
Rendering Smooth Spectrum Caustics on Plane for Refractive Polyhedrons

Peter Sikachev, Ilya Tisevich, Alexey Ignatenko

Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia

{psikachev, itisevich, ignatenko}@graphics.cs.msu.ru

Abstract

Caustics are patterns of light formed by refraction or reflection of

light from objects, and several methods have been developed to

render this effect. Some methods are used to render caustics on

plane, others – on arbitrary surface.

Practically no methods have been developed to render spectrum

caustics, which appear when refracting material has too high

refraction index or ray suffers multiple refractions and reflections

before it exits the object. Existing methods, like photon mapping

[11] either produce non-smooth results for few wavelengths

number or work offline.

We propose a method for rendering spectrum caustics on plane.

The caustics are calculated using forward vertex ray-tracing

algorithm and rendered using conventional scanline rasterization

(OpenGL). Besides, we propose a technique that allows rendering

smooth caustics, even when only 3 rays per vertex are traced, of

wavelengths roughly corresponding to conventional color

components (R, G, B).

Keywords: Caustics, Ray-Tracing, Spectrum Rendering.

1. INTRODUCTION

Rendering caustics is a tricky problem because of multiple

factors. First, if an object is refractive (and diacaustic is

supposed), one or more refractions should be simulated, which

could be time-consuming.

Then, there is a problem of projecting caustics on the desired

surface. This can become difficult if the surface is non-planar.

Finally, the problem of rendering caustics arises. Even in case of

per-pixel ray-casting, the surface would be irregularly lit (due to

curvature of the caustic producing object) and methods of

interpolation between single photons are required.

In our work we limit ourselves to the case of polyhedron object

and a planar surface, on which caustics are projected. Our model

doesn’t differentiate between reflection and refraction cases, that

is why it is possible to render both catacaustics and diacaustics

using it.

Our contributions are an algorithm for spectrum caustics

rendering and an algorithm for rendering smooth spectrum

caustics tracing only few rays.

2. RELATED WORK

Caustic effect now is widely used in high-quality computer

graphics, be it interactive [1-4, 7-10] or not [6]. There is also a

difference in assumptions that are made to obtain desired quality.

While rendering diacaustics, the method of refraction calculation

is vital. The fastest methods only take one refraction into account

[2, 4]. [1] introduces a tricky technique which allows approximate

rendering of up to two refractions without using ray-tracing or

ray-casting. Techniques based on photon mapping or ray-depth

map intersection algorithms [8] can handle multiple reflections

and refractions within the object.

Different assumptions about caustics receiver are made. Some

works [2] assume it to be a plane. Other techniques render

caustics on plane and then use it as a projective texture [1].

Finally, two-plane parameterization (2PP) is used to render

caustics most precisely [8].

Practically no methods have been proposed recently for

interactive rendering of spectrum caustics. Usually, in case of few

reflections/refractions, only white caustics appear, but this was

not our case.

We have developed a method for rendering spectrum caustics,

casted from a polyhedron object onto a plane. We use a forward

vertex ray-tracing algorithm to trace a ray through a reflective

object with high accuracy, which is described in Section 3.

Caustic rendering algorithm itself is shown in Section 4.

High-quality version of our algorithm produces smooth caustics

even from three rays. It is discussed in Section 5.

We conclude and summarize our plans for nearest future research

in Section 7.

Figure 1: Example of caustics on a plane for 3 rays for typical

object with high refraction index.

3. FORWARD VERTEX RAY-TRACING

The ray tracing algorithm used is a conventional physically-

correct polyhedron ray tracer. Actual Fresnel formulas are used to

calculate ray reflection and refraction at every ray-polygon hit.

Each single ray has a specific wavelength and intensity assigned

to it. Provided with a set of physical properties of the polyhedron

material, the algorithm can accurately calculate light distribution

within the object, and provide us with directions and intensities of

exiting rays.

Using this algorithm, we can obtain the data needed to render

caustics, cast by a number of light sources with given spectral

characteristics. For each such light source, a spectrum can be

divided into a number of zones, and each one of them is assigned

a ray with certain parameters. Passing this set of rays to the ray

tracer, we receive back a set of ray-cones, corresponding to beams

of light which exited the object after a number of internal

reflections and splittings. An entering ray-cone is shaped in a

form of corresponding model side. Due to dispersion and multiple

internal reflections it is split into a number of sub-cones. When

one of the sub-cones exits the model, the outline of a cone-model

intersection forms a polygon which we call a virtual facet. Thus,

each exiting ray-cone corresponds to a specific wavelength and is

shaped by a virtual facet, which, quite obviously, also determines

the shape of a single-wavelength caustic cast on a plane. Obtained

data can be split into a number of ray-cone batches, where in each

batch all the ray-cones have originated from the same entering

cone and have different wavelengths and intensities. Such a batch

of ray-cones forms a “rainbow” of caustic rays. As you can easily

figure out, for models with planar sides all cones from a single

batch intersect a plane in a straight line, if any, due to the nature

of dispersion.

4. CAUSTICS RENDERING

4.1 Projecting Caustics on Plane

After we got a ray exit positions and directions (a ray-cone), we

can project this beam onto desired surface. Due to rendering

pipeline specifics, projection is done in the view space.

Figure 2: Tracing a ray and projecting a ray cone on a plane.

After we have applied the knowledge about the beam brightness

falloff due to refractions and reflections, we should take in

consideration the square actually lit by the particular caustic. This

is described in the next subsection.

4.2 Using Size Estimation for Correct Lighting

Figure 3: Projecting the same ray cone on two parallel planes.

As could be seen from Figure 3, square of the same ray cone's

projection on parallel planes can vary greatly. The cosine between

rays and plane normal is constant so we cannot use it to estimate

the square. Instead we estimate the square of the ray cone section

and its projection using Geron’s equation.

Another problem (which hasn’t yet been solved) is that the light

intensity is non-uniformly distributed across the streak. We are

going to solve this in future by means of per-pixel lighting with

GPU.

5. SMOOTH CAUSTICS

When one traces rays, corresponding to finite (low) number of

wavelengths, problem of gaps between caustics, corresponding to

different wavelengths but same vertex can occur. Increasing the

number of wavelengths, traced per vertex, reduces frame rate

dramatically. Besides, a problem of visible gaps between ray-

plane hits occurs even for the case of 20 rays. So, an adaptive

solution is needed, which process correct caustics in both cases

when different wavelengths hit the surface close to each other and

when they are at the considerable distance from each other.

5.1 Interpolation and Integration

First, let’s consider a case of three rays (R, G, B). It is easily

generalized on the case of more rays.

Figure 4: Interpolation of spectrum caustics. Arrow ends are

pointing to the point where color is considered to be R, G or B.

As shown in Figure 4, color is interpolated between pairs of

neighboring wavelengths. Unfortunately, these values couldn’t be

used straightforward. One of the possible reasons is shown in

Figure 5.

Figure 5: Interference of light between different wavelengths.

Consider the image in Figure 5. Due to the interference of

different triangles, resulting energy in each point may vary

according to the distribution of caustics, corresponding to

different wavelengths on the surface. We cannot achieve this

effect using interpolation only (e. g. we can never obtain white

light, even if caustics are directly mapped onto each other).

We propose to integrate these interpolation results in each point to

solve this problem. In Figure 6 you can see the set of polygons

which contribute to the yellow point (utmost left and right

triangles are shown in dashed).

Figure 6: Integration of interpolation results.

In the current realization, integration is performed via additive

blending. We render all the interpolating triangles with a given

step (the step is taken in the coordinates of the view space) and

divide their brightness by the number of actually drawn triangles.

The results are shown in Figure 7.

Figure 7: Results of caustics interpolation. From left to right, the

distance between caustics is increasing.

5.2 3-Ray Energy Conservation Problem and
Solution

While interpolating between red-green and green-blue

wavelengths, another artifact occurs. When you integrate these

results together, it turns out that the green component is two times

brighter than the red or the blue one (because it is actually added

twice).

We solve this problem by adding virtual black caustics ‘before’

red one and ‘after’ blue one. We extrapolate position of red and

blue components using Equation 1 and 2:

greenblueblackblue PPP −=
−

2 (1)

greenredblackred PPP −=
−

2 (2)

where P stands for position of corresponding caustics.

As a matter of fact, the same problem arises when more rays are

traced, but it is practically undetectable in that case, because

boundary wavelengths make a very low-weight (approximately

1/20th of the energy) contribution to the brightness (in case of 20

rays) or even less (due to their proximity to ultraviolet/infrared

color).

6. CONCLUSION AND FUTURE WORK

6.1 Results

We have developed a method for rendering smooth spectrum

caustics on plane surfaces. Although it works for arbitrary number

of rays and produces accurate results interactively, we have vast

plans for optimization and enhancement of this technique.

Integration using additive blending is extremely time-consuming.

It is possible to evaluate this integral analytically if a linear

interpolation is supposed. In this case, color would be a square

function of coordinate. This makes it possible to shade each

caustic with a pixel shader, which needs to evaluate only a square

function in each fragment.

Caustics are usually produced by a volume light source, rather

than a point one. That is why they shouldn’t be as rough-edged as

they are now. The blurriness of the caustics depends on the light

source size, the distance between caustics emitter and the plane

and the distance that light had actually travelled within the solid

object during multiple refractions and reflections. In our ray

tracing model, these lengths could be accurately evaluated, which

makes it possible to apply a physically-based blurring of caustics.

7. REFERENCES

[1] Chris Wyman. Interactive Refractions and Caustics Using

Image-Space Technique. In ShaderX5: Advanced Rendering

Techniques, edited by Wolfgang Engel, pp. 359-371, Charles

River Media, 2006.

[2] Masahiko Nitanda. Real-time caustics by GPU. In ShadeX4:

Advanced Rendering Techniques, edited by Wolfgang Engel, pp.

201-210, Charles River Media, 2006.

[3] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi.

Ray Tracing Effects without Tracing Rays. In ShaderX4:

Advanced Rendering Techniques, edited by Wolfgang Engel, pp.

201-210, Charles River Media, 2006.

[4] Juan Guardado and Daniel Sánchez-Crespo. Rendering

Water Caustics. In GPU Gems: Programming Techniques, Tips,

and Tricks for Real-Time Rendering, edited by Randima

Fernando, pp. 31-44, Addison-Wesley Professional, 2004.

[5] Kei Iwasaki, Fujiichi Yoshimoto, Yoshinori Dobashi,

Tomoyuki Nishita. A Rapid Rendering Method for Caustics

Arising from Refraction by Transparent Objects. In Proceedings

of the 2004 International Conference on Cyberworlds (CW’04),

2004.

[6] Jong Seo Kim, Kang Soo You and Hoon Sung Kwak.

Caustics Effects with Photo-Realistic Rendering on Movie

(‘Cars’). In Proceedings of Fifth International Conference on

Software Engineering Research, Management and Applications,

pp. 274-278, 2007.

[7] Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik.

Caustics Mapping: An Image-Space Technique for Real-Time

Caustics. In Proceedings of IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO.

2, pp. 272-280, MARCH/APRIL 2007.

[8] Xuan Yu, Feng Li, Jingyi Yu. Image-space Caustics and

Curvatures. In Proceedings of 15th Pacific Conference on

Computer Graphics and Applications, pp. 181-188, 2007.

[9] Wei Hu and Kaihuai Qin. Interactive Approximate

Rendering of Reflections, Refractions, and Caustics. In

Proceedings of IEEE TRANSACTIONS ON VISUALIZATION

AND COMPUTER GRAPHICS, VOL. 13, NO. 1, pp. 46-57,

JANUARY/FEBRUARY 2007.

[10] Chris Wyman, Charles Hansen, Peter Shirley. Interactive

Caustics Using Local Precomputed Irradiance. In Proceedings of

Proceedings of the 12th Pacific Conference on Computer

Graphics and Applications (PG’04), 2004.

[11] POV-Ray ray-tracer. http://www.povray.org/

About the Authors

Peter Sikachev is a 4th-year student at Computational

Mathematics and Cybernetics department of Moscow State

University. His research interests include photorealistic 3D

rendering, interactive visualization and GPU programming. His

contact e-mail is psikachev@graphics.cs.msu.ru.

Ilya Tisevich is a PhD student at Moscow State University,

Department of Computational Mathematics and Cybernetics. His

contact email is itisevich[a_t]graphics.cs.msu.ru.

Alexey Ignatenko is a researcher at Computational Mathematics

and Cybernetics department of Moscow State University. His

research interests include photorealistic 3D rendering, 3D

modelling and reconstruction, image-based rendering and

adjacent fields. His contact e-mail is

ignatenko@graphics.cs.msu.ru.

Figure 8: 3-ray discontinuous caustics. Note the discontinuities

between R, G and B wavelengths.

Figure 9: 20-ray discontinuous caustics. Note the discontinuities

on the red-green caustic in the top left corner.

Figure 10: 3-ray smooth caustics. Note absence of discontinuities

comparing to Figure 8.

Figure 11: 20-ray smooth caustics. Note the difference with

Figure 10 – e. g. the blue color is darker due to more precise

calculations.

Figure 12: Close-up of single caustic. Quality of rendering is in

the same order as Figures 8-11 go. Note the sharp alias border on

the most left picture and difference on borders of caustic between

3-rays and 20-rays versions. Difference between 20-rays smooth

and sharp version is practically invisible due to close distribution

of wavelengths along the surface.

Figure 13: Time of caustics rendering (given in milliseconds,

528×491, camera orthogonal to paper). As could be observed,

rendering itself is very fast, so more work should be done on

optimizing the pre-processing.

Test configuration: Dell Inspiron 1520, Intel Core 2 Duo T7500

(2.2 GHz), GeForce 8600 M GT, 2 Gb RAM

