are
stored in a table, which is obtained using an offline optimization
process which involves Lloyd’s relaxation scheme [Lloyd, 1983].

This makes the process very fast and deterministic.

We are left with a discrete sample distribution, in which the lo-
cal point density is proportional to the importance density function.
The resulting tree structure also determines a triangular mesh de-
fined by the edges of the Penrose tiles. As the adaptive subdivi-
sion process operates locally, such a triangular mesh may contain
T-edges.

The local distributions of points have a blue-noise spectral pro-
file [Ulichney, 1988; Hiller et al., 2001], which equates to a low
anisotropy and no principal directions or alignments. This kind of
distribution can be very effective in computer graphics, especially
considering the fact that the human visual perception system is par-
ticularly sensitive to such alignments.

Several existing methods can be used to generate point sets with
blue-noise properties. The techniques that give good quality re-
sults, such as Lloyd’s relaxation-based techniques, tend to be slow,
whereas the faster techniques generally fail to meet the blue-noise
requirements. Our sampler is a fast approximation, yet it is among
the best in terms of quality. The possibility of generating these good
distributions at such a high speed opens the door to many applica-
tions that require fast generation of high quality triangular meshes.
But, as is, the system generates a cloud of points, without the con-
nectivity information that is useful in many applications. We solve
the connectivity issue in this paper.

3 Our Triangulation Algorithm

In order to extract connectivity and proximity information from a
point set, it is often useful to build a Delaunay triangulation of the
set. For a set S of points in the Euclidean plane, the Delaunay tri-
angulation can be defined as the unique triangulation DT (S) of S
such that no point in S is inside the circumcircle of any triangle in
DT (S). It can also be defined as the dual of the Voronoi diagram
of S, as illustrated in Figure 2. The Delaunay triangulation is the
target of our algorithm, and can be built very quickly by harnessing
certain intrinsic properties of the sampling system. The main ideas
behind our triangulation algorithm follow.

This structure can be transformed into a proper triangulation by
making sure that no T-edges remain. Since a strict set of rules is
used to build this structure, it is possible to create such a triangula-
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Figure 2: An example of our triangulation shown in blue, with its
dual in red. These are respectively equivalent to the Delaunay tri-
angulation and the Voronoi diagram.

Figure 3: T-edge elimination. Before on the left, after on the right.
The edges that have been added are shown in red.

tion in linear time with regards to the number of triangles. Second,
not all vertices in the structure will be considered as active sampling
points after the thresholding process, so these must be eliminated
from the triangulation . We assume that the connectivity of the tri-
angulation of the final point distribution will be very similar to the
connectivity of the structure mentioned above. The sampler dis-
places the points with correction vectors, which can leave us with
an invalid topology, but we suppose that this can be corrected in
constant time at the local (edge) level. Finally, we can observe that
the connectivity information that stems from the original structure
is very close to the Delaunay connectivity after the points are dis-
placed. After a finite number of conditional edge flips, every edge
is in the Delaunay set.

Let us outline the main steps of our algorithm.

3.1 Initialization

The preliminary step is the initialization of the sampler over the
given importance density function, as shown in Figure 1. Instead
of simply using the output points, we will use the tile subdivision
tree structure which the system employs internally, in the manner
described in section 3.2.

3.2 Base Triangulation

The next step is to create a valid triangulation from the underlying
sampling structure, meaning there should not be any T-edges in the
mesh. An efficient way of obtaining such a triangulation is to iter-
ate through the tile subdivision tree of the sampler in a width-first

Figure 4: Inactive vertex extraction. Before on the left, after on the
right. Blue vertices have passed the thresholding process.

manner; this has the effect of enforcing the following rule: no two
adjacent triangles, which are slated to be subdivided at a subsequent
level, will ever be at more than one level of subdivision apart, at any
time during the traversal of the tree. This way, whenever a new ver-
tex needs to be added to the current triangulation, it is assured that
we only need to split two triangles along their common edge, which
is a trivial operation. Also, on the borders of areas at different levels
of subdivision, the triangulation remains valid because the triangles
on both sides are split. This holds true no matter how many levels
of subdivision this border jumps. An example of this operation is
shown in Figure 3.

3.3 Inactive Vertex Removal

The triangulation obtained at this point includes every vertex in the
tiling. The second step consists in the extraction of the inactive ver-
tices, the potential sampling points that have failed the threshold-
ing step. This process is fairly straightforward; we iterate through
all the ‘sampling’ tiles, and those that have failed the threshold-
ing test are marked for extraction. Finding these vertices in the
triangulation is simple, because we have stored reference to the lat-
ter. The removal of a vertex from the triangulation involves the
re-triangulation of the hole it generates, which can be done with
or without enforcing a Delaunay constraint. We have opted for a
simple greedy re-triangulation because the end result is the same,
while less computationally intensive because we avoid the circum-
circle tests. When this greedy approach is chosen, special atten-
tion must be brought to collinear points in the re-triangulated area.
The original Penrose tiling has alignments in the 10 principal di-
rections but, depending on the numerical precision chosen for the
point representation, some collinear points might appear slightly
non-collinear, which can result in triangle slivers. These triangles
have an unstable orientation, and can be problematic for the pred-
icates used in further operations on the triangulation. Fortunately,
a simple collinearity test avoids these situations, using a numerical
precision based on the level of subdivision at the offending point.

This decimated triangulation will serve as the foundation for our
final triangulation. An example of this step is shown in Figure 4.

Our implementation uses the half-edge data structure [Eastman and
Weiss, 1982] in the Computational Geometry Algorithms Library
(CGAL) [Boissonnat et al., 2002], which supports triangle splits
and edge flips in O(1) time, and vertex removal in O(d2) time,
where d is the degree of the vertex.

The vertices of the resulting triangulation will need to be displaced
by the correction vectors provided by the sampling system; this can
cause an invalid topology at certain vertices, as shown in Figure 5.
This leads us to the next step in the algorithm, which is a finite
number of conditional edge flips of the current triangulation. In our
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Figure 5: Sampler correction vectors. Before corrections on the left,
after on the right. Notice the invalid topology of the displaced tri-
angulation in certain areas (circled in blue).

Figure 6: Comparison of our triangulation after two edge-flip opera-
tions with a Delaunay triangulation (in blue). Red edges are not in
the Delaunay set. After edge-flip operations being performed, our
triangulation is identical to Delaunay’s, in this example.

implementation, we use a standard edge flip algorithm [Lawson,
1972; Bern and Eppstein, 1992]. In order to obtain a proper De-
launay triangulation, a certain number of these edge-flip operations
must be made successively. An example of such a process is shown
in Figure 6.

4 Results

4.1 Qualitative Results

An example of using our triangulation algorithm on a gradient ramp
is shown in Figure 7. In Figure 10, a high dynamic range image is
used as the importance density function. The quality of the results
of our triangulation are intrinsically tied to the quality of the De-
launay triangulation. Whether this is a ‘good’ triangulation or not
depends of course on the application, but the fact that the Delau-
nay triangulation maximizes the minimum angles of the triangles
gives it many useful properties. Obviously, the quality of the trian-
gulation is also tied to the quality of the distribution of the points
generated by the sampler. Given that the points follow a local blue-
noise (or Poisson-disk) distribution, the dual of the triangulation,
called the Voronoi diagram (see Figure 2), is very close to what is
called a centroidal Voronoi tessellation, which confers on it some
interesting properties [Du et al., 1999].

Figure 7: (Top) Gradient ramp importance density function. (Mid-
dle) Sampler output points. (Bottom) Triangulation obtained with
our algorithm.

4.2 Case Study: Terrain Rendering

In order to illustrate the potential of our system in the field of com-
puter graphics, we present a simple-use case, the rendering of ter-
rain maps. Once reserved for high-end flight simulators and sci-
entific visualization, the rendering of large terrain maps is now
a mainstream computer-graphics task, with a prominent place in
video games. Because of the sheer size of these data sets, the chal-
lenge is to quickly generate a set of triangles that can efficiently
portray the landscape, given its topological features and the posi-
tion of the observer. The goal is to obtain better-quality images out
of the triangle budget imposed by the rendering sub-system. An
outline of how our triangulation system could be exploited in this
context is shown in Figure 9.

Most fast terrain rendering algorithms, such as ROAM [Duchaineau
et al., 1997], rely on regular triangle-subdivision schemes that give
rise to highly regular structures, which can be detrimental, espe-
cially when these structures are aligned with topological features in
the map. Our system has the advantage of generating the vertices of
the mesh in a blue-noise distribution pattern, which not only avoids
any alignments, but also avoids triangle ‘slivers’. Of course, there
are many other issues in terrain rendering that transcend the triangu-
lation, most of which are related to the constraints and capabilities
of the underlying graphics hardware, but these are well beyond the
scope of this paper. Let us simply note that our system could be
used in conjunction with many recent advances in the field, such as
Geometry Clipmaps [Losasso and Hoppe, 2004].

4.3 Quantitative Results

In order to compare our algorithm’s performance with others in
real-world applications, we have timed the triangulation algorithms
on an increasing number of points. The results are shown in Fig-
ure 8. For fairness’ sake, all three algorithms use the same trian-
gulation data structure. Also, the implementations of the two com-
pared algorithms are provided by the CGAL library [Boissonnat
et al., 2002], known for its good performance. As the graph shows,
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Figure 8: Performance comparison: (a) Incremental insertion. (b)
Devillers’ algorithm. (c) Our algorithm. The source function is a
non-trivial HDR image. Times are on a P4, 2.6 GHz system.

a naive algorithm such as the incremental insertion method, is no
match for our algorithm. The brute force approach, in O(n4), is not
even shown because it is substantially slower than all other meth-
ods. Devillers’ algorithm [Devillers, 1998] uses an efficient search
structure, which gives a nearly linear performance on the point sets
generated by the sampler, given their blue-noise distribution. This
makes for an algorithm that performs in the same order as ours.
Nevertheless, our algorithm manages to run at least twice as fast,
and this is while adhering to the highest-quality standards.

5 Conclusions and Future Work

We have addressed an important problem in computer graphics,
which is to generate well-distributed point sets along with their
Delaunay triangulations, given an importance density function in
2D. To this end, we employ a Penrose-tiling-based importance-
sampling strategy described in [Ostromoukhov et al., 2004]. The
sampling system provides a good sampling point distribution with
blue-noise property; it also provides a base geometric structure
from which we efficiently derive a Delaunay triangulation of the
underlying point set.

We have observed that our algorithm runs in linear time. Even in
comparison with the best known Delaunay triangulation algorithms
which can run in almost linear time in the expected (average) case,
we can observe a speedup by a factor of at least two.

As future work, we plan to extend the algorithm in order to generate
3D Delaunay tetrahedrizations, and possibly n-D polyhedrizations.
Of course, this depends on whether an appropriate sampler will be
available in such dimensions. This is a question that we are looking
into. Some operations on triangulations are simple in the 2D case,
but become more complex in higher dimensions.

Another extension to explore is the case of a dynamic importance
function, where temporal coherence of the function could be ex-
ploited to save computation time, as opposed to simply rebuilding
the triangulation at each frame. Given that our sampler is expected
to return coherent point sets across frames (which is not the case
in most other similar systems), the time savings could be consider-
able. Since the proposed method is hierarchical by construction, a
lot of work could be saved between frames by exploiting the previ-

ous subdivision and trying to keep changes incremental.

Finally, we plan to develop applications of the algorithm for
promising uses in computer graphics. One such application is im-
age compression, where an image would be partitioned into a trian-
gulation which has a local density proportional to the image com-
plexity. Another application is isotropic remeshing of 3D surfaces,
in a manner similar to [Alliez et al., 2003], which could be made
more interactive with our fast system.
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Figure 9: Terrain rendering example. (Height field data source: Yukon Dept. of Renewable Resources)

Figure 10: HDR map sampled with the Penrose-tiling-based sampling system (background image), then triangulated using our algorithm
(foreground image). The total running time was 0.094 seconds on a P4 at 2.6 GHz. Running time is linearly proportional to the number of
vertices. HDR image source: Paul Debevec.
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