
On the Images Pipe Line Filtering

Dmitry V. Yurin
Moscow State University, Faculty of Computational Mathematics and Cybernetics, Lab. of Mathematical Methods of Image Processing

yurin_d@inbox.ru

 A lot of filtering schemes used in image processing can be
adequately presented as a directed graph of elementary filters
such as convolutions by row and columns, pixel-wise operations
(summation, function calculation), range filtering. A typical
example is Canny edge detection (Figure 1.), which consists of
convolution with Gaussians and its derivative, computation of
gradient vector module and detection of its maxima (by 3x3
environment). Its straightforward numerical implementation

requires at least 2
intermediate images allocated
in memory: two inputs and
one output of module
calculation block, the output
can be shared with one of the
inputs. For more complex
filters, such as color edge
detection (Di Zenzo 86),
Harris corner detector and its
color version, etc., the
number of such required
intermediate images can be
much greater. It should be
mentioned that it is more
suitable to perform some

operations in floating point so additional data containers are
required for intermediate steps. Currently typical images sizes are
grow significantly and these large memory requirements become
unacceptable.
This paper is concentrated on the class of filers, for each block of
the filters it is true: output pixel value at (x,y) coordinates
depends only on input images pixels at the same relative
coordinates and a small environment of it. Note that for this class
of filters it is not necessary to hold in memory whole intermediate
images, but for processing each image row it is required only a
small strip of corresponding rows of the filter input. Thus,
complex filters like in Figure 1 can be implemented in a pipeline
style. Another issue is that of such code must be implemented
once in generalized library and used for all filters implementation.
The library usage must be easy – the image processing goal is
image processing, not memory distribution!
The C++ template library proposed solves this problem. Typical
program code contains the following mandatory fragments:
1) elementary filters creation like:
 Filter1<float> f1(..filter parameters..);
2) filters connection directly reflects its graph (like in Figure 1):
 f1.out(2).ConnectTo(&f3.in(0));

3) system engine creation, initialization and run :
 FiltersSystem sys(“test.dot");

 sys.Assign(&src,&dst);

 sys.Run();

At the Assign() step the library can inform the user (if indicated)
what filters and ports are badly connected and refer to the saved
graph (debugging) in GraphViz (www.graphviz.org) format.
To create an elementary filter it is only required to request the
desired environment size (specified by struct Env) and overload
virtual function ProcessLine() of the base class FilterElementary.
Each elementary filer have a set of inputs and outputs. Each
output encapsulates StripBuffer of the size sufficient to fulfill
requests from all inputs connected to this output. Source and
target filters contain no inputs or outputs, correspondingly.
It is important that each StripBuffer containing more than 1 image
row results in delay in pipelining. The buffers sizes and
accordingly delays depend on filter parameters and subjected to
changes. On the other hand some elementary filters have more
than 1 input and for the filters to work properly data on their
inputs must be synchronized, that is all buffers on inputs must
contain the required strip around the same row of input images.
The library proposed performs this synchronization automatically
by increasing delays via increasing Env.f for some branches in
the complex filter’s directed acyclic graph. For this purpose the
initial buffer assignment algorithm from [1] primary proposed for
chips development have been adopted:

1 foreach Vu∈ in TS order

2 if Su∈ d[u] ← 0;
3 else calcDelay(u)

4 foreach Vu∈ in TS order
5 initStripBuffers(u)

here function calcDelay(u) is:

1 foreach }.{Inuv∈
2 w ← d[v]+u.In.Env.f/v.Out.H
3 d[u] ← max(d[u],w)

4 foreach }.{Inuv∈
5 w ← u.In.Env.f/v.Out.H
6 b[(v,u.In)] ← d[u]-d[v]-w

and function initStripBuffers(u) is
1 env ← {0,0,0,0}

2 foreach }.{. OutuInv ∈
3 en ← v.In.Env
4 f← u.Out.H*b[(u,v.In)]
5 en.f← round(en.f+f+0.5)
6 env ← max(env,en);
7 u.Out.initStripBuffer(env);

The library makes filters development fast and easy and ensures
large memory saving at the cost of small performance losses.
The research is done under support of RFBR, grants 06-01-00789-
a, 08-07-00469-a.

source

)(yg⊗

)(' xg⊗

22
yx II +

)(' yg⊗

)(xg⊗

Non maxima supression

destination

Figure 1. Canny edge detector

[1] Chatterjee M., Banerjee S., Pradhan D.,K., 2000. Buffer
Assignment Algorithms on Data Driven ASICs //In IEEE Trans.
on computers. V. 49, No.1. P.16—32.

mailto:yurin_d@inbox.ru
http://www.graphviz.org/

