
Requirements to the Scene Data Base

Andrei B. Khodulev
Keldysh Institute of Applied Mathematics RAS

Edward A. Kopylov
Moscow State University

Dmitry D. Zdanov
Vavilov State Optical Institute, St.Petersburg, Russia

Abstract

This article accumulates requirements to Scene Data Base
that can be successfully used in computer graphics for
physically accurate lighting simulation. The proposed
requirements to comprehensive database are a result of
many years cooperation of the authors in the field of
accurate lighting simulation and evolution of a number of
software tools.

Keywords: GraphiCon’98, optical simulation, 3D graphics
programming, geometric database.

1. INTRODUCTION

The standard of software interface for ray tracing is an
urgent problem in computer graphics. It is very attractive to
take advantage of powerful graphics hardware features for
ray tracing applications with minimal programming efforts.
In spite of the existence of hardware for ray tracing (for
example, AR250 ray tracing graphics processors were
announced by Advanced Rendering Technology Ltd.), its
usage is restricted by a narrow interface. It is typical that
known high-level software interfaces for ray tracing
(programmable shaders) do not provide correctly the most
of optical effects. First of all the problem concerns the
usability of offered concept of database.

In this paper we intend to attract the attention of possible
designers of the powerful interface for ray tracing and
developers of the corresponding database to needs of
applications different from ordinary animation software.
This paper is devoted to the description of requirements to
Scene Data Base (SDB) as a set of database primitives and
methods used by physically based lighting simulators.

At first, let us define what we are talking about. Following
Iris Inventor [1], we will consider a SDB:

The scene database is an in-memory representation of 3D
objects used by program.

We would like to add here also attributes supporting, data
read/save and import/export (conversion to/from other
formats).

2. GENERAL CONCEPTS

The SDB keeps all info about scene. SDB should serve
requests from optical simulator or other caller by returning
some info about scene or making changes in scene
representation.

This doc lists requirements to SDB having in mind the
following operations with scenes:

- scene creation/modification;
- optical simulation in the scene;
- visualization of the scene and simulation results.

Interactive UI with SDB is not considered here, we cover
only functionalities that SDB should provide.

Scene is a model of some part of real world. It consists of
objects. Each object is characterized with its shape
(geometry) and physical properties. SDB deals mainly with
scene geometry (shapes of objects) while physical
properties are important for external optical simulation
program that calls SDB. SDB, however, should provide
storage of physical properties as an uninterpreted by SDB
data structure. This structure might reduce to a series of
numbers or might be rather complex.

Objects in scene are subdivided into following classes:

(1) Real objects that are:

- ordinary objects;
- OPTOS, a special element with own ray

propagation mechanism;
- light sources (LS);

(2) Imaginary objects:

- observers, a special object serves to accumulate
some ray tracing information in point of ray
intersection;

- OPTOS bounding volumes.

Geometry of each of these classes is described in sections
below.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

3. OBJECT-ORIENTED APPROACH

3.1 Open architecture

Many of those existing and new mechanisms should be
designed in such way so they are easily accessible to the
end user. We would like to extend functionality of our
software (or even to provide such possibility for our
customers). Examples of possible extensions are: new types
of LS, observers of OPTOS. In particular we may want to
open OPTOS interface to end user, so that user can
program his own types of OPTOS. In this context, (OOO)
OBJECT ORIENTED ORGANIZATION methodology to
assure maximally OPEN (ACCESSIBLE) system
architecture cannot be overemphasized.

3.2 Object hierarchy

A scene consists of objects. An object may, in turn, consist
of other (sub-)objects, etc. We allow arbitrary level of
object hierarchy. At the bottom level are elementary
objects, e.g. multi-volume solids or special objects. At top
level is the whole scene that may be treated as an object.
Objects above the bottom level (that is not-elementary) are
called compound objects.

3.3 Encapsulation

As usually with OOO, we assume that access to all objects
is possible only via set of allowed operations with them. In
other words, we are not interested in representation of
objects in SDB, we agree to touch them only by a
determined set of operations. The set of allowed operations
includes, for example:

- extraction (conversion) of object geometry in(to) form
of triangular mesh;

- geometric transformation (rotation, translation, etc.) of
an object;

- ray tracing through the scene.

The set of operation is explained in details below.

4. RAY TRACING SERVICE

We introduce special concept of Ray Tracing Machine
(RTM) to combine all kinds of ray tracing service we
would like to get in SDB. RTM, for sure, will use internal
data of SDB, so it will violate the encapsulation principle
stated in previous section. It means that RTM should not be
considered as an external program, one of SDB callers, it is
actually an undetachable part of SDB.

Basically, RTM returns for a given ray the nearest point of
its intersection with the scene and normal to surface at the
intersection point.

However, for technical reasons we subdivide our
requirements into two separate parts: requirements to SDB
(that deal mainly with geometry) and requirements to
RTM. Requirements to RTM are not included in this paper,
RTM requirements are mentioned only when it can

influence "pure SDB" topics.

5. OBJECTS GEOMETRY

This chapter describes what objects (from viewpoint of
geometry) the SDB should be capable to keep. Here and
below the term "object" will refer to "elementary object" (if
not otherwise stated). We will consider what elementary
objects can be put in SDB; compound objects can be built
from them by a general mechanism (see sec. 3.2, 9.2.1).

5.1 Ordinary objects

During this section we will consider "ordinary objects" that
is not LS, not observer. Other, so-called "special objects",
are considered in sec. 5.2.

5.1.1 Object concept

An ordinary elementary object occupies some piece of
space (solid body). This body can be filled with one
material (uni-material objects) or it can be subdivided into
several sub-volumes with its own materials inside each one.
In addition infinitely thin (one-sheet) objects are allowed.

5.1.2 Multi-material objects

The most general object (multi-material) occupies some
volume subdivided into several parts (sub-volumes). We
will call these sub-volumes as "volume parts" or vparts (to
distinguish from simply "parts" that relate to surfaces).

Vpart 1
Vpart 2

Vpart 4
Vpart 3

Each vpart is assigned a unique vpart index that is used to
extract volume attributes of the material inside. While
several vparts may have the same material their vpart index
should be different. An exterior of all objects is also
considered as one environment vpart.

Uni-material solids consist of one vpart and are filled
completely with one material (however, their surface may
have different optical properties, see below). This is a
particular case of general concept of object.

5.1.3 Surfaces and one-sheet objects

Objects define some surfaces in scene, namely, object and
vpart boundaries. Besides that scene may contain other
surfaces, those do not bound any object. We will call
surfaces of last kind "one-sheet objects". When it will be
necessary to emphasize the difference between one-sheet
and ordinary objects (that occupy a volume) we will call
the last as "solid objects" or simply "solids".

So, to summarize, both solids and one-sheet objects should

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

be supported by SDB. Solid has some boundary (closed
surface). When ray passes through boundary of solid the
medium (vpart index) where it propagates changes. As
contrary, intersection of one-sheet object never changes the
medium. One-sheet objects, being infinitely thin surfaces
are used to represent real objects thickness of which can be
neglected.

One-sheet objects are restricted to lie completely in one
vpart, and it should be possible to request for a one-sheet
object the vpart index of vpart it lies within. (Of course,
this restriction does not apply to one-sheet operands of
volumetric Boolean operations to construct other objects
(see sec. 5.1.6.1); only final one-sheet object should lie in
one vpart.)

5.1.4 Surface part indices

All surfaces in scene are subdivided into several "parts".
Each part has its own "surface part index" that is used by
the caller analogously to vpart index to determine physical
properties assigned to the surface (like level of surface
roughness). Several surface parts can not have common
part index (while physical properties of the surfaces can be
the same). It is allowed that boundary between two solids is
composed of several parts but not vice versa: for each
surface part the solids lying at each side of the surface
should not change when moving along the part.

5.1.5 Curved surfaces

Curved surfaces (solid boundaries or one-sheet objects)
should be directly supported. It means that there should be
some way to describe precisely curved surfaces;
approximation of curved surfaces by means of polygonal
(piece-wise flat) surface is not enough. The particular
representation of curved surfaces used by SDB is more or
less inessential: arbitrary universal (that allow to
approximate any smooth surface) mechanism of smooth
surface representation can be used.

For example, curved surfaces can be represented by
NURBS (it provides easier conversion of geometry from
external modelers that frequently use NURBS).

5.1.6 Constructuve Solid Geometry (CSG)

CSG is rather powerful tool for solid representation, in
particular many type of objects used in optical design (like
lenses with spherical faces) can be naturally represented by
CSG.

We require that set of objects representable in SDB will be
closed with respect to volumetric Boolean operations. In
other words, having defined somehow two objects we
should have possibility to represent their union, intersection
and difference. Also some set of basic solids should be
provided (like quadrics and half-space typically used in
standard CSG schemes). This set should be extensible (say,
we would like to include torus in future).

It should be emphasized that we do not require CSG to be

used as internal representation of the object; it is not
necessary. SDB can represent CSG objects in any way, but
is should be capable to apply volumetric Boolean
operations to objects.

5.1.6.1 Volumetric Boolean operations (VBO) for
one-sheet objects

The operation of intersection of a one-sheet object and a
solid has sense and it should be supported.

5.1.6.2 VBO for multi-volume solids

VBO, as they are defined, are applicable only to single-
volume solids (where the function of belonging to the
object can be considered as a "Boolean", that is 2-value
function). For multi-volume solids the belonging functions
become multi-value one. So, the concept of VBO should be
appropriately extended. This extension is currently left out
of this doc.

5.1.6.3 Forms of “Union”: disjoint, glue, merge

Three sorts of union operation should be supported. They
are:

(1) Disjoint union (applicable to non-intersecting or
touching solids). The union is formed but each of
united solids retains its previous boundary. In case of
touching objects this operation leads to appearance of
coplanar surfaces (see sec. 5.1.9).

(2) Glue (applicable only to touching solids). In area of
contact the two (coplanar) boundaries of two touching
objects are replaced with a single common boundary.
This boundary becomes internal boundary in new
multi-volume solid.

(3) Merge (applicable to touching or intersecting objects;
it is required that materials of the united solids in point
of contact or intersection are the same). All common
boundaries are removed; touching or intersecting
vparts of different objects (having the same material)
becomes a single vpart of the union.

Light interaction with material boundary is important for
accurate optical simulation. Thus, we can not ignore the
common boundary, as it is typically done in CSG modelers
and should distinguish the three types of union with respect
to their behavior at the common boundary.

5.1.7 Procedural shapes/attributes

Only procedural shapes have relation to geometry, but
procedural shapes and procedural attributes are closely
related (they have common description language), so they
are considered together.

Procedural attributes/shapes provide a flexible way of
representation of complex attribute distributions on object
surfaces and complex free-form shapes. They are especially
useful in design tasks where shapes/attributes should be
modified by user or automatically by optimizer.

So, we need procedural shape/attributes representation. The

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

"explicit form" requirement (described in sec. 9.1.2) applies
to procedural shapes too.

5.1.8 Surface orientation

We may want to have surfaces with different properties at
different sides. One example is self-emitting object (SEO)
that emits light only to one halfspace. Another example: we
can expect that Bi-directional Reflectance Distribution
Function (BRDF) of multi-layer interference covering will
be different for two sides of the surface.

So, we need to distinguish the two sides of any surface. For
surfaces that are boundary of a solid there is natural
meaning for the two sides: inside and outside of the solid.
For one-sheet objects (and boundaries of internal vparts)
such natural classification is absent. Nevertheless, we
assume that all surfaces are consistently oriented, so that
the two sides can be distinguished (we may assign "inner"
and "outer" labels for them artificially).

5.1.9 Coplanar surfaces

It should be allowed to have coplanar surfaces in some
cases. Below all such cases are presented.

It is quite common in end-user data to have two solid
objects placed exactly one over the other (so that they have
some common part of boundary). Such cases of coplanar
(common) boundary of two solids should be treated
directly.

Analogously, one-sheet object can be put exactly on
surface of a solid (on its inner or outer side).

We will not, however, support two coplanar one-sheet
objects belonging to the same vpart (as in such case there is
no natural rule to decide in what order the ray intersects
with these sheets). So, the most complex situation of
coplanar boundaries is coplanarity of 5 boundaries: 2
belonging to touching solids and 3 sheet objects lying in
Solid 1, Solid 2 and between them:

Solid 1

Solid 2

one-sheet 2

one-sheet 1

one-sheet 3

ray

Fig. 1. Most complex allowed case of surface coplanarity.

A ray (see Fig. 1) propagating form Solid 1 to Solid 2
should intersect (in this order) one-sheet object 1, then
boundary of solid 1, then one-sheet object 2, then boundary
of solid 2, and finally one-sheet object 3. The distances
between all intersection points are infinitely small. At

second point the medium ray propagate in is changed from
that of solid 1 to outer medium that surrounds both solids;
at fourth point the outer medium is changed to that of solid
2; at other intersection points no medium change occur.

All other allowed cases of surface coplanarity can be
obtained from the above most complex one by elimination
some (any) of the five participants.

5.1.10 Light sources (LS)

Light sources are more like ordinary objects (having its
own set of lighting parameters) with some peculiarity: there
exist some LS types that lie in infinity. "Finite" LS like an
ordinary object should be confined in one vpart.

Standard LS types are

- point;
- line (segment);
- rectangle;
- circle.

Each LS of these types should lie inside one vpart.

Infinitely distant LSes include:

- parallel
- sun (also parallel but with different set of parameters)
- sky (specified as luminance distribution over the

infinitely distant sphere).

Another type of LS is important – self-emitting objects
(SEO). They are some surface parts distinguished by non-
zero value of the "SelfLuminance" attribute. From
geometrical viewpoint they are ordinary surfaces. However,
some SDB services connected with LS (say, give list of all
LSes) should take SEO into account too.

As in other cases we require that SDB will be extensible to
accommodate new types of LSes.

5.2 Special objects

There are some tasks where special objects are required.
That is when object has no relation with media in which it
lies or intersects. These objects do not influence ray traces
and serve either to inform about the fact of ray intersection
(clipping planes, object bounding boxes) or to accumulate
some ray info in point of ray intersection (observers).
Special objects may be closed or one-sheet. There are no
restrictions on placement of special objects; they may
intersect, include or be nested other objects. Below
geometry of currently needed special objects is described
(observers). However, SDB should be flexible enough to
allow accommodation of new classes of special objects or
more complex geometry for existing classes.

An observer has some geometry and some internal
structure. SDB should support placement of observers and
assignment of their parameters.

Observers can be attached to some scene surface (one or
several surface parts). In such case their shape is
determined by shape of the surface. Alternatively, observer

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

can be free (not attached).

Below all current types of observers are listed. However,
new types of observer will be added at user requests. So,
SDB should allow extension to new kinds of observers.

Observer type Geometry is Comments
Camera Viewpoint, target,

screen
Ordinary camera

Section line A segment in
screen

In a sense this
observer is
attached to camera

Section sector A point and 2
orthogonal vectors

Plane A parallelogram
subdivided into
grid of equal cells

Goniometric For free observers
- sphere

Volume A parallelepiped
subdivided into 3D
grid of equal cells

Only free

6. ATTRIBUTES

Attributes mean physical properties of the medium filling a
vpart, or of a surface part, or something else (say, OPTOS
description can be treated as attribute). In many cases
attributes are not interpreted by SDB, it is only important
that user should have possibility to assign/change/request
attributes for any vpart, any surface and any special object.

Below are the cases when some interpretation of attributes
should be done by SDB.

6.1 Textures

Texture is a way to describe variable attributes depending
on a particular point. Textures may be 2D (assigned to
surfaces) or 3D (assigned to volumes).

The mechanism of texture assignment should be
implemented inside of SDB.

Texture assignment should be incorporated into SDB to
avoid texture distortions that would occur if we will assign
textures externally with use of explicit surface
representation in form of triangular mesh.

6.1.1 Orientational textures

Some tasks put into consideration anisotropic surfaces.
Such surfaces have at each point some distinguished
direction (tangent to the surface) that determines rotation of
anisotropic BRDF. To assign anisotropic BRDF to a
surface we need a tool to define this reference direction.
Mathematically it is tangent vector field.

We consider this tool as a kind of mapped (2D) textures -
orientational textures. The difference of all other kind of

mapped textures is that orientational texture does not
modify any property of the surface it is assigned to. Instead
of this it introduces new property of the surface, namely,
tangent vector that is used as reference direction for
anisotropic BRDF assignment. SDB should support surface
with orientational (and/or) ordinary textures assigned. If a
surface has an orientational texture assigned, SDB should
provide interrogation of the reference vector at any given
point in the surface.

6.2 Procedural attributes

The mechanism of procedural attributes should allow us to
specify spatial (in 2D) dependency of attributes (procedural
2D textures) as well as to include 3D spatial dependency
and dependency on ray direction (procedural BRDF and
luminaire distribution).

6.3 Multi-product support

Several sets of attributes may be attached to the given
object.

7. OPTICAL ELEMENTS (OPTOS)

Several Plane Light Emitters and other devices (e.g. slide
projector) contain special elements: plate prisms, Fresnel’s
lenses, Fiberglass lens arrays (FLA). They are
characterized by very complicated geometry (regular but
consisted of huge number of small details) and/or non-
standard ray propagation laws (in Fiberglass lenses rays
propagate along curve lines). Their representation by
means of usual tools is inefficient (plate prism) or almost
impossible (Fresnel’s lens, FLA).

OPTOS means a special ray propagation mechanism inside
some volume or in some surface. OPTOS description is not
interpreted by SDB. SDB should only localize OPTOSes
(that is to know the volume or surface occupied by each
OPTOS) and support assignment/request of OPTOS
parameters.

OPTOS can be attached to any of the following scene
elements:

- vpart (it means that the OPTOS is located inside this
vpart;

- bounding surface;
- one-sheet object.

So, SDB may treat OPTOS as a special kind of attributes.

Also OPTOS may contain (or may not) its own mechanism
(supplied externally) of explicit form generation. SDB
should support such external explicit form generators.

8. DISTRIBUTED SDB

We require SDB to be DISTRIBUTED. It means that it
should be possible to share the same scene between several
callers located at several computers connected via network.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

9. SDB SERVICES

Here we describe a set of requests SDB should serve

9.1 Visualizer services
SDB must give geometry data to visualization program in
suitable form. As to this form, we choose the triangular
mesh. Reasons: it is supported by OpenGL and many
algorithms for triangular mesh processing are already
developed.

SDB(RTM) visualizers

OpenGLsimulators,
modelers,
layouters

9.1.1 Object bounding box

For each object (elementary or compound) in the scene
SDB should return the object's bounding box (axes-aligned
enclosing parallelepiped).

To speed-up visualization process it is helpful to know in
advance what area in screen can be occupied by an object's
image. Say, it allows optimizations like "Pyramid of
vision".

9.1.2 Explicit form generation

It is the main visualizer service. We require for each object
to obtain its "explicit form", namely, boundary
representation in form of triangular mesh.

It should be emphasized that we do not request a particular
form of data storage in SDB: it may be B-reps, or CSG, or
something new; more probably that there should be several
representations allowed. The explicit form should be
generated on request.

So, the explicit form is an approximate representation of
the object. We would like to control accuracy of this
representation. The accuracy should be controlled by some
input parameter.

Why the triangular mesh? It is supported by Open GL and
many other programs.

Why accuracy control? It allows to implement standard
visualization optimization technique when farther objects
are visualized with use of less accurate (and supposedly
simpler) explicit representation.

9.1.2.1 Projection to/from explicit form

Having internal object representation (hidden in SDB) and
its explicit form, we would like to establish a point-by-
point correspondence between them. Namely, for any point

on object surface (found by RTM, say), we may request its
counterpart in the explicit form for this object and vise
versa, we would like to find the point in the object surface
corresponding to a point in its explicit form. Typically this
correspondence will be established along normals to object
(here we mean accurate normals to real surface, not to the
approximate explicit form).

9.2 Scene modification services

9.2.1 Hierarchy representation

Direct manipulations with object hierarchy should be
available (combining a compound object from several other
ones, destroying hierarchy, application of geometric
transformations.

9.2.1.1 Possible transformations:

- translation in space;
- rotation;
- scaling factor;
- scaling rotation (a rotation to apply before scaling);
- the center point of the object for rotation and scaling;
- direct setting 4x4 transformation matrix;

Certainly the SDB should provide not only setting
appropriate geometric transformation but also obtaining the
transformation matrix for given object.

9.2.2 Multiple copy

One object may exist in the scene several times with
different geometric transformations. That may be done as
individually for each object or via group transformation -
for example several rows of chairs.

9.2.3 Dynamic changes efficiency

SDB should efficiently support dynamic changes in data
like adding/deleting object and changing its
transformations. The last mean that if for fast RT some
additional data structures as voxelization are used, then it
should be effective possibility to correct them after
appropriate changes.

9.2.4 Data Integrity

After data changing the SDB should detect not used data
portions and delete them, correct or point as not used).

9.3 Additional SDB services

9.3.1 Correctness check

SDB should provide check of data correctness. It includes:

- collision detection (different solids should not
intersect);

- closeness detection (solid boundaries should be
closed);

- vpart encapsulation detection (LSes and one-sheet
objects should lie inside one vpart).

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

9.3.1.1 Incremental correctness check

It is important to provide efficient correctness check when
a local modification is done with the scene (say, one object
is moved).

9.3.1.2 Optimization check

We would like to know if a special object (that can be
placed arbitrary in the scene) lies completely inside one
vpart. This information is helpful for optimization of
optical simulation process.

9.3.1.3 Scene input/output, import/export

This requirement is not elaborated in details as it is
standard one for SDB of this type. Naturally that there
should be possibility to load scene from disk in memory for
further operations with it and to save (modified scene) on
disk.

Also we assume that SDB will support import of scenes
presented in external (standard) formats, like IGES, DXF,
etc., and export to these formats. Particular set of supported
formats is not fixed now; we require, however, that it
should be possible to extend the list of supported formats
(that is to develop new converter for external formats) after
completion of SDB development.

10. EFFICIENCY CONSIDERATIONS

Of course, it is necessary that SDB works efficiently, that is
takes not too many memory and process requests fast. It is
also important that it works efficiently for big scenes
(containing thousands of objects); in particular, O(n^2)
algorithms (time quadratically depends on scene size)
should be avoided as much as possible.

However, overall efficiency is usually impossible and
efficiency at one direction is typically achieved at the
expense of inefficiency in other places. So, here we
describe the most important directions of SDB use, where
efficiency is especially important. They are:

- ray tracing;
- projection internal form to/from explicit form.

These are most frequently used services during optical
simulation so time efficiency is especially important.

11. CONCLUSION

Authors hope this work is a contribution to creation of
powerful comprehensive ray tracing interface suitable for
different areas of computer graphics.

12. ACKNOWLEDGMENTS

This work is supported in part by the Russian Foundation
for Basic Research under a grant entitled “Physically
accurate solution of global illumination analysis” (98-01-
00547) and the Integra Inc.

13. REFERENCES

[1] Josie Wernecke, Open Inventor Architecture Group.
The Inventor Mentor. Addison-Wesley, 1994.

Authors:

Andrei B. Khodulev, a senior research scientist of M.V.
Keldysh Institute of Applied Mathematics RAS.
E-mail: abkhod@gin.keldysh.ru

Edward A. Kopylov, a postgraduate student of Moscow
State University.
E-mail: oek@gin.keldysh.ru

Dmitry D. Zdanov, a collaborator of Department of Optical
Systems Design of Vavilov State Optical Institute RAS.
E-mail: ppodzint@admiral.ru

:gghlZpby
Ki_pbnbdZpby lj_[h\Zgbc d lj_of_jghc]jZnbq_kdhc

[Za_ ^Zgguo1

Oh^me_\ :1;1/ Bgklblml ijbdeZ^ghc
fZl_fZlbdb bf1 F1<1D_e^urZ Jhkkbckdhc
ZdZ^_fbb gZmd1
Dhiueh\ W1:1/ Fhkdh\kdbc =hkm^Zjkl_gguc
mgb_jkbl_l1
@^Zgh\ >1>1/ =hkm^Zjkl_gguc hilbq_kdbc
bgklblml bf1 K1B1<Z\beh\Z1

>ZggZy klZlvy Zddmfmebjm_l lj_[h\Zgby d lj_of_jghc
]jZnbq_kdhc [Za_ ^Zgguo dhlhjZy mki_rgh fh]eZ [u
[ulv bkihevah\ZgZ ^ey nbabq_kdb lhqgh]h
fh^_ebjh\Zgby \ dhfivxl_jghc]jZnbd_1
Ij_^eh]Z_fu_ lj_[h\Zgby y\eyxlky j_amevlZlhf
fgh]he_lg_]h khljm^gbq_kl\Z Z\lhjh\ \ h[eZklb
\ukhdhlhqguo f_lh^h\ fh^_ebjh\Zgby hk_s_gghklb b
hiulZ jZ[hlu k jy^hf ijh]jZffguo kj_^kl\1

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

