
Uniform multiresolution Light Fields

Ales V. Michtchenko

Department of Computer Science, Moscow State University

Moscow, Russia

Abstract

This paper presents two different techniques of virtual
reality rendering: The mesh-intersecting light fields and
the deformation-based light fields.

Both methods are shown to have a number of advantages
over the existing light field rendering approaches.
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1. INTRODUCTION

1.1 Light-field as an array of view-rays

Image-based and Geometry-based rendering (Light Fields
and Ray-tracing or Radiosity) are the two extreme
approaches to scene representation. They are using
extensively different resources (memory and CPU,
correspondingly) and the most of research was
concentrated on reducing the usage of CPU for geometry-
based and memory for image-based rendering.

There was a number of works on reducing a Light-Field
array dimension. The most popular approach is to consider
Light Field not as a 3D array of images, but as a 5D array
of rays. Since in a free space colour and intensity of a ray
is constant, it is possible to reduce its index-dimension
from 5D to 4D, that corresponds to a set of lines in a 3D
space.

Light Field dimension reduction, based on a ray-
representation can be used successfully for a real-time
rendering ([1],[2],[3]), but it has a certain difficulties with
uniform parameterisation of line-space.

In this paper we are proposing two ways of constructing
the uniformly spaced Light Fields, with a small memory
usage: The first approach (see section 2) is to connect a
Light Field with a set of view-points, and the second
approach  (see section 3) is to render, using both geometry-
based and image-based elements.

1.2 Continuity and uniformity of surface-
intersecting light-fields.

1.2.1 Using different surfaces for view-lines
parameterisation

Parameterisation of lines was usually performed by
surrounding a scene with a simple surface (cube,
polyhedron or sphere) and indexing each line by two point
of its intersection with the surface.

The first surface of that kind was a pair of planes,
containing a scene between them. This configuration,
called the light slab [1] is still one of the most widely used,
due to its simplicity and ease of intersection computation.

The major drawback of this configuration is that a camera
is restricted to observe the scene only from outside a light
slab. This can be used, for example, for a relief rendering,
but unsuitable for sculptures.  Another disadvantage of the

light slab is that the density of rays ( }^cos{1 dn ) grows

with | d | and reaches infinity for the side-view directions

( dn⊥ ), where n is a norm to a light slab, d is a direction
of view (a vector connecting a light slab point with the
camera).

Later, the intersection of several light slabs was proposed
in [2]. This allows camera to observe a scene from
arbitrary position, but introduces a continuity problem: due
to angles between faces of resulting polyhedron

( 0^ 1 ≠+ii nn ), the brightness of the picture will seem

non-continuos on the edges.

This continuity problem was solved in [3] by introducing a
smooth surface (sphere). Although rays are still biased

towards visible boarders of a sphere ( ∞=}^cos{1 dn ,

if d is a tangent to the sphere), density discontinuity is
avoided.

1.2.2 Angular and image-plane non-uniformity of
surface-intersecting light-fields and uniforming
approaches.

It can be shown, however, that surface-intersecting light-
fields fail to provide both angular uniformity of rays for
arbitrary camera position and uniformity of intersection-
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points of rays with arbitrary image plane. Therefore, the
brightness of a picture will seem near-uniform only for
some particular scene and surface configurations.

The best examples of angular uniformity are using sphere
for inward looking from the vicinity of its centre and using
cylinder for inward looking from vicinity of it's axis in a

view-direction d  almost perpendicular to it. These scene-
surface configurations may be successfully used for virtual
walk through a set of rooms and corridors (virtual interior
design or virtual picture gallery), but limited to inward-
looking directions.

The uniformity of intersection points on the image plane
will be provided only for light-slab, parallel to the image
plane. This brings camera back to outside the light slab.

A number of approaches to making a ray-distribution (and
hence, the brightness of a picture) uniform may be

proposed. It is possible, for each camera position d , to

render just a part (fraction }^cos{ dn≈ ) of rays to

compensate the density growth. Another way is to assign a

weight ( }^cos{ dn ) to each ray. In both cases it is

necessary to calculate a trigonometric function, and, if
surface is not a plane, it is necessary to calculate its norm
as well.

In the next 2 sections we will represent two different ways
of more radical change to ray-space geometry:

In section 2 we will discretise 3D space of viewpoints
accordingly to discretisation of line-space. Thus, we will
improve uniformity at the cost of ability to use arbitrary
camera-positions.  Advantage of this approach is the
absence of an intersection surface, so this parameterisation
is independent on scene's objects locations.

In section 3 we will improve angular uniformity of the
line-space by introducing intermediate parallel projection
and simultaneous depth coding.

2. MESH-INTERSECTING LIGHT FIELDS

2.1 The dual-uniformity problem.

Let us turn down an idea of uniform angular
parameterisation of rays for any arbitrary camera location
and choose a discrete set of viewpoints.

2.1.1 An example of dual-uniform sets and a
general formulation of the dual-uniformity
problem

An example of uniform set of viewpoints together with a
uniform set of rays, issued from each viewpoint (dual-
uniform sets) is a spherical-uniform bunch of rays, issued
from the each node of the cubic mesh.

However, since tangent is not a rational function, these
rays are unlikely to hit another nodes, other from the node
they are issued from. This makes the size of a light field to
grow as a product of the number of viewpoints and the
number of view-directions.  To avoid that, it is necessary
to introduce a certain fraction of non-uniformity into either
set of rays or set of a view-points, so that each ray will
intersect a number of nodes, which will grow linearly with
the total number of nodes.

Strictly speaking, we have to find a set of points together
with a corresponding set of lines, so that both sets will be
reasonably uniform in corresponding spaces and average
number of points lying on each line will be maximised.
This could be named a formulation of dual-uniformity
problem in the general case. It is very difficult to solve, but
since arbitrary set of points in 3D is not easy to store and
manipulate, such a general solution is not, indeed, needed.

2.1.2 Approximations of the dual-uniformity
problem

Let us, for implementation reasons, restrict ourselves to a
regular, periodic mesh. We will conduct all our reasoning
for the case of a regular cubic mesh, and its 2D analogy -
square mesh.

To find an approximate solution for a dual-uniformity
problem, we can fix one of the sets and find an optimal
solution for another.

Below, we will use a ray-displacement approach to this
problem and formulate an approximate dual-uniformity
problem as follows: For a given set of points, to select a
lines, which will go through as much nodes as possible,
providing almost equal angles between the neighbour
lines.

2.2 Sequences of vicinities, providing
near-uniformity and multiresolution.

2.2.1 Formulation of the dual-uniformity problem
for periodic meshes

For the line in the periodic mesh, going through the
nearest node is equivalent to going through the maximum
number of nodes. Hence, the above mentioned task of
intersection maximisation with restriction of near-
uniformity boils down to defining a metric ρ  in the mesh

and drawing a set of angular equidistant lines through all
the nearest neighbours.

It is natural to introduce a multiresolution at this stage and
to formulate the dual-uniformity problem as follows: For a
given mesh  (regular cubic in our case) to define a metric
ρ  and to find a corresponding sequence of

circles ...21 ≤≤ RR , so that:  (1) for any circle in the

sequence, the angles between radial lines, going through
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the centre and nodes on the circle will be almost equal
(uniformity) and (2) for any two subsequent circles

1+≤ ii RR , lines, going through the nodes on a smaller

one, go through the nodes of bigger one  as well

(multiresolution). The pair { ρ;iR } will be called a

solution to the dual-uniformity problem, if it satisfies
conditions (1) and (2).

To provide a multiresolution (2), we will restrict ourselves
to a geometric sequence and choose the smallest possible

common ratio (two), so that 12 +⋅∆= i
iR , where ∆  is a

distance between neighbours in a mesh (the mesh's step).

To measure the angular uniformity of the view-rays (1), we

are proposing two ratios: 
min

max

θ
θ

  and  
min

max

θ
θ

 =

=
max

min

density

density
, where an operation (...) denotes an

averaging over a small solid angle around a view-direction

d . It can be shown, that (...) = (...) in 2D case,  because

of the only one polar angle.

For a limit case i>>1 ( ∆ << iR  and θ  = sinθ  = tanθ )

two approximate solutions for the dual uniformity problem
have been found:

{ 12 +⋅∆= i
iR ; || //

dim

1

/
1 i

ension

i
i rr −≡= ∑

=
ρρ } and

{ 12 +⋅∆= i
iR ; || ///

ii
i

rrMAX −≡= ∞ρρ }.

It is possible to show, that in 2D case both solutions have

the non-uniformity ratio 
min

max

θ
θ

=2. As for a cubic mesh

(3D case) 
min

max

θ
θ

= 6  for { 12 +⋅∆ i , 1ρ }. For

{ 12 +⋅∆ i , ∞ρ } the corresponding formula has a more

complicated form, but can be shown not to exceed 3.

The directions of maximum and minimum density are as

follows: d( maxθ ) for { 12 +⋅∆ i , ∞ρ } and d( minθ ) for

{ 12 +⋅∆ i , 1ρ } are the coordinate axes ie± , i=x,y,z.

d( minθ ) for { 12 +⋅∆ i , ∞ρ } and d( maxθ ) for { 12 +⋅∆ i ,

1ρ } are the octant bisectors 
3

kji eee ±±±
.

Expresions for 
min

max

θ
θ

 = 
max

min

density

density
 are more

cumbersome due to directional anisotropy, but it can be
shown, that

min

max

θ
θ

 = 
max

min

density

density
 < 

min

max

θ
θ

 for both solutions.

2.3 Advantages of mesh-intersecting
light fields.

Besides an almost uniform distribution of lines along all
view-directions, this parameterisation of light-field lines
has the  other two advantages: independence on scene
location (and complexity as well)  and multiresolution.

2.3.1 Independence on location and complexity
of the scene

Since no object-surrounding surfaces were used, this
method does not become more complex with addition of
new objects to the scene.

Moreover, because of tight interconnection between
viewpoints (nodes of mesh) and view-directions, it is easier
to introduce a different colour and intensity values to
different parts of the ray. To illustrate this, imagine, a
view-line, intersecting an object surface at N different

points (for example, the view-line OZ  on fig.1 intersects
a cylindrical object twice). There will be 2N corresponding
colours for that line, and choosing among them depends
on camera locations and on two possible camera
orientations (positive and negative in respect to directional
vector of a  line).

The complexity of the data structure of surface-intersecting
light fields grows with number N, since there is no natural
connection between the camera location and the view-line.
The mesh-intersecting  light fields, on the contrary,
connect view-lines and viewpoints by a simple periodic
dependence (see 2.2), and, hence, it is easy to cluster
viewpoints on each line by their location in respect to the
object.

Therefore, handling multintersections does not  require
restructuring of the mesh-intersecting light fields and,
hence, this method of virtual reality rendering is capable of
robust  handling not only a single  object fly-around's, but
an arbitrary walk  through a complex environment, such as
museums, botanical gardens,  crowds of people.

2.3.2 Multiresolution

We introduced a multiresolution of light fields, which is
very important in virtual video compression and
communication. This enables communicating with virtual-
reality rendering server via finite bandwidth
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communication channels, and allows applying to light-
fields all the multiresolution techniques. For example, for
virtual reality helmet rendering, we can increase resolution
in the direction of sight and decrease it in the side views
(foveation, see [4]).

Multiresolution of view-directions can be used together
with a multiresolution of view-positions (using
multiresolution cubic mesh).  This will introduce a trade-
off between positional and directional  discretising, which
will be useful then applying to different virtual realities.

For example, for a virtual museum rendering, directional
resolution  is, probably, more important (since it is more
important to see fine details of exhibits, than to see them
from a lot of close viewpoints).  For a computer games
rendering, on the contrary, the density of available
positions has to be sufficient to support a smooth dynamics
of the game.

3. DEFORMATION-BASED LIGHT-FIELDS

This rendering technique is a compromise between
geometry-based and image-based rendering, and,
therefore, it reduces the dimension of a light field array
(memory usage) at the cost of increasing intermediate
computations (CPU load). It is based on exact intermediate
(average) images, which are rendered using a perfectly
uniform set of view-directions and contain all the precise
illumination effects. These images are then deformed to
achieve an approximation  for an image from the given
camera position.

3.1 Images clustering

Let us try to cluster images from different viewpoints and
approximate them by an average image for the entire
cluster.

3.1.1 Clustering as a minimisation

For a certain number of images (the certain volume in a
camera-position space), clustering is more advantageous, if
a square of a surface, containing this volume in itself, is
minimised.

It can be shown, that, then minimising the surface/volume
ratio, the close views will be more likely to belong to the
same cluster. That means, for example, if rendering stereo
views,  dual images will belong to the same cluster, or,
then  rendering a virtual video, the subsequent shots will
tend to remain in  the same cluster. Since the change of
cluster requires more computation, clustering with
minimal surface/volume ratio is more advantageous.

3.1.2 Platonic solids case

Let us return to the notion  of a light-slab and consider a
platonic polyhedron, containing an object (scene). Rays,

coming from the centre of a polyhedron through its edges,
divide an outer space into N cones, where N is a number of
polyhedron's faces (see fig.1 for one of cones).

We will use a dodecahedron, since it's faces (pentagons)
have the biggest square/perimeter ratio and, hence, the
corresponding cones have the biggest volume/surface ratio.

3.2 The cluster's average image as a
parallel projection

Let us choose an average image for each cluster (for all the
views from the inside of the corresponding cone) to be a
parallel projection on the plane, containing the
corresponding face of dodecahedron (see fig. 1).

3.2.1 Representativity of the parallel projection

We will assume, that there is no point that can be seen
from some camera position inside the cone, but are not
projected on the corresponding plane (representativity of
an average image).

Otherwise, we can change this condition to the stronger
one: object has a spherical topology and any line,
perpendicular to any of projection planes, intersects the
object's surface  two or less times, so the backprojection is
unique. Let us define the depth of a pixel ),( yx  on the

average image as a distance ),( yxh  between pixel and

it's backprojection (see fig.1). We will discuss below, how
a depth of the pixels can be used to deform an image from
the average one into  the one needed.

Figure 1: Parallel-to-perspective image deformation

3.2.2 The drawbacks of the parallel projections.

Parallel projections were used for light-field
parameterisation (see, for example, [3]), because they
provide a natural separation of 4D  light-field index space
into two 2D spaces: direction-of-projection space  (position
of a plane) and position-on-a-plane space.
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Authors of [3] used this to avoid a non-uniformity of line-
space,  since, if chosen uniformly on a projection plane,
parallel view-lines  will remain equidistant in all the
space.

However, this light field rendering on its own (without a
depth-based deformation) has two serious drawbacks:

First, the difference between perspective projection  (a
view from a given camera position) and a parallel
projection  (an average image) grows then approaching an
object and, also, then the depth of an object's surface

),( yxh  is significantly not a constant.

Second, all illumination effects, particularly resulting
from a surface's deviation from Lambertian law (specular
reflections, etc) will be placed unproperly.

3.2.3 Advantages of using the depth coding
along with parallel projections

In the following chapters, we will introduce a
simultaneous depth and light field coding for each
projection plane. This will eliminate the two above-
mentioned drawbacks and significantly reduce the overall
size  of the light-field array (instead of one 4D-array we
will use only  12 2D-light-field arrays and 12 2D-depth
arrays).

This approach is easier also from light-field acquiring
point  of view. If creating a light-field from the virtual
reality rendering  (ray-tracing or radiocity) it is necessary
to render not a "continues"  array of pictures, but just 12
average images, corresponding to 12 projection planes. If
creating a light field from a set of real photographs,  it is
necessary to take 12 images of an object by 12 "infinitely"
remote cameras. At the same time, it is necessary  to use
the binocular or trinocular views (see [6]) to estimate
depth of an  object's surface in respect to each plane.

3.3 The core of the average image
deformation algorithm

Suppose now, that we have an average image with a depth,
assigned to each pixel. Let camera belong to a certain
cluster of views (let it be placed inside the corresponding
cone). The rendering algorithm  takes a corresponding
parallel projection (2D-source image array) and  copies it
onto the screen (target array) by the following way: 1.
Projecting a camera position point onto the projection
plane  (finding a focus of contraction - origin on a fig.1)
and dividing a parallel projection  image (an average
image) into the four areas, that can not occlude  each other
(in a coordinate system, shown on fig.1, the camera
position coordinates are (0,0, l− ), and hence, these areas
are quadrants x>0,y>0; x<0,y>0; x<0,y<0 and x>0,y<0).
2. Scan each of the four areas to move  pixels towards

focus: )
),(

,
),(

(),(
yxhl

l
y

yxhl

l
xyx

+
⋅

+
⋅� ,

where l  is the length or a perpendicular from a camera

location onto the parallel projection plane, ),( yxh is the

depth of the pixel being moved (On a fig.1 pixel is moved
from the position, marked "||" to the position, marked "/\").

This process is, in fact, a constructing a closer view of the
object from a given infinitely remote view. This algorithm
resolves all  the problems, connected to perspective and
occlusions. On the other hand, it neglects all the
illumination effects. We will resolve these effects in the
following  sections: in 3.4 we will discuss how to reduce
the brightness of the surface's element in accordance with
the angle, at which it is viewed; in 3.5 problems with
deviation from diffuse reflection will be discussed.

3.4 Changing the brightness for
Lambertian part of reflection

Suppose, that reflection of an object's surface has no
specular reflection component. For a given depth field

),( yxh  it is easy to calculate a norm field

1)()(

1,,
),(

22 +∂∂+∂∂

−∂∂∂∂=
yhxh

yhxh
yxn  of the surface.

This can be done within a rendering algorithm loop (see
3.3.) or as a pre-processing stage to it.

In a case considered, the amount of light ),,( dyxIO ,

received in a certain camera position d , fades only with
decreasing of a solid angle, at which the surface element is

viewed, hence )}^),(cos{(~ dyxnIO .

Therefore, the ratio of perspective projection intensity to a

parallel projection intensity will be ),(
||

/\ yx
I

I
=

)^),(cos{(

)^),(cos{(

||

/\

dyxn

dyxn
=

||),(

||),(

/\||

||/\

ddyxn

ddyxn

⋅⋅
⋅⋅

, where

)),(,,(/\ lyxhyxd −−−−= , )1,0,0(|| −=d .

This ratio can be used as a fading multiplier for each pixel.

3.5 Changing the brightness for non-
Lambertian part of reflection

Rendering of deviation from the Lambertian reflection is
far more complicated. We will make the corresponding
changes to the image  in a three subsequent stages (to be
able to stop refinement at some stage, if at a coarse
resolution level or if the type of speck doesn't require
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further processing): 1. Displacement of a specular
reflection region due to the camera displacement. 2.
Deformation of a bright region due to the change of
surface's geometry at the old and at the new positions of
the region. 3. Final brightness refinement by a reduced
form of a ray-tracing.

In this paper we are concentrating on a specular reflection
deviation. Other deviations, such as back-reflection
(coarseness peak, see [5]) require simpler processing and
are not discussed in this paper.

3.5.1 The first stage: The displacement of
specular reflection regions due to camera
displacement

If the surface is not purely Lambertian, then, besides
multiplying  the brightness of each pixel ),( yx  by fading

ratio ),(
||

/\ yx
I

I
, it is necessary  to process the specular

part of the brightness as well, namely:  to calculate the

centres ),( |||| yx  and ),( /\/\ yx  of the specular  reflection

regions for both parallel and perspective projections and,
therefore, to move the specks on the average image plane.

Centres of the specks ),( |||| yx  and ),( /\/\ yx can be

calculated from direction to camera d  and direction to a

light source s within the norm calculating loop (see 3.4).
Two physical conditions are used to mark the centres of

the specks: (1): ||)(||)( dsnsdn ⋅⋅=⋅⋅ (angle of

incidence is equal to angle of reflection) and

(2): 0)]([ =⋅× sdn  (incident ray, reflected ray and a

norm belong to a same plane - reflection plane). Pixels
),( yx , satisfying these conditions for

)1,0,0(|| −== dd will be marked as centres of parallel

projection specks ),( |||| yx ; and pixels, satisfying these

conditions for )),(,,(/\ lyxhyxdd −−−−==  will be

marked as centres of perspective projection specks

),( /\/\ yx .

The speck displacement on the image plane is the
operation of swapping the non-Lambertian intensities

Iδ  of pixels ),( |||| yyxx δδ ++  and

),( /\/\ yyxx δδ ++ . Swapping may be performed

gradually, for the expanding vicinity
∞→+ |}||{| yx δδ  and may be stopped, then the non-

Lambertian Iδ  intensities of the corresponding points will
become the same.

The only difficulty is the separation of Lambertian 0I  and

non-Lambertian Iδ intensities. For the first (displacement)
approximation, we will assume, that the geometry of both

),( |||| yx  and ),( /\/\ yx  vicinities is nearly  the same,

and, hence, so is the Lambertian intensity.

For this approximation, it is possible to swap at overall

intensities I = 0I + Iδ of the above mentioned vicinities,

and stop swapping, then their difference will fall below a
certain threshold. The value of this threshold is, indeed,
the error of the displacement approximation, but, if chosen
too low, swapping may never stop due to the difference in
Lambertian parts of reflection.

3.5.2 The second approximation: deformation of
specks in  accordance to surface geometry

The geometrical  interpretation of the first approximation
is the projection of the speck from the surface onto the

image plane at the point ),( |||| yx ; moving this projection

on the image plane to the point ),( /\/\ yx ; backprojection

of the speck from the point ),( /\/\ yx  back to the surface;

and, finally, constructing the  perspective view on it.

It is clear, that this sequence of steps do not lead to errors
only if both the orientation and the curvature of surface are

the same at the vicinities of points ),( |||| yx

and ),( /\/\ yx . Assuming, that the curvature difference

between these two points  is not sufficient to significantly
change the form of backprojection, we will refine the
backprojection according to the change in orientation and
the form of the speck according to the change of curvature
(see, also, [6]).

The backprojection refinement is, indeed, expansion of the

speck, proportional to ),(^cos1 |||||| yxnd  along the

projection of n ),( |||| yx on the image plane, and

subsequent contraction, proportional to

),(^cos /\/\|| yxnd   along the projection of n ),( /\/\ yx

on the image plane. Moving, again, means assigning the
intensities:

Iδ )exp,exp( /\||
/\

/\||
/\ yconyxconx YYXX δδ ⋅⋅+⋅⋅+ :=

Iδ ),( /\/\ yyxx δδ ++ , where ||exp and /\con are the

image plane projections of, correspondingly

{ ),(^cos1 |||||| yxnd } n ),( |||| yx  and

{ ),(^cos /\/\|| yxnd } n ),( /\/\ yx vectors.
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The second part of the refinement is the change of the
speck form in accordance to the change of surface
geometry.

Let us choose the local coordinate system, centred at the

point )),(,,( /\/\/\/\ yxhyx on the surface as follows:

OZ = n ),( /\/\ yx , OX is the intersection of tangent

plane and reflection plane, OY is perpendicular to the
reflection plane.

Paper [6] shows, that curvatures 
x

n

∂
∂

and
y

n

∂
∂

  are

connected to a non-Lambertian brightness Iδ  of a pixel

),( yx  as follows: Iδ ),( yx  = MAXIδ
2

1

σ
( 2σ 1−  +

+ d

|||2|||

)(||2

y

n
y

x

n
xrrd

y

n
y

x

n
xrr

∂
∂⋅+

∂
∂⋅⋅+⋅

∂
∂⋅+

∂
∂⋅⋅⋅+

 )

where r = ),,( ZX sysx − , d and s are the coordinates

of the camera and the light source correspondingly.

This formula expresses Iδ ),( yx  as a function of surface

curvatures.  It can be used directly to calculate Iδ ),( yx
for a new curvature values or can be linearised for using as
a multiplier (see [6] for details).

It is necessary to mention, that all these formulas use an
approximation of small specks and are inapplicable if a
surface geometry changes significantly across a specular
reflectance region. There are two ways of dealing with big
specks:

Using an integral equivalents for all the above mentioned
formulas (we can use linear interpolation of curvatures to
simplify the resulting integrals).

Direct calculation of brightness of each pixel ),( yx by the

reduced form of a ray-tracing.

Although the second approach brings us from the image
plane  domain into the 3D-object space (see 3.5.4), it, in
most cases, is still less  computationally expensive. As we
are dealing with only the non-Lambertian part of
reflection Iδ , it is enough to trace the only  two rays:
specular reflected ray and the ray, reflected to  the camera.

3.5.3 The order of rendering

Note, that, besides the above mentioned displacement and
deformation, specks should suffer the same type of
parallel-to-perspective contraction towards the focus
(projection of a camera position on an  image plane).
Therefore, an overall sequence of rendering the non-
Lambertian part of reflection Iδ  is speck displacement,
speck deformation and finally, the core algorithm

applying: ),( |||| yyxx δδ ++ � ),( /\/\ yyxx δδ ++

�

hl

l

+
),( /\/\ yyxx δδ ++ .

All the three operations are of the swapping-intensity type
and are performed on  the image plane. Therefore, they are
much faster than a direct ray-tracing.

The final, third stage of rendering, described in 3.5.4,

provides the finest approximation for both Lambertian OI

and non-Lambertian Iδ  parts of reflection. It involves a
reduced form of a ray-tracing for an area, calculated at the
previous stages.

3.5.4 The third approximation: the calculation of
regions of specular reflection

At stages 1 and 2, we defined an area, containing all
pixels, whose non-Lambertian reflection  is increased or
reduced then moving a camera from the infinity  (parallel
projection) to a  rendering position (perspective
projection). At the third stage, we are calculating the

overall intensity 0I  + Iδ for all pixels in this area.

Remembering where we stopped to expand the vicinity

∞→+ |}||{| yx δδ  of the centres ),( /\/\ yx and

),( |||| yx  (see 3.5.2), we are reassigning the non-

Lambertian intensity Iδ ( xδ , yδ ) for all these pixels:

For each pixels ),( |||| yyxx δδ ++  and

),( /\/\ yyxx δδ ++  and their backprojections

)),(,,( |||||||| yyxxhyyxx δδδδ ++++  and

)),(,,( /\/\/\/\ yyxxhyyxx δδδδ ++++ , we are

calculating the specular reflected ray (vector) r , using the
two laws of specular reflection: (see 3.5.1):

||)(||)( dsnsdn ⋅⋅=⋅⋅  and 0)]([ =⋅× srn .

An angle between r and d determines the amount of

radiance, reflected to a camera direction d .
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Assuming the gaussian shape of the specular reflection

peak I = 0I  + Iδ = 0I + MAXIδ }2/)^(exp{ 22 σ⋅−⋅ dr ,

we are calculating an overall intensity I for all pixels in
the above-mentioned area.

The method, used in the third stage, can be applied to all
deviations from Lambertian law. For example, we can use
it to calculate the intensities Iδ , corresponding to a
backreflection peak (as it was shown in [5], the amount of

light, reflected back to the light source exceeds 0I  for

coarse surfaces).

3.5.5 Multiresolution and specular reflection
rendering

The each stage of specular reflection rendering can be put
into a correspondence to a certain level of resolution, so to
have a single multiresolution approach for deformation-
based light fields.

However, a criterion of each stage to be sufficient is not
developed yet. It depends on a lot of factors, such as
surface geometry, shape and type of corresponding
intensity peak. The development of such a criterion is a
part of a future work.

4. CONCLUSIONS AND FUTURE WORK

4.1 Mesh-intersecting light fields

In this section we developed an approach to a virtual
reality rendering, based on a close interconnection between
a view directions and a view positions. It provides
multiresolution and brightness uniformity of a resulting
picture more than known surface-intersecting rendering.

It is based on a solution of the dual-uniformity problem,
which was solved (approximately) for a cubic mesh.

One of  the directions of the future work is to involve other
view-position meshes (triangular, hexagonal, etc) to
improve uniformity of the resulting view-direction set.

Other areas of investigation are to find an optimal metric
ρ  for cubic, triangular, etc, meshes and to try to solve the

dual-uniformity problem in a most general formulation.

4.2 Deformation-based light fields

In this section we proposed a way of clustering images and
a way of deformation a clusters average image into an
arbitrary image from this cluster.

This method is based on a sequential rendering of
perspective, occlusions, diffusive and specular reflections.

The future research in this direction will be an attempt to
use different average images and different types of

clustering, in order to optimise the quality and time of
rendering.
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