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Abstract 
A new automatic local fairing technique for planar B-spline 
curves is presented in this paper. According to the design intent, a 
target curvature plot, which is provided by the designer, is used to 
identify ‘bad’ points and ‘bad’ curve segments. Then, the 
corresponding control points are modified in a process of local 
constrained optimization where the importance of fairness in the 
sense of energy minimizing versus coherence to the original 
design can be adjusted by the designer. Experimental results are 
given to show the validity of this method. 
Keywords: B-spline curves, Target curvature plots, Automatic 
local fairing 

1. INTRODUCTION 

The notion of fairness of a curve is difficult to quantify precisely 
and tends to depend on the situation at hand and the subjective 
judgement of the individual viewing of the curve [4]. 
Nevertheless, according to the principle of simplest shape [1], 
beautiful objects are free of unessential features and simple in 
design. A planar curve is fair if its curvature is continuous, has no 
redundant inflection points and flat points, and consists of only a 
few monotone, gradually changing pieces. As B-spline curves are 
piecewise polynomial curves, the fairness has two meanings: (1) 
every curve segment should be fair enough; (2) the curvature plot 
should have as few as possible curvature extrema, inflection 
points and flat points.  
A curve can be faired in interactive or automatic mode. Generally, 
automatic fairing methods are viewed as helping to obtain a fast 
approximation to an optimum. The ‘optimally aesthetic’ objects, if 
deemed necessary, are left to the designers, who have captured the 
‘design intent’, to identify regions with curvature irregularities 
and adjust them in interactive mode [4]. This is often an 
experience-based, trial and error, and time-consuming process. 
Thus, improvement of the performance of automatic fairing will 
greatly decrease the design time and benefit product development. 
The existing curve fairing algorithms can be classified into two 
categories, known as local fairing and global fairing, according to 
how the curve is modified to achieve fairness, i.e. locally or 
globally. The major disadvantages of the existing global fairing 
algorithms include: (1) they cannot produce fair curves 
consistently, (2) designers cannot involve in the fairing process, 
(3) they effect the whole curve while in practice designers are 
interested in modifying its local imperfections without altering the 
good parts in respect of fairness. In comparison with global 
fairing methods, the local fairing methods are free of the 
limitations (2) and (3) [7]. However, the effectiveness of existing 
local fairing methods is also uncertain. In fact, it is far from the 
truth to consider the curve fairing problem as solved.  

To the best of our knowledge, the cardinal spline method 
proposed by Su et al. [13] may be the first attempt to fair curves 
locally. The curve is faired by minimizing the cumulated jump of 
their third derivatives at the knots where unwanted inflection 
points and/or wiggles occur. This algorithm can also be employed 
to fair B-spline curves by considering its control points as data 
points [13]. Later Kjellander [5] proposed a method of adjusting a 
‘bad’ data point on a uniform parameterized curve to make the 
jump of the third derivative of the curve at the point to be equal to 
zero. Poliakoff et al. [8] introduced an extension of Kjellander’s 
algorithm in order to apply the algorithm to non-uniformly 
parametrized curves, and automated this extended algorithm in 
their recent paper [9]. Zhang et al. [14] extended this algorithm to 
fairing two successive points of the curve. 
The first B-spline fairing algorithm for cubic B-spline curves, knot 
removal–reinsertion, was proposed by Farin et al. [3]. When a 
curve is faired using this algorithm, the smoothness between the 
curve segments at the offending knots is increased from C2 to C3. 
Numerical examples demonstrate that generally the fairness of the 
curves can be improved. Sapidis and Farin [11] proposed the first 
automatic fairing algorithm for B-spline curves. The knot with the 
biggest jump of curvature variation is identified as the offending 
knot and the curve is faired using knot removal-reinsertion 
algorithm. However, Poliakoff et al. [9] reported that this 
algorithm frequently terminated prematurely and the global 
fairness indicator occasionally increased once before decreasing 
considerably. Another automatic algorithm, called local energy 
fairing, for B-spline curves of general order, was presented by Eck 
and Hadenfeld [2]. Their key idea is to minimize the integral of 
the squared lth derivative of a given curve iteratively by changing 
only one control point where the largest improvement of the 
energy integral is to be expected in every step. However, 
minimizing the integral of the squared lth derivative of a curve 
cannot guarantee to produce a fair curve consistently. 
Furthermore, the termination method of this algorithm is to 
restrict the number of iterations, which is very difficult to set in 
practice.  What should be specially pointed out is that, nearly all 
curve fairing algorithms have been centred on examining the 
curve at the knots.  Researches have seldom been carried out on 
how to evaluate and improve the internal fairness of B-spline 
curve segments, which is also important for the global fairness of 
a curve.  
In this paper, we present a new algorithm for fairing planar cubic 
B-spline curves based on target curvature plots, which are 
provided by designers according to the design intent.  Based on 
the target curvature plot, the curve’s ‘bad’ points and ‘bad’ curve 
segments can be intuitively identified.  Then, the corresponding 
control points are modified in a process of local constrained 
optimization where the importance of fairing in the sense of 
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energy minimizing versus coherence to the original design can be 
adjusted by the designer. 
The rest of this paper is arranged as follows. Curve segment 
classification is introduced in Section 2. The target curvature 
based B-spline curve fairing method is described in Section 3, and 
an example is shown in Section 4. Section 5 draws conclusions. 

2. CLASSIFICATION OF CUBIC B-SPLINE CURVE 
SEGMENTS 

A kth-order B-spline curve is defined by 
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where {Pi} are control points, {Ni,k(u)} are the kth-order B-spline 
basis functions defined on knot vector 

}...,,...,,...{ 110 knnnkk ttttttT ++− ===== . In this paper, 
attention is concentrated on planar cubic curves, i.e. 4=k .  

For a planar curve C(u)=(x(u), y(u)), the curvature is defined by  
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For a B-spline curve, k(ti) is abbreviated to ki, and the derivatives 
of the curvature at { } 1
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It is well known that a curve with a loop is self-intersecting, one 
with a cusp has a point where the unit tangent vector is 
discontinuous, and one with an inflection point has a point where 
the curvature vanishes. Loops, cusps and inflection points are 
called the characteristics of a curve, and these characteristics are 
mutually exclusive. According to its characteristics, a cubic B-
spline curve segment can be classified into one of the five types 
known as arch, one inflection point, cusp, two inflection points 
and loop [12]. In engineering applications, especially in free-form 
shape design, curve segments that have cusp, two inflection points 
and loop are normally forbidden.  
As a fair curve is free from undesirable wiggles, the curve 
segments should have as few as possible curvature extreme points, 
and a stricter version is monotone curvature [10]. To evaluate the 
fairness of curve segments, arches and segments with one 
inflection point are further classified according to the number 
curvature extrema. Based on the theories proven in [15], it is easy 
to deduce that, for an arch, the number of curvature extrema may 
vary from zero to three, as shown in Fig.1-4. 
Apparently, an arch with no curvature extremum should be 
considered as a fair curve segment.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a curve segment with one inflection point, theoretically the 
number of curvature extrema might be up to four [15]. However, 
in practice, a curve segment with one inflection point and three or 
four curvature extrema rarely exists. So, we only consider the 
cases that it has up to two curvature extrema, as shown in Fig. 5-7. 
Similarly, the curve segments with no curvature extrema are fair 
and are preferred in applications.  
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(a)                                                  (b) 
Fig. 1: Arch with no extreme point: (a) the curve;       

(b) curvature plot of the curve 
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Fig. 2: Arch with one extreme point: (a) the curve;      

(b) curvature plot of the curve 
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Fig. 3: Arch with two extreme points: (a) the curve;    

(b) curvature plot of the curve 
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Fig. 4: Arch with three extreme points: (a) the curve;   

(b) curvature plot of the curve 
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To judge whether a curve segment (arch or segment with one 
inflection point) has curvature extrema, the derivatives of the 
curvatures at endpoints can be used.  If 0)()( 1 <⋅ −

+
+

ii tktk && , there 
must be at least one curvature extremum. Obviously, a curve 
segment with odd curvature extreme point(s), i.e. one or three, 
should meet this condition. To determine whether a curve segment 
has zero or two curvature extrema, i.e. 0)()( 1 ≥⋅ −

+
+

ii tktk && , we can 
use the dichotomy method to further subdivide the curve segment   

3. B-SPLINE CURVE FAIRING 

In this section, we describe how to identify ‘bad’ points and 
present a local constrained optimization method used to modify 
the control points corresponding to the bad points or bad curve 
segments.  

3.1 Bad Point Identification 
The target curvature plot can be used to identify a curve’s 
undesirable features, i.e. redundant curvature extreme and 
inflection points.  The design of a target curvature plot should 
satisfy the following criteria. 
(1) The proposed method is intended for finish fairing. This 
means that the target curvature plot should be based on the real 
curve shape and its curvature distribution. Large scale and severe 
curvature changing is unexpected. 
(2) A target curvature plot only intends to reflect the ‘tendency’ of 
the final curvature distribution. So, line segments will be used in 
the target curvature plot for efficiency.  
(3) To describe the ‘tendency’ as accurate as possible, the target 
curvature plot should provide the following information: (i) 
curvature extreme positions, (ii) curvature segments in which 
inflection points lie, and (iii) tendency of the curvature 
distribution. 
(4) A target curvature plot should consist of as few as possible 
monotone pieces. 
Fig. 8 shows an example. In the picture, the target curvature is 
drawn as dashed line segments whereas the real curvature is 
drawn as solid curve segments. The break points of a target 
curvature plot can only be the knots. In other words, the target 
curvature between any two neighbouring knots is linear 
distributed.  
 
 
 
 
 
 
 
 
 
 
 
 

Let ),( t
ii kt  )1,1( +−= nki  be the point coordinates sampled on 

the target curvature plot, and ),( ii kt  be the point coordinates 
sampled on the real curvature plot. Bad points and bad curve 
segments can be identified using the following rules. 
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the tendencies of the target curvature segment and the real 
curvature segment between knots 1−it  and it  or between 
knots it  and 1+it  are different, this usually results in an 
unexpected curvature extremum at it  and it  is identified as a 
bad point, such as t7, t8 and t14 in Fig.8.  Bad points of this 
type are called type A bad points. They are ranked according 
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t
iii kkkk , there is a redundant inflection 

point between it  and 1+it .  If 0>⋅ t
ii kk , 1+it  is a bad 

point, such as t4 in Fig.8; else if 011 >⋅ ++
t
ii kk , it  is a bad 

point, such as t5 in Fig.8. Bad points of this type are called 
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Fig. 6: curve segment with one inflection point and one 
extreme point (a) the curve; (b) curvature plot of the curve 
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Fig. 7: curve segment with one inflection point and two 
extreme points (a) the curve; (b) curvature plot of the curve 

t3     t4           t5              t6          t7       t8               t9   t10 t13         t14        t15 

t11  t12 

Fig. 8: Target curvature plot 
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Fig. 5: Curve segment with one inflection point and no 
extreme point (a) the curve; (b) curvature plot of the curve 
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type B bad points. They are ranked according to |ki | (if it  is 
the bad point) or |ki+1 | (if 1+it  is the bad point). If the left 
part of the above formula is equal to zero, such as t14 in 
Fig.8, the bad point, for example it , can be ranked according 
to |ki+1 |.  In the cases that a bad point has two ranked values, 
the greater one is chosen. 

(3) If the curvature segment between knots it  and 1+it  has 
extreme points as discussed in Section 2, it  and 1+it  are 
identified as bad point pair, such as 8t  and 9t  in Fig.8.  Bad 
point pairs of this type are called type C bad points. They are 
ranked according to the result of Max{ 
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3.2 Local Constrained Optimization 
Different from the local energy fairing algorithm [10], which fairs 
the curve by minimizing the energy of the curve with respect to 
the worst control point in one step, our goal function for curve 
fairing is 
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C . α is at the user’s disposal, expressing 

the relative importance assigned to fairing versus adherence to the 
original design, i.e. a smaller α represents greater emphasis on 
fairing. As we discussed in Section 1, the energy method, such as 
the first part of Eq.(5), is not consistent in producing fair curves. 
In comparison with the energy method, the linear combination 
shown in Eq. (5) gives designers more flexibility and makes it 
more feasible in producing fair curve than the existing algorithms. 
When more than one control points are modified, the influence of 
each control point could be self-adjusted.  
Fairing more than two consecutive control points in one step may 
result in curve segments quite different from the original ones and 
violate the shape-preserving requirement of the fairing process.  
According to our experiments, normally up to two consecutive 
control points can be modified at the same time.  

When it  is identified as a bad point, three control points, 
)1,2,3}({ −−−= iiijjP , are involved in fairing the curve at this 

point as a result of the local support property of B-spline curves 
[7]. According to the importance of the three control points to the 
bad point, we modify 2−iP  when it  is a bad point.  

3.2.1 Modifying One Control Point 
When control point Pm is modified, the shape of the curve 
segments that defined on [ ]ba,  will be changed. Here 
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3.2.2 Modifying Two Control Points 
When control points Pm and Pm+1 are modified, the shape of the 
curve segments that defined on [ ]ba,  will be changed. Here 
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The solution is obtained by solving the equation system shown as 
follows. 
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According to our tests, when two successive control points are 
modified using Eq.(9), α should be set larger than the weight used 
in modifying one control point. Normally it is set to be >0.9. 

3.3 The Fairing Procedure 
When a curve is to be faired, typically the curve is also expected 
to satisfy certain constraints [8], such as interpolation to certain 
data points and/or derivative values, local convexity besides 
approximation to data with tolerance. The discussion of 
constraints is beyond the scope of this paper. Here, we call them 
constraints in general. 
Before describing the fairing steps, we first introduce the concept 
of modifiability of a bad point. Besides the ranked value, each bad 
point is also given a value of modifiability, a Boolean value used 
to indicate whether this bad point is allowed to be modified in 
next iteration. The setting of a bad point’s modifiability value is 
according to the following rules: (1) initially every bad point is 
modifiable (TRUE); (2) once a bad point is faired, failed or 
successfully, it cannot be faired in next iteration (FALSE). If 
successfully faired, the modifiability values of the relevant bad 
points are re-set to TRUE.  For example, if it  is a bad point, 
according to the introduction in subsection 3.2, control point 2−iP  
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will be modified. The bad points located within the affected area 
of 2−iP  (excluding it ) are called the relevant bad points of it . 

Fairing Steps 
1) Identify and rank Type A bad points; 
2) If there are modifiable bad points and ti is the ‘worst’ one 

among them, compute 2
~
−iP  using Eq.(7) and set it ’s 

modifiability value to FALSE; otherwise go to step 4); 

3) If new curve )(
~

uC  defined by },...,,,,...,{ 12
~

30 niii PPPPP −−−  

fulfils the constraints, let )()(
~

uu CC =  and re-set the 
modifiability values of the relevant knots to TRUE, go to step 
1). Otherwise, do not replace Pi-2 and go to step 2); 

4) Identify and rank Type B bad points; 
5) If there are modifiable bad points and ti is the ‘worst’ one 

among them, compute 2
~
−iP  using Eq.(7) and set it ’s 

modifiability value to FALSE; otherwise go to step 7); 

6) If new curve )(
~

uC  defined by },...,,,,...,{ 12
~

30 niii PPPPP −−−  

fulfils the constraints, let )()(
~

uu CC =  and re-set the 
modifiability values of the relevant knots to TRUE, go to step 
4). Otherwise, do not replace Pi-2 and go to step 5); 

7) Identify and rank Type C  bad points; 
8) If there are modifiable bad points, and ti and ti+1 are the 

‘worst’ pair among them, compute 2
~

−iP  and 1
~

−iP  using 
Eq.(9) and set their modifiability values to FALSE; otherwise 
stop; 

9) If  )(
~

uC  defined by },...,,,,,...,{ 1
~

2
~

30 niiii PPPPPP −−− fulfils 

the constraints, let )()(
~

uu CC =  and re-set the modifiability 
values of the relevant knots to TRUE, go to step 7).  
Otherwise, do not replace Pi-2 and Pi-1, and go to step 8). 

In contrary to Sapidis’ algorithm, where the ‘worst point’ is faired 
in each iteration, in cases that the worst point or the worst point 
pair could not be faired, the less worst points or point pairs will be 
used to fair the curve to the greatest potential. 

4. EXAMPLE 

The following example is from reverse engineering applications. 
Its data originate from a section of a car body (see Fig. 9(a)). The 
graphics output consists of two kinds of figures, namely curve 
figures and curvature plots. Solid lines in the curvature plot of the 
initial curve indicate the real curvature plot of the curve, whereas 
dashed lines indicate the target curvature plot.  Sapidis’ algorithm 
is constrained with tolerance to make it comparable with our 
method, and the tolerance constraints for Sapidis’ algorithm in 
this example are the same as those used for our method. 
The example shows how the presented algorithm treats a curve, 
consisted of 6 cubic B-spline curve segments (see Fig. 9(a)), of a 
partial section of a car body.  The shape of this curve is very 
simple. The main problem of this curve is that it has three 
redundant inflection points. Setting tolerance constraint to be 

mm5.0 , 1.0=α  for modifying one control point and 95.0=α  

for modifying two control points, the faired curve with the 
presented algorithm is depicted in Fig.9(c). The curve faired with 
Sapidis’ algorithm is shown in Fig. 9(e) for comparison.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the above example, we can see that the fairing result 
using our method is better than that faired with Sapidis’ algorithm 
in terms of curvature distribution.  
Due to the need of integral computations, our approach is 
computational heavier. But it is fast enough for interactive design.  
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(f) 
 

Fig. 9: The curve (a) and its curvature plot (b).The curve faired 
using our method (c) and its curvature plot (d).The curve faired 
using Sapidis’ algorithm (e) and its curvature plot (f) 

(c) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

(d) 

(a) 

(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/



According to our test on a PC-PIII/450Mhz, when the curve is 
faired with the presented algorithm, the time consumed for this 
example is 0.04 CPU-seconds, without considering the time 
consumed for drawing target curvature plots. When the curve is 
faired with Sapidis’ algorithm, the time consumed is 0.02 CPU-
seconds.  

5. CONCLUSIONS 

A target curvature plot based algorithm for fairing planar cubic B-
spline curves is presented. Different from the existing algorithms, 
the fairness of curve segments is considered in the fairing process. 
In order to identify bad points and bad point pairs, a target 
curvature plot, which is drawn by the designer according to the 
design intent, is employed. The bad points and point pairs are 
modified by local constrained optimization. The goal function is a 
weighted equation which can be used to adjust the importance of 
fairing and coherence to the initial design.  
Currently this algorithm is restricted to cubic planar B-spline 
curves although the bad point modification scheme can be also  
used for fairing B-spline curves of general order. 
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