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size of the codebook has been reached. The PNN has the
Abstract benefit of conceptual simplicity and the high quality of the
solutions. The method has also the advantages that the bit
rate of the vector quantizer is easier to control because the
hierarchical approach produces codebooks of differing sizes
as a side-product. The algorithm can also be used to
produce an initial codebook for another optimizer (such as
the GLA), or it can be embedded into hybrid methods such

Clustering of a data set can be done by the well-known
Pairwise Nearest Neighbor (PNN) algorithm. The algorithm
is conceptionally very simple and gives high quality
solutions. A drawback of the method is the relatively large
running time of the original (exact) implementation.
Recently, an efficient version of the exact PNN algorithm . . . . .
has been introduced in literature. In this paper we give a°>> genetic algorithm [6], or iterative split-and-merge

. i ) . : - method [7].
faster implementation of this algorithm. The idea is to
postpone the updating of the nearest neighbor informationA drawback of the PNN is the relatively high running time
in order to reduce the number of cluster distance in its exact form. There are a large number of steps because
calculations. Correctness of the algorithm follows from the typically M<<N, and at each step all pairwise distances
monotony of the cluster distances. Practical tests show thatust be calculated for finding the pair of vectors to be
the new organization of the algorithm decreases the runningnerged. This is very slow for large training sets. Most of
time of PNN by ca. 35 per cent. the computation originates from the calculation of the
pairwise distances. However, only two code vectors are
changed at each step of the PNN and therefore most of the
distance calculations are unnecessary. A fast and space
efficient implementation has been recently given
1. INTRODUCTION independently by [8] and [9]. The idea is to keep track of
the nearest neighbor of each cluster. After the merge
operation, the pointers must be updated only for clusters
whose nearest neighbor is one of the merged clusters.

Keywords:Vector quantization, Codebook generation,
Clustering algorithms, PNN algorithm.

We study the problem of generatingadeboolor avector
guantizer (VQ). The aim is to findM code vectors
(codebook for a given set oN training vectors (training
se) by minimizing the average pairwise distance between In this paper we propose an improved version of the above
the training vectors and their representative code vectorsnearest neighbor variant by [8]. The main idea is to reduce
The problem of generating an optimal codebook is the distance calculations further by delaying the updates.
a combinatorial optimization problem and it is NP-complete We can do this because, as we will show, the cluster
[1]. In other words, there is no known polynomial time distances increase monotonically by the time. It follows
algorithm for finding the globally optimal solution, but from this property that if a given distance value is not the
reasonable suboptimal solutions are typically obtained byminimum distance prior to a certain update, it will not be
heuristic algorithms [2-7]. The most cited and widely used the minimum after the update either. It is therefore
algorithm is thegeneralized Lloyd algorithniGLA) [2, 3]. sufficient to update a distance value only when it becomes
It starts with an initial solution, which is iteratively the minimum distance. The new method, referred here as
improved using two optimality criteria in turn until a local Lazy PNN reduces the number of updates considerably.
minimum has been reached. Empirical tests show that the Lazy PNN improves the

C 0
A different approach is to build the codebook running time by 30% on average.

hierarchically. The pairwise nearest neighbor{PNN) The rest of the paper is organized as follows. The problem
algorithm [4] starts by constructing an initial codebook in formulation and the structure of the PNN are given in

which each training vector is considered as its own codeSection 2. The Lazy PNN is then introduced in Section 3.
vector. Two nearest code vectors are merged at each step @imulation results for various training sets are shown in
the algorithm and the process is repeated until the desiredBection 4, and conclusions are finally drawn in Section 5.
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2. THE PNN METHOD Let each training vector be a code vectorl]).

Repeat
We next use the following notations: Find two nearest cluste® andS, to be merged.
T Set ofN training vectorad={T;,T,,...,Tn}. Merges, ands;; m.m-1.
C  Codebook ofn code vector€={C;, C,,...,Cr}. Update data structures.
M  Size of the final codebook. Until m=M.
K The dimension of the vectors. Figure 1: Structure of the PNN method.
S Cluster (set) ofy; training vectors.
NN Index of the nearest neighbor of the cluSer _ o
d Increase of the distortion if the clustérandNn are The (exact) PNN applies local optimization strategy where

all possible cluster pairs are considered and the one
increasing the distortion least (smallest cost function value)
is chosen for merge. Straightforward implementation [4]
We consider a set & training vectors in &-dimensional  recalculates all distances at each step of the algorithm. No
Euclidean space. The task of the codebook construction ispdditional data structures are needed but the algorithm takes
to find a set ofM code vectors (i.e. a codebook) by O(N°K) time because there aB¢N) steps in total, and there
m|n|m|Z|ng the average Squared distarizebetween the areO(Nz) cluster pairs to be checked at each Step_

training vectorsT; and their representative code vectors

merged.
R Validity indicator; R=true if and only ifd, is valid.

Most of the computation of the PNN originates from the
< 2 lculation of the pairwise dist Si ly t d
D= T-C 1) calculation of the pairwise distances. Since only two code
5 sfn-c| ince orly two
G, vectors are changed at each step, majority of the distance
. . o calculations is unnecessary. To reduce the number of
Here S={S,,...,Su} defines the clustering of the training set distance calculations, previous pairwise cluster distances
T. For a given codebook, the optimal clustering can be can pe stored in ahxN matrix. The minimum cluster
constructed by assigning each training vectorto the  gistance is searched from the matrix and the corresponding
clusterjo for which: cluster pair is merged. New distances are then calculated
2 @) between the new cluster and remaining clusters only. The
HTi _CiH algorithm runs inO(N°K+N?) time where the former term
) ] ) ) originates from the distance calculations and the latter from
The basic structure of the PNN is shown in Fig. 1. The \he search for the minimum [10]. The disadvantages of this

method starts by initializing each training vectoras its approach are cubic running time and quadratic memory
own clusterS. At each step of the algorithm, two nearest consumption.

clusters §, andS,) are searched and merged. The distance

(or merge codtd between two clusters is defined as the Kurita’s method [11] stores all pairwise distances into a

increase in the distortion of the codebook if the clusters arematrix, as above, but it utilizes a heap structure for

merged. It is calculated as the squared Euclidean distanc&earching the minimum distance. The merged clusters can
of the cluster centroids (code vectors) weighted by thebe found by popping the smallest element from the top of

H‘I’i -C, | = min

I
lo i=1...M

number of vectors in the two clusters [4]: the heap irO(log N) time. OnlyO(N) distance updates are
needed after each merge step; each of these updates takes
d(sayso):ﬁ[mca_cbuz (3) O(K + logN) time because of the distance calculation and
n, +n, the heap operation. The method thus runsO{hN’K +

N? log N)) time. The method still require®(N?) memory,

The chosen clustei§, andS, are then merged. The size of which is impractical for large training sets.

the combined clusterS,., is n.=ngn, and the
corresponding code vector is the centroid of the training Another approach{PNN) has been recently studied by
vectors in the cluster. It can be calculated as the weightedFranti and Kaukoranta in [8], and by Shen and Chang in
average ofC, andC: [9]. The main idea is to maintain only a nearest neighbor
pointer for each cluster. The index of the nearest cluster
(NN) and the corresponding cost function valdeare
stored in thenearest neighbor tableThe optimal cluster

It is thus sufficient to maintain only the cluster centroids Pair S ) to be merged can be found by alinear search
(C) and the sizes of the clusters) (in the implementation ~ among thed-values. After the merge operation, the nearest

of the algorithm. The merge process is repeated until theneighbor pointers must be updated for those clusters for
codebook reaches the size which NN=a or NN=b. Fortunately, in practice, there are

only a small number (denoted hy of pointers to be
updated on average. The method thus t@Kel’K) time in

— naCa + anb (4)

C
a+h na + nb
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total. In addition to that, the memory requirement of this time because the recalculation of the distance values still

approach is onlP(N). dominates the running time. The heap, however, may
speed-up the practical implementation because we need to
3. LAZY PNN ALGORITHM consider only the root of the heap and therefore may

potentially avoid some distance recalculations.
We propose next an improved version of the nearest
neighbor variant of the PNN. The main idea is to reduce the C,
distance calculations even further. Although the total
number of updateg)(is rather small on average, the search
of the nearest neighbor is still an expens®@K) time
operation and it dominates the running time of the
algorithm.However, the distance calculations can be
delayed and therefore a remarkable number of updates may
be avoided. The new method is referred hedeaag PNN

The application of delayed distance calculations is based on

the monotony propertyof the cluster distances, which is C C
defined as follows. Suppose that at a certain moment the
minimal merge cost i8l(S, S) and the cluster§, and S,

are merged. It is possible that the centroid of the merged
cluster C,+) may become closer to the centroid of a third

cluster S, than C; was in respect to the original cluster . . . . .
S p D g Figure 2: lllustration of the clusters in 2-dimensional

centroids C, andC,), see Fig. 2. However, the mass of the , :
merged cluster increases so much that the merge Cos,f,pace(:a andC, are the centroids lllustration of the clusters

2-dimensional space. of the two clusters to be merged
d(S:+p &) can never become smaller than botld@&, S) In =-di : . '
andd(S,, &). The cost function is therefore monotonically Cawls the centrquof ]Ehe merﬁ]ed (lzluster, fds the
increasing as a function of time. This is formalized in the centroid of any other cluster.
following lemma:

Lemma 1.Consider the cluste®, S, S with centroidsC,, The pseudo code of the Lazy PNN algorithm is presented in
Cp», C. and frequenciesn, n, n. Assume that Fig. 3. The algorithm starts by initializing each cluster (or
d(s,.s,)<d(s,.s.)<d(s,.s,) and n,,n,,n, 21. Then it code vector) with one training vector. For each cluSter

a
na+nb na+nb

the nearest neighbor according to (3) is searched among the
holds that . - . . ;
d(sa’SC)S d(sa*b’SC) other clusters (i#j). Information of the nearest neighbor is
Proof. See Appendix. stored and marked valid. The nearest neighbor distahces

. ~of all clusters are inserted in the minimum hé&pThe
Because of the monotony property, we know that if a given gigorithm is then iterated until the size of the codebook
distance value is not the minimum distance before the gagchedvi. At each step, the clust& with the smallest-
update, it will not be the minimum after the update either. y5jye is deleted frorii. If the d-value of S, is out-of-date
We may therefore delay the distance calculations until the(Ra=FaIse) its nearest neighbor is recalculated and
old cost function value becomes a candidate for being thereinserted in the heap. The process is repeated until a valid
smallest distance. We therefore mark each value whether ityinimal distance is obtained from the topHbf
is up to date or not. The optimal cluster pair to be merged ) )
can now be searched as before with only one difference;The clusterS, and its nearest neighbd, (b=NN.) are
when an out-dated distance value is found to be minimal itMerged according to (4) and the number of vectors in the
is recalculated. This practice does not compromise theN€W cluster is calculated. The nearest neighbor of the new
exactness of the algorithm but it may remarkably reduce theCluster is determined and inserted in the heap according to

to S, leaving §, unused. The non-existing clust&; is

The lazy processing can be applied to the nearest neighbofemoved from the heap. This can be don®(log N) time
method as such. Instead, we take one step further angy maintaining a position index to the heap for each cluster.
maintain a min-heap of the distance valudg &nd the  T¢ avoid gaps in the indexing, the last cluSemreplaces
corresponding nearest neighbor pointexdN). The heap S, All the nearest neighbor pointe®N to S, are

elements contain an additional flag)( which indicates  (eassigned toS, Finally, the size of the intermediate
whether the distance value is up-to-date or not. Thecogebookmis subtracted by one.

difference to Kurita’s method is that we only store one
element per cluster whereas Kurita stores all distances. The
use of the heap has no asymptotic influence on the running
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Input: {T}and M.
Output: {C}.

Main program

H-0O;

m-N;

for Oi0[1, mM]: G T;; nj1;

for OJi0[1, m]: UpdateNNpointeH, i);

repeat
PickPair{,a,b);
MergeClusters,b);
UpdateNNpointeid, a);

until m=M;

Procedure PickPair(H,a,b):

a DeleteMinH);

while R=False
UpdateNNpointetd,a);
a DeleteMinH);

b - NN,; RemoveH, b);

Procedure MergeClustersé,b):

Ca A (naCa+anb) / (na+nb);

Ng— Ng+Ny;

for Oi0[1, m]: if NN=a ONN=b then R ~ False;
Co « Ciy Mo~ Ny NNy« NNy dy — Oy Ry « Ry
for Ji0[1, m1]: if NN=mthen NN ~b;

m « ml;

Procedure UpdateNNpointer{, a)
NN, FindNearestClusteay;
da—d(a, NNy);

R, True;

InsertH, a);

Figure 3. Pseudo code of the Lazy PNN.

4. PRACTICAL RESULTS

We generated training sets from six different images:
Bridge, Camera Miss AmericaTable tennisAirplane and
House see Fig. 4. The vectors in the first two s&sdge
Camerg are 44 pixel blocks from the image. The third
and fourth setsMiss America Table Tennis have been

ridge o Camera

Miss America
(256x256) (256x256) (360x288)
K=16,N=4096 K=16,N=4096 K=16,N=6480

Table tennis Airplane House
(720x486) (512¢512) (256x256)
K=16,N=5490 K=3,N=2317" K=3,N=1837"

Figure 4. Sources of the training set3he training set
Table tennigs constructed by random sampling only every
fourth block.” The imagesirplane andHouseare
prequantized by 5 bits per each color component.

Properties of the compared PNN methods are presented in
Table 1. Table 2 shows a summary of the test results for
three main variants. Kurita’s method was not applied
because its memory consumption is too high for these
training sets. The size of the codebook was fixdd+@56.

Both nearest neighbor variants (t-PNN and Lazy PNN) are
clearly superior to the original PNN being about 100 to 500
times faster. From these two variants, the Lazy PNN is
about 35% faster. The speed-up originates mainly from the
decreased number of distance recalculations; the average
number of updates (t) varied from 4.4 to 5.6 in the t-PNN,
and from 3.0 to 3.8 in the Lazy PNN. Small improvement is
also due to the use of the heap structure.

In order to compare the nearest neighbor variants with the
Kurita’s method we generated subsets fr@mdge and
Houseby random sampling. The smaller training sets are of

obtained by subtracting two subsequent image frames of thesizeN=(128, 256, 384, 512, 640, 768, 896, 1024). In these
original video image sequences, and then constructidg 4 tests the codebook size was setMel for getting the
spatial pixel blocks from the residuals. Only the first two maximal number of iterations. The results for the two cases
frames have been used. The fifth and sixth data setsre illustrated in Fig.5 and Fig. 6. The Lazy PNN is
(Airplane, Housg consist of color values of th&GB comparable to the Kurita’s method in speed but it has the
images, prequantized to 5 bits per each color componentbenefit of smaller memory consumption. The actual running
Applications of this kind of data sets is found in image and times are virtually the same for training sets (8gdge)
video image codingBridge, Camera Miss AmericaTable with large vector dimension&€16), whereas for training
tennig, and in color image quantizatioAifplane, Houss. sets (e.gHousg with smaller dimensionsKE3) the Lazy
PNN is faster.
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Table 1. Summary of the compared exact PNN methods.

Method Time Extra data| Spacsg
Original [4] O(N’K) - O(N)
Kurita [11] | O(N°K+N’log N) | Dist.matrix | O(N?)
t-PNN [8] O(tN’K) NN-table O(N)
Lazy PNN O(tN’K) NN-table O(N)

Table 2. Summary of the running times (in seconds).

Training Original | 1T-PNN Lazy Time
set PNN saved
Bridge 73007 331 220 33.5%
Camera 73040 300 209 30.3%
Miss America | 292351 870 557 36.0%
Table tennis 177019 649 419 35.4%)
Airplane 4751 48 28 41.7%
House 2341 27 17 37.0%
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Figure 5. Comparison of the fast exact PNN methods for
subsets oHouse(K=3) whenM=1.

20

—&— Kurita
154 |"Ot-PNN
—A—Lazy PNN

Subsets of Bridge

P

> 2

10

Time (seconds)

o

128

256

384

512

640

Size of the training set N

768

896

1024

Figure 6. Comparison of the fast exact PNN methods for

subsets oBridge (K=16) whenM=1.

5. CONCLUSION

tentative minimum among the cluster distances. This action
is possible due to the monotony of the cluster distances.
The monotony property is utilized further by using a heap
structure as a priority queue to maintain the set of cluster
distances.

Our practical tests indicate that Lazy PNN is about 100 to
500 times faster than the original PNN. The new method is
comparable to the Kurita's algorithm in speed but it has the
benefit of smaller memory by factbk In the comparison to
t-PNN the number of updated cluster distances was
observed to reduce by 35% on average. The proposed
method is rather simple to implement and practical because
no distance matrix is needed for storing the pairwise
distances.

We also gave a proof of the monotony property for the
vectors in Euclidean space. It is an open guestion whether
the result generalizes to other cluster distances. This would
expand the usefulness of the new algorithm to the general
clustering problem.
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8. APPENDIX: PROOF OF LEMMA 1 Ny + 1, + 0,

_ nb + nc _ nc
We have the following relationships between the distances™ 1 4+, +n 5.8 n, +n, +n d(s..s.)
of the cluster centroids: : ‘ : ‘

nb
M g(s,s,
c.-C.l = [, -G +lcy -G A o, A0S
-2(c,-¢,)dc,-¢.) This gives us the formula
and d(sa+bisc)_d(sa’80)

2 2 2 _nb[d(Sb,Sc)—d(Sa,Sc)]+nc[d(sb,sc)_d(sa,sb)].(A.3)
HCM _CCH ) %‘unfanbéca _CbH +ch _CCH . (A.2) ) n,+n, +n,

n, The value of (3) is clearly now positive due to the
I = . _Cb)E:qu -C.) assumptions made in lemma. This proofs the lenima.
a b
We can thus write (A.2) in the form: Authors:
5 n, ) ) Timo Kaukorantg PhD student in TUCS, in the computer
HCM ‘CcH = %WiJr n HCa ‘CbH +ch ‘CcH science dept., university of Turku, Finland.
: Address: Lemminkaisenkatu 14, 20520 Turku, Finland.
- 'la Q\Ca - CbHZ +|c, —CCHZ -lc. —CCHZ) E-mail: tkaukora@cs.utu.fi
R Pasi Franti, research fellow in the computer science dept.,
I L P o LI L S PPN university of Joensuu, Finland.
T n,+n, I -C n, +n, C, -C| Address: P.O. box 111, 80101 Joensuu, Finland.
nn , E-mail: franti@cs.joensuu.fi
_2ab lIc —-C . ) ) )
(n, +n,) IC. =Gl Olli Nevalainen professor in the computer science dept.,

o N university of Turku, Finland.
This gives the condition Address: Lemminkaisenkatu 14, 20520 Turku, Finland.

(na + n)]‘ca-"b _CCHZ — naHCa _CCHZ + nDHCb _CCHZ —d(Sa,S)) . E'ma” O|neva@CSUtufl

Now, we can write the difference of the merge costs in

form:
d(Sa+b’ Sc)_ d(Sa’ Sc)

_nc(na+nb) _ 2_
e |Car —C.|" -d(s,.S.)
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