
Principles of Automatic Generation And Parsing of Device-Independent
Metafiles by the Example of Object-Oriented VTK Library Adaptation

Dmitri Manakov, Ivan Komarovsky

Institute of Mathematics and Mechanics,
Ural Branch of the

Russian Academy of Sciences,
Ural State University, Yekaterinburg, Russia

manakov@imm.uran.ru

Abstract

This paper is about problems of implementing of parallel graphics
using open source libraries. Automatic generation and parsing is
discussed along with different approaches of its realization.

Keywords: On-line Visualization, Metafile, Strategy.

1. INTRODUCTION

One of the most important problems of modern graphics is on-line
visualization of parallel computing. While working on the parallel
machines, with restricted ability of data transfer via networks with
low throughput, image rendering in-place is neither efficient nor
profitable. But such kind of interactive graphics is needed when
building visual debugger or at the beginning of scientific
modeling, where user should interact with running program.
Fairly often under these circumstances device-independent
protocols, or metafiles are used [1].

Some kind of graphic library works on the parallel processors; all
of the library function calls are redirected to the metafile, which is
parsed by a powerful workstation, that makes real library calls
with data taken from the file, thus rendering the resulting image.
For an object-oriented library it may be said that an ordinary
program running on one of the parallel processors uses proxy-
objects instead of real ones.

When logging a call to a library method, we use the notion of
named functions: each function has a number associated with it,
which is passed to the metafile as well as its arguments. Since
most of the graphic functions are procedures (i.e. they have no
return value), we may use buffering which implies that we
accumulate calls and send them to the file by big packets of data.
Since we use the original function signatures, programs do not
change at all (compared to their serial variant).

One of the evident drawbacks of such approach is that building
this proxy-library is tedious and error-prone job to do, because
typical graphical system has hundreds of routines. We offer to use
an automatic generator that looks through the code of graphic
library and builds all necessary proxy-objects as well as the
program needed to perform metafile parsing.

2. AUTO-GENERATION GUIDELINES

2.1 Interaction scheme

Auto-generation assumes special “proxy-classes” (or meta-
classes) creation based on input source code (either library header

files or client source code) as well as building of a metafile
parsing program. Every processor that uses library classes works
with these proxy objects which substitute real method calls with
metafile write operations (see Figure 1). The main CPU
communicates with others and is responsible for metafile writing.

Figure 1: System in action.

2.2 General rules of auto-generation

1. Source code of a graphical task running on one of the
parallel CPUs should be identical to that of serial
variant.

2. Ability to choose appropriate data exchange protocol
(via files or TCP/IP).

3. Wide use of buffering for minimum transfer overheads.
4. Separation of functions into different categories:

- some functions imply coordination of
concurrently running processes (like
vtkRenderWindow::Render());

- some need their return value immediately
(so we can’t buffer them);

- all kinds of functions are split into
categories, which are implemented using
different strategies.

5. Main graphical data is placed in workstation and
parallel machine has only auxiliary data.

6. Usage of local variables duplicating principle: some of
the most frequently data we cache on the parallel
machine (for example, vtkPoints).

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

3. STRATEGIES

When implementing a suspended library function call, we should
take into account its semantics, i.e. we can’t just write it to the file
(though in general it works). Every object method has a
corresponding strategy of implementation, which reflects its
functionality. Though generator may offer some kind of general
strategy, it is the user who is responsible for making the right
choice.

We offer the following strategies [1]:

- general (default choice, no other actions needed after
writing to the metafile);

- for returning value functions;
- for coordinating functions;
- duplicating of local variables.

4. IMPLEMENTATION AND ISSUES

The most important part of generator is its database of proxy
objects. In order to build it, we need some information about
library classes and their methods. This information may come in
two ways: from header files of the graphical library or from
client’s source code. In the former case we analyze the library
entirely, building proxy-classes for all classes at once. The other
way is to build our database gradually, i.e. update it when
encounter new methods (not implemented yet).

Header files parsing has one important advantage: in this case we
have access to methods’ signatures. On the contrary, client’s code
contains only methods calls with actual arguments. In C++ that
means that we can’t figure out types of function’s arguments even
if we build symbol tables (due to hidden type conversions). We
can only make assumptions about them. However, since typical
library contains hundreds of functions but only small part of them
is used most frequently, we may do extra work that we’ll probably
never need. If we build the database step by step (parsing user’s
source code) we generate proxies only for really useful methods.
But in this case we have to ask user for signatures (due to
problems mentioned above).

What is clear now is that we can’t parse only a part of C++
grammar, because this will lead to frequent parsing mistakes
(though client’s code is okay and compiles well). Tools such as
lex/yacc will ease a lot building of such a parser.

5. METHOD CALLS THROUGH A METAFILE

The structure of file records is rather simple: it contains the
identification number of the given object’s class, the ordinal
number of the method and its arguments. If call is non-static, we
put the ordinal number of object of the given class. It may also
have the rank of calling processor (i.e. its id number). When
actual parameter of the method is an object (read: polymorphic
pointer to it), we substitute it with the object index. Every library
class on the workstation has a list of indices that help the parsing
program to recognize different objects.

The proxy-class database may maintain global class index which
means that class’ index doesn’t change once assigned; when
encounter new class, we give next free index. Another way is to
assign indices for every input program, which allows to create

array of them and gain access to the given class instantly (by the
index read from metafile). The same is true for methods.

The parsing program is nothing else but a big loop (till the end of
file). Following the structure of the file record, we should:

- read classIndex;
- read methodIndex;
- having both, we know what to do since these two

numbers identify needed library call;
- now we read parameters of this particular method and

call real library function providing actual arguments
we’ve just read.

The obvious way to do it is to have a pair of nested switch-case
operators, the outer one for classIndex and the inner for
methodIndex. Remind that such operator is translated into a
sequence of serial if/else checks, this approach may be rather
ineffective (as time complexity of recognizing the class and the
method is O(N*M), where N is the number of used classes and M
is the maximum of used methods inside all classes). Especially
when done in big loop. This is where local indexation is useful:
before entering the parsing loop, we build two nested arrays. The
inner is array of pointers for reading procedures (that know
everything about corresponding library functions and read
parameters from the file), it is indexed by methods ordinal
numbers. The outer is indexed by class ordinal numbers and
through given index gives access to the appropriate methods array
described above. This structure eats memory but makes call time
constant (more exactly, the time for figuring out what to call).

6. CONCLUSION

Auto-generation is well worth implementing; those who tried to
adapt graphical programs to work in concurrent environment
manually (even the simplest ones) have no doubts about it.
Ideally, such code-generation program should provide convenient
GUI and minimize the need for user’s interaction with its
parsing/generating part. Acting as a front-end, it should also ease
the process of starting the program on parallel machine (by
creating, for example, make-files and batch startup files).

The most important (and the hardest) part of such generator is
strategy scheme implementation. In order to have code of the
generator unchanged, we need flexible mechanism for adding new
strategies, because none is able to foresee all the needed ones and
hardcode them.

7. REFERENCES

[1] D. Manakov, M. Shagubakov. Adaptive Builder for Interactive
Tasks in Mass-Parallel Machines // Proceedings of Graphicon
2002, Nijniy Novgorod, 2002, pp. 405-408. (In Russian)

About the author

Dmitri Manakov is a lead programmer at Institute of Mathematics
and Mechanics,
Yekaterinburg, Russia.
His e-mail is manakov@imm.uran.ru

Ivan Komarovsky is a student at Ural State University,
Yekaterinburg, Russia

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

