

Using Quad-Trees for Acceleration of Physically-Based Image-Space
Rendering of Glare

Peter Sikachev, Ilya Tisevich, Alexey Ignatenko

Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia

{psikachev, itisevich, ignatenko}@graphics.cs.msu.ru

Abstract

Glare effects have recently become a point of interest for many

researchers. It adds realism to a 3D-scene, making light sources

and bright objects look true-to-life. Several applications demand

physical proof for these effects.

Though most of the methods are only concerned with a simple

“bloom” effect, new methods with more complex effects become

available, taking in consideration such parameters as lens aperture

and occluder. Some of them are based on wave optics, but there

are also a number of methods for real-time hardware-accelerated

rendering.

An interactive method for glare rendering is proposed, based on

Fourier Optics. Several improvements were made in speed and

physical correctness of our method. We provide results of a

comparison between real-life and simulated effects showing

realism of our approach.

Keywords: Fraunhofer Diffraction, Streaks, Glare, Bloom, HDR

Rendering, Hardware-Accelerated Rendering.

1. INTRODUCTION

Rendering of high intensity light is a tricky problem because of

physical limitations in the brightness of displays and other output

devices. Therefore techniques like bloom and streaks appeared

which could reproduce the effects of high-intensity lighting,

simulating genuine optical effects on limited brightness hardware,

such as computer displays. These effects include interaction of

observed light with eyelashes, diaphragm, retina and camera

film/matrix.

Bloom simulates the retina’s feature to illuminate the neighboring

cells to those which bright light has effectively hit. Streaks are

used to visualize the diffraction, which appears due to the

presence of an occluder, that is far away (Fresnel diffraction, e. g.

streaks from glass) or near the viewpoint (Fraunhofer diffraction,

e. g. streaks from eyelashes or finite lens aperture).

(a) (b) (c)

Figure 1: Example renderings with different HDR effects. (a) no

HDR effect; (b) bloom effect (c) Streaks and bloom effects

In our work we limit ourselves to rendering Fraunhofer diffraction

for an arbitrary scene and given lens or eye properties. Methods

we used are similar to [1].

Our contribution is acceleration of the physically-based streak

rendering algorithm. Acceleration rate varies from 1.5 to 4 times,

depending on the selected algorithm.

2. RELATED WORK

Several algorithms have been developed to render bloom and

streak effects.

Methods [7, 8] render bloom using simple two or more pass

algorithm. They are hardware-accelerated and, being very fast,

are used in many applications like computer games and

demonstrations.

Method [3] simulates the complex effect on the retina that

depends on many parameters, such as scene illumination and age

of the observer. It doesn’t take into consideration any effects

linked with diffraction in an occluder or a lens.

Figure 2: Occluder samples for an eye (left) and camera (right,

objective polishing is simulated by regular grid) cases. Eye

occluder simulates eyelashes, camera occluder simulates rough

surface of a “streak” optical filter.

Methods such as [2, 5] are suited for hardware-accelerated fast

visualization. They somehow lack physical proof, but work fine

for applications, where ‘true’ photorealism is not required.

Finally, there are methods like [1] which are specifically suited

for rendering Fraunhofer diffraction streaks. Authors describe

how this method could be used in real-time, but in most cases it is

too time-consuming even for high-end GPUs.

Section 3 describes how we integrate this method into our

rendering pipeline. There are some interesting tricks about how

we combine streaks and make several improvements to the

algorithm (increasing its speed), which are described in Section 4.

We conclude and describe our future work plans in Section 6.

3. STAR RENDERING PIPELINE

3.1 Streak Rendering Stages

In a nutshell, streak rendering technique consists of two stages

(see Figure 3).

Figure 3: Streak rendering stages in the graphics pipeline.

At the first stage, a streak image is generated using occluder and

lens images exactly as in [1]. This is done once, until any change

in the occluder or the lens takes place; recalculation is not needed

at each frame.

At the second stage we map this image on the bright points of the

image, using additive blending [4]. Unlike [1], we cannot afford

ourselves selecting only one streak per light source/bright

polygon, because we need to generate smooth streaks for large

bright areas due to photorealism requirements. Moreover, due to

object domain and application specifics, we cannot obtain

position of the streak generating sources in any other way than

analyzing per-pixel brightness of the final image.

3.2 Integrating Streaks into the HDR Rendering
Pipeline

Another problem is how to combine streaks effect with other

image-space effects like bloom, tone mapping and antialiasing.

Figure 4: Rendering pipeline with streaks and bloom.

Taking into consideration that streak effect is linked with

diffraction in eyelashes/lens (i.e. ahead of retina/film/matrix) and

bloom effect occurs in the retina/film/matrix itself, it is clear that

bloom should be added to an image after the streaks.

We use two rendering targets (color buffers) of screen size

(‘small’) for ping-ponging [2] between them during blur rendering

and one of double screen size (‘large’) for supersampling

antialiasing [4]. As shown in Figure 4, we render streaks and

bloom to the small buffers. Due to smooth nature of bloom and

streaks, they don’t require being antialiased, and rendering them

into small buffers saves fill rate and rendering time.

We also introduce a new method of tone mapping [9], specifically

adapted for our application area. Motivation and the algorithm

itself are explained in Section 3.3.

After all the passes have been executed, adaptive shader blur

takes place, which has been fine-tuned to give an image anti-

aliased look, and only affects areas of the screen space, where

rendered polygons adjoin [10].

3.3 Tone Mapping Algorithm

Since streaks are mapped on the image in HDR buffer before its

conversion to low-range (8bit), they take part in tone-mapping

step.

Tone mapping is needed because after rendering our screen buffer

contains unbound intensity values which and needed to be

converted into low dynamic range [0..1] and a specific RGB color

space. The latter is important because after simulation we can get

colors which cannot be represented by the gamut of the target

(monitor) color space. So a tone mapping algorithms deals with

two types of out-of-gamut values: high intensity (>1) value and

non-RGB values (<0).

Other requirements for tone mapping were high (interactive)

speed and preservation of color tone for high intensity pixel

values. Note than we don’t need to compress all dynamic range

into low range, rather we need to simulate camera behavior, so in

our application user can select desired exposure ratio.

Out tone mapping is based on simple global intensity scaling

solution with some modifications. To match requirement of color

tone preservation we scale all components of color proportionally

in case there are at least one component with value greater than

one. This allows keeping correct object color tone in contrast to

typical approaches based on simple linear or logarithmical

mapping, like in [1]) (see Figure 5).

(a)

(b)

+5EV 0EV

Figure 5: (a) wrong color behavior with increasing exposure on

simple tone mapping (b) realistic behavior on our algorithm

For dealing with negative values, we transform rendered spectrum

values into CIE XYZ 1931 color space which is guaranteed not to

have negative values. Tone mapping is performed in this space

and only after that we return to monitor RGB space with gamut

mapping (clipping). Working in XYZ space helps us correctly

tone-map out-of-gamut color and also to get more realistic result

for saturated colors. Saturated colors are usually poses a problem

for global tone mapping approaches because very bright pixels

don’t become white even with high exposure ratios (see Figure 5),

which gives unnatural result.

Our tone mapping technique produces correct and predictable

behavior on different exposures.

4. ACCELERATION TECHNIQUES

Though we have implemented all the described optimizations,

streaks rendering time is still unacceptable. The bottleneck is in

the GPU’s fill rate, because generating streak for each point, we

render a textured quad with additive blending (i.e. without z-

buffering and z-cull).

Therefore we involve techniques limiting the number of screen-

aligned textured quads that are actually drawn.

4.1 Clusterization

Consider an input image for the streaks rendering algorithm.

Normally, bright points are joined in groups, each of the groups

corresponding to a bright polygon or another light source.

Consider an N×N pixel region, where each pixel is bright enough

to produce a streak. Let’s precompute a streak (we call it ‘integral

streak’), assuming that each pixel has the same color (see Figure

6).

Figure 6: Integral streak for a 2×2 region (bright points are filled

with red and yellow, resulting streak contour – with orange).

Let's divide an input image by a grid with a grain size of N×N.

Some of the grains will be filled with pixels, all of which are

bright enough to produce streaks. Assuming that their colors do

not vary greatly (which is fairly probable), instead of rendering

four ‘single’ streaks, we can render one ‘integral’ streak with the

color, equal to the average color of these streaks. See Figure 7 for

example.

Figure 7: Applying integral streaks. Borders of candidates for

integral streaks use are highlighted with green.

4.2 Quad-Tree Adaptive Clusterization

Selecting cluster size is a tricky problem. If we select it too small,

some large streaks sources that could be optimized well will be

optimized worse. If we select it too large, some small light

sources will not be optimized at all.

We propose a method, which adaptively select the best possible

size of the cluster for each image fragment. Assume that the

maximum cluster size is 2n. Then we need n integral streaks and

one single streak image. First, we try to use the largest integral

streak for a cluster. If it fails, we recursively divide it and repeat

the process for the case of (n-1).

Since quad-streak clusterization renders more integral streaks than

any 2n clusterization, it provides the best speed (but the ‘worst’

quality, too).

In Figure 8 it can be seen that a 2×2 clusterization introduces

160% optimization, compared to the conventional rendering. This

estimation is obtained comparing the total number of bright pixels

(96) to the sum of 2×2 clusters and non-clusterized pixels (20 and

16). Using the similar calculations we can obtain that a 4×4 quad-

tree one introduces another 20% optimization, compared to the

2×2, but that could be one of the worst cases.

Figure 8: Using a 3-level quad-tree clusterization. Pixels that

don’t produce streaks are colored in blue. Light blue and light

green shows the borders of the 4×4 and 2×2 clusters accordingly.

4.3 Comparison of Speed of Different Streak
Rendering Techniques

We have tested the proposed methods on different image sets and

measured time elapsed during streaks rendering. The results are

shown in Figure 9. Notice the time difference between the no

cluster, 2x2 static cluster and 16x16 quad-tree cluster methods.

Figure 9: Comparison of streaks rendering speed for different

cluster sizes. Time is given in milliseconds.

Test configuration: Dell Inspiron 1520, Intel Core 2 Duo T7500

(2.2 GHz), GeForce 8600 M GT, 2 Gb RAM

6. CONCLUSION AND FUTURE WORK

In this paper we propose a novel method for glare rendering. It

offers a speed increase of up to four times, compared to the

known physically-based method [1]. We’ve also made a research

on the problem of correct integration of the streak effect into the

rendering pipeline, and selected the fastest scheme available.

Future research should be made on both acceleration and quality

enhancement. Clusterization could introduce a few new artifacts,

and although we have corrected it, more R&D should be done on

that subject. Besides, with the growth of GPU fill rate, other

algorithm steps, like the search for bright points and recursive

clusterization may become a bottleneck.

Although we have implemented these features on the CPU, they

could be easily performed on a GPU, limiting bandwidth

bottleneck (during image read from a framebuffer) and

parallelizing image processing. Instruments that allow multiple

arbitrary size output from a shader/thread, such as geometry

shader or CUDA might be used.

7. REFERENCES

[1] Masanori Kakimoto, Kaoru Matsuoka, Tomoyuki Nishita,

Takeshi Naemura, Hiroshi Harashima. Glare Generation Based

on Wave Optics. In Proc. of Pacific Graphics 2004, pp. 133-142,

2004, Seoul.

[2] Chris Oat. A Steerable Streak Filter. In ShaderX3: Advanced

Rendering with DirectX and OpenGL, edited by Wolfgang Engel,

pp. 341-348, Charles River Media, 2004.

[3] G. Spencer, P. Shirley, K. Zimmerman, D. P. Greenberg.

Physically-Based Glare Effects for Digital Images. In

Proceedings of SIGGRAPH '95, Computer Graphics Proceedings,

Annual Conference Series, Los Angeles, pp. 325–334.

[4] Tom McReynolds, David Blythe. Advanced Graphics

Programming Using OpenGL. Morgan-Kaufmann, 2005.

[5] Tristan Lorach. Sparkling Effect, White Paper, available at

http://developer.download.nvidia.com/whitepapers/2007/SDK10/

Sparkles_hi.pdf.

[6] E. Nakamae, K. Kaneda, T. Okamoto, T. Nishita. A Lighting

Model Aiming at Drive Simulation. In Proc. SIGGRAPH ’90,

August 1990, pp. 395–404.

[7] Greg James and John O’Rorke. Real-Time Glare. In GPU

Gems: Programming Techniques, Tips, and Tricks for Real-Time

Rendering, edited by Randima Fernando, pp. 343-361, Addison-

Wesley Professional, 2004.

[8] Tiago Sousa. Adaptive Glare. In ShaderX
3
: Advanced

Rendering with DirectX and OpenGL, edited by Wolfgang Engel,

pp.349-355, Charles River Media, 2004.

[9] Larry Gritz, Eugene d'Eon. The Importance of Being Linear.

In GPU Gems 3, edited by Hubert Nguyen, pp. 529-542, Addison-

Wesley Professional, 2007.

[10] Oles Shishkovtsov. Deferred Shading in S.T.A.L.K.E.R., In

GPU Gems 2: Programming Techniques for High-Performance

Graphics and General-Purpose Computation, edited by Matt

Pharr, pp.143-166, Addison-Wesley Professional, 2005.

About the Authors

Peter Sikachev is a 4th-year student at Computational

Mathematics and Cybernetics department of Moscow State

University. His research interests include photorealistic 3D

rendering, interactive visualization and GPU programming. His

contact e-mail is psikachev@graphics.cs.msu.ru.

Ilya Tisevich is a PhD student at Moscow State University,

Department of Computational Mathematics and Cybernetics. His

contact email is itisevich[a_t]graphics.cs.msu.ru.

Alexey Ignatenko is a researcher at Computational Mathematics

and Cybernetics department of Moscow State University. His

research interests include photorealistic 3D rendering, 3D

modelling and reconstruction, image-based rendering and

adjacent fields. His contact e-mail is

ignatenko@graphics.cs.msu.ru.

Figure 10: Bloom

Figure 11: Streaks only.

Figure 12: Streaks and bloom combined.

Figure 13: High quality streaks (cluster size 1).

Figure 14: Low quality streaks (cluster size 2).

Figure 15: Streaks from eyelashes.

Figure 16: Streaks from camera diaphragm.

