
An Architectural Design System for the Early Stages

Sviataslau Pranovich, Jarke J. van Wijk, and Huub van de Wetering
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven

Eindhoven, The Netherlands
{s.pranovich, j.j.v.wijk, h.v.d.wetering}@tue.nl

Abstract
A wide variety of drawing packages is available for architectural
design. However, most of these systems are oriented to the
production of final technical drawings, and only few support the
early phase of design. In this paper, we present a new approach
for a design system to support this phase. The method is based on
a framework from architecture on the meaning of drawings in
architectural design during the early design stage. In such
drawings, not only standard graphics elements like contours, but
also other elements like grids and axes of symmetry play an
important role. The interactions between such elements encode
high-level knowledge related to the design process. These
elements are encountered also in standard drawing systems, but
often only as tools. We propose to consider such elements as
graphical objects. Relations between these objects can be defined
to capture higher-level information on the structure of the design.
Additionally, we offer a natural user interface for the designers,
which enables them to explore design space effectively and
efficiently.
Keywords: drawing system, early architectural design,
geometrical transformations, user interface.

1. INTRODUCTION

Current drawing systems have reached a high level of
sophistication, and are suited for the production of the final
technical drawings in the final phases of the design process.
However, they do not offer support for the early phase of the
design process when concept formation is important. Such
drawing systems require designers to specify many details in the
drawing, while the designer does not care about them in this stage
of the design process. Moreover, detailed drawing restricts the
design creativity, whereas a system that supports early design
should support and stimulate the generation of new ideas.
In order to develop a system that supports architects in an
architectural fashion, it is necessary to look at the way architects
work in the early phase of design. Research of H. Achten [1] in
the use of drawings by architects leads to the view that architects
use well-defined forms of graphic representations (graphic units)
to depict their design intentions. Examples of these graphic units
are contours, circulation schemes, grids, schematic subdivisions,
axes of symmetry, and zones. The design is developed by means
of these graphic units and interactions between them. We use the
results of Achten [1] as a basis for our approach and propose to
use these graphic units as the basic building blocks.
Current drawing systems typically offer only a basic set of
primitives, supplemented with tools to achieve additional effects:
to mirror objects, to align objects with respect to each other, to
align them to a grid, etc. These tools have a limited scope: for

instance, the fact that two objects are mirrored copies of each
other is not stored explicitly; after a mirroring tool has been
applied, higher-level knowledge (relations between objects)
disappears.
In computer graphics terms, our approach can be formulated as
follows. We propose to represent tools as geometric objects
(presented in a form of graphic units) themselves: for instance, to
introduce a symmetry axis as an object that has a graphic
representation, can be manipulated, and influences other objects.
Graphic units in this case allow establishing permanent relations
between them, which is not possible when tools are used instead.
Therefore the relations between graphic units can be used to store
high-level information related to a design process.
In the next section we overview existing approaches for the
support of designers in drawing systems and briefly present our
approach. In section 3 we give a description of graphic units and
their features. In section 4 we describe the handling of geometric
transformation of objects in more detail and give some examples.
In section 5 we present a user interface for the system. In section
6 we evaluate the system and in section 7 we draw conclusions.

2. BACKGROUND

Several directions have been pursued to support designers in the
early phase of design. One direction is to attempt to bring a
drawing tool closer to a sketching tool, another direction is to
offer more support for conceptual information, for instance on
relations between objects.
Sketching tools like SILK [12], SmartSketch [20] provide
beautification. The designer can sketch free hand, the systems
attempts to recognize common graphic elements from this input.
The Pegasus [11] system introduces predictive drawing that
predicts the user's next drawing operation based on the existing
drawing. But in general, systems supporting freehand sketching
with beautification techniques still suffer from a lot of limitations
[19].
The other direction for design support aims at enabling the user to
enter and use higher-level information. As a first step, many
drawing systems offer tools and aids, such as mirroring,
alignment, grids, gravity [22], and snap-dragging [6]. With these
tools users can establish relationships between objects, but
unfortunately most of the systems forget these relationships after
the positioning operation is complete [9]. Another well-known
support aid is grouping. Objects are merged, possibly recursively,
and can be manipulated as a group.
Constraint techniques make a powerful addition to the interaction
techniques available in graphical editors. SketchPad [22] was the
first drawing system that used explicit constraints, defined by the
user. It allowed lines to be constrained by relationships with other
lines (perpendicular, parallel, etc.). ThingLab [13] extended that

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

notion by providing a general simulation environment.
Constraints in Sketchpad and ThingLab are bi-directional and
allow objects to be attached and updated simultaneously. Many
other systems have been developed that provide constraint-based
solutions for graphical applications, such as Garnet [15], Coral
[23], Unidraw [25], ArtKit [24], WHIZZ'ED [8], Briar's [10] and
Inventor [21].
Complex interactions of many constraints require sophisticated
constraint satisfaction techniques. Constraint satisfaction
problems are sometimes impossible to solve, if, for example, there
are conflicting constraints. Even if the solver is able to find a
solution, it must help the user understand how and why it got to
the new state. In fact, the success of constraint-based approaches
to drawing has been limited by difficulty in creating constraints,
solving them, and presenting them to users.
In our work we do not focus on improving existing approaches
(such as defining a new type of sketching tool or building a new
constraint based drawing system), but we rather offer a new
approach, which is based on the designer's view on drawings.
Research in the use of drawings by architects on the early design
stage has led to the framework of Generic Representations:
Architects use well-defined forms of graphic representations to
depict their design intentions [3]. These forms have been
identified and described as graphic units. A graphic unit is a set of
graphic elements that are organized in a specific way and that
have a generally agreed upon meaning for the designer. Some
examples are: contour, functional symbols, circulation scheme,
zone, etc. Graphic units can be considered as a medium to express
the ideas in an architectural design [2]. A set of related graphic
units defines a generic representation [1], where relations
between graphic units play an important role. We propose to use
graphic units as building blocks for a design system, i.e. to treat
them as geometrical objects that can be edited, manipulated, and
can be interrelated [17].
The user in such a system defines a design in terms of graphic
units and relations between them. We use the idea of data-flow
for the propagation of manipulations on graphic units.
Manipulations are propagated through a graph, where the nodes
are graphic units and edges are relations between them.
In summary, we aim at enabling the designer to use graphics units
with an architectural meaning, such that these graphic units have
intuitive behavior and respond to the user actions in meaningful
and predictive way.

3. APPROACH

We begin the description of our approach by presenting graphic
units and their features.

3.1 Overview
A user can create, edit, and delete graphic units: instances of
predefined types of graphic units. Each graphic unit has a visual
representation, and can be geometrically transformed. For this we
use geometric transformation tool, the KITE manipulator [16].
Standard geometric transformations (translation, rotation,
scaling), and also skewing are supported.
Besides the type of a graphic unit, it has more detailed
information associated, for instance the exact shape of a contour.
The user can change this information in a standard way: for

instance to change the shape of a contour the user drags its
vertices.
The user can define uni- and bi-directional relations between
graphic units. A relation between graphic units presents the
semantic and physical connection between them and is visualized
as an arrow.
Transformations of a graphic unit are propagated along relations
between graphic units. The spanning tree algorithm is used to
define a subtree of the graph for the propagation of the
transformation. Separate decisions can be made how the
transformations are dealt with when they are propagated along the
graph. The user can define which types of transformations have to
be passed and/or applied for each graphic unit and relation.
For the manipulation of connected graphic units we use a special
geometrical engine [18]. In section 4 we will elaborate this
further.

3.2 Types of graphic units
Every graphic unit has a special meaning for the architect. Below
we give a description of the main graphic units in our system and
their features (for other graphic units see Achten [2]).
Contour: the most encountered graphic unit in the drawing of the
architect. It is the basic unit to construct the design. The variety of
contours is large: open contour, closed contour, self-intersecting
contour, etc. In our system a contour is represented as a list of
connected points. A contour is visualized as a polyline (see Figure
1).

Figure 1. Contours.

It has no special features implemented, except gravity: it is sticky
for other objects.
Grid: the alignment frame for the elements, which structures the
design. The variety of grids is large: rectangular (Cartesian) grid,
tartan grid, hierarchical (generic) grid [4], polar grid, curvilinear
grid, etc. The Cartesian grid covers about 75% of grids that the
architect uses in a design process. The Cartesian grid is an
orthogonal grid with constant spacing. We have defined grids as
two sets of not necessarily orthogonal lines. Each set is called a
grid component and is visualized as a set of parallel lines. The i-th
line in the set is defined by

pitbtx ⋅⋅+⋅−+=)sin,(cos)cos,(sin)(αααα ,

where b defines the position of the grid component, α defines
the orientation of the grid component, and defines the period of
the grid component. By combination of grids more complex grids,
such as the tartan grid can be defined (see Figure 2).

p

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Figure 2. A – One dimensional grid; B – tartan grid; C
– complex grid.

A grid has gravity: Vertices close to a grid line snap to it. In order
to avoid complex images the grid is highlighted only for related
(connected by relations) objects and fades away from them,
according to:

1
1 kT

D
=

+
, [0,1]T ∈

where T is the transparency of the grid, D is the distance from the
related object, and k is the fading coefficient.
Axial system: presents a notion of symmetry between objects in
the drawing of the architects. In our design system the user can
mirror an instance of a selected graphic unit by creating an axial
system. An axial system keeps the symmetry between twin
graphic units by transferring mirrored geometrical transformations
between twin graphic units. An axial system is visualized as a
dashed line (see Figure 3).

Figure 3. Axial system mirrors contours.

Zone: presents a general characteristic for the set of objects,
which geometrically belong to some area. For instance, to define
the space that is related to water (kitchen, toilet, etc.) architects
use a wet zone. A zone is visualized as a semitransparent filled
polygon (see Figure 4).

 Figure 4. Zone.

Zones structure the design. Semantically it is close to standard
grouping. The difference is that the decision whether an object
belongs to a group or not, is based on its spatial location. All

objects that are covered by a zone are related to this zone. If an
object is moved outside a zone then the relation between them is
deleted, if it is moved inside a zone, a new relation is created.
Image: for inspiration in the design process architects often use
images. The designer can place different images on his workspace
in order to trace elements and to draw on top of them, or he can
place them in the drawing as illustrations.

4. GEOMETRICAL ENGINE

We have defined the basic building blocks, we now describe a
geometrical engine, that handles transformations of graphic units.
The engine is based on the propagation of geometrical
transformations between anchor points (see details in 4.1) using
the relations between them, where the anchor points define the
origins for the local transformations of associated graphic units.

4.1 Anchor points
Anchor points are used by the geometrical engine as start- and end
points for the propagation of geometrical transformations, and to
provide for the user geometrical flexibility for the manipulation of
graphic units. An anchor point can be associated to a graphic unit.
If it is associated to a graphic unit, then the anchor point has
properties that tell which types of transformations have to be
passed to this graphic unit (e.g. is the graphic unit scalable,
translatable, etc.). The user can define relations between anchor
points along which transformations are propagated. Relations
have also associated properties that record which types of
transformations must be passed or blocked. Every graphic unit has
at least one anchor point associated (one anchor point is created
automatically for every graphic unit). In section 4.5 we will
elaborate on the case where a graphic unit has more than one
anchor point. Figure 5 shows the links between anchor points,
graphic units, and relations in UML notation.

 Figure 5. Relations, anchor points and graphic units.

Every graphic unit has a local origin for transformations. The
origin is the position of the associated anchor point. The
propagation of a transformation starts at a point selected by the
user. Next the transformation is propagated through the anchor
points and relations, affecting the graphic units that are associated
to the anchor points. Anchor points and relations can be added
and changed by direct manipulation.

4.2 The anchor points graph
Anchor points and relations between them establish a directed
graph (APG - anchor points graph), where the anchor points are
the nodes and the relations are the edges of the graph. At most
one relation exists between two points in each direction. The
geometrical engine uses the graph of anchor points as a
transformable skeleton for the propagation of manipulations
between graphic units. We do not impose restrictions to the graph
of anchor points: the graph does not have to be connected;
multiple independent subgraphs can be used; the graphs can
contain cycles. However, this can lead to ambiguities, for instance
multiple paths can exist from the anchor point to which the

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

transformation was applied to an anchor point downstream. To
prevent these ambiguities, we derive a spanning tree [5, 14] on the
fly when transformations are propagated. This ensures that every
connected graphic unit is affected only once.
In the next sections we will describe in more detail how linear
(rotation, scaling, and skewing) and non-linear (translation)
transformations are propagated over a unique path in the graph
resulting in displacement of anchor points.

4.3 Propagation of linear transformations
Consider a linear transformation L applied in anchor point a ,
which is used as a local origin. The transformation L is
propagated over the spanning tree resulting in a displacement
r

 of anchor point x:),(xL∆

),()()(axLxaxLaxT −∆+=−+=
r

 (1)

Given a spanning tree of the graph, a unique path in this tree
exists between a and another anchor point b:

. For every anchor point b we write L(b) in
terms of this unique path between a and b. The transformation of
b, ignoring blocking relations on the path from to ,
can be expressed as

bbbba n == ,...,, 10

ab =0 bbn =

 T (2) ∑
=

−−∆+=−∆+=
n

i
iin bbLbabLbb

1
1),(),()(

rr

where we use that b , and that ∆∑
=

−−=−
n

i
ii bba

1
1),(xL

r
 is a

linear function of x.
The effect of blocking relations is defined as

∑
=

−−∆⋅+=
n

i
ii bbLibbT

1
1),()()(

r
φ (3)

where the function)(iφ defines the blocking characteristics of a
relation between anchor points b and ;

1−i ib () }1,0{∈iφ .

A geometrical transformation is propagated through the graph of
anchor points as long as these points have outgoing relations. The
system supports two modes for propagation of geometrical
transformations in the graph, which are defined by different
functions)(iφ . We offer two possibilities:

() RiPi =1φ (4)

() ∏
=

=

=
ni

i
RiPi

1
2φ

 (5)

where is a blocking property of relation R between points

 and b ; P . In (4) the blocking properties of

relation independently define the transformation propagated
from node to node in the APG. In (5) the chain of relations from
the start relation to the relation is taken into account: once
blocked, the transformation is not propagated further.

RiP

i

iR

i

ib 1− }1,0{∈Ri

1R iR

As an example, an anticlockwise rotation is applied in point b to

the graph of anchor points { (see figure 6). The
dashed lines depict blocking relations. Figure A shows the initial

positions of the anchor points; figure B shows the result of the
transformation if

0

}3210 ,,, bbbb

2φφ =

1

; figure C shows the result of a
transformations if φφ = .

t∆

xT)(

bT)(

AP

Figure 6. The propagation of rotation in the chain of anchor

points. Dashed lines visualize the relations that block rotation;
normal lines visualize the relations that do not block rotation.

4.4 Propagation of translation
Consider a translation applied in anchor point a. Therefore the
transformation T of the point x without blocking is given by

tx ∆+= (6)

In a chain of anchor points from a to b: the bbbba n == ,...,, 10

t∆ transformation of an anchor point b with blocking relations is
simply

tnb ∆⋅+=)(φ (7)

4.5 Transformation of graphic units
We have described how geometric transformations are propagated
through the graph of anchor points, next we consider how these
transformations affect graphic units.
A graphic unit can have more than one associated anchor point
(see Figure 7). This can be used to define auxiliary local origins
for the transformations of a graphic unit. An anchor point has at
most one associated graphic unit: in some special cases an anchor
point can exist without a graphic unit.

GU
AP APAP

AP

GU

 Figure 7. Relations, anchor points and graphic units.

Anchor points serve as local origins for transformations, the
graphic unit itself is defined by a different set of points, which
describe e.g. the shape of a contour or the spacing and direction of
a grid. These points are transformed similarly as anchor points
themselves; implicitly relations from anchor points to these other
points are used.
Furthermore, an anchor point has a set of attributes that define
which transformations are passed to the points k of the graphics
unit. If the geometrical transformation now reaches an anchor

p

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

point on its propagation path and the attribute of an anchor point
allows the transformation of the associated graphic unit, then a
graphic unit is transformed, where the anchor point serves as
origin for the transformation. We can present the new position of
a point k as a sum of this point's position displacement after the

transformation T, and the original position of point :
p

kp

kp +

T∆ p

φ

0

() () GUkbk PbpTip ⋅−∆⋅+∆=′ ,φ (8)

where (bpk −,

()i

 is the displacement of point k as a result of
the transformation T, applied with respect to the anchor point b;
function is defined in equation (4) and (5); P is the
blocking property of an anchor point for the transformation of
graphic unit, ;

GU

}1,0{∈GUP b∆ is a transformation of the anchor
point b (which serves as a local origin), see (3). We define

 for translation, because the transformation is already

handled in

=GUP

b∆ .

)

The possibility to define the attributes in relations and anchor
points for each type of transformation individually gives a high
flexibility in drawing, editing, and therefore in the exploration of
design space.

4.6 Example
Figure 8 shows a graph of anchor points, as it is presented to the
user. Colours are used to visualize the spanning tree. Red (gray on
picture) is used for the visualisation of relations and graphic units
that will be transformed; blue (black on picture) is used for
relations and graphic units that are in the tree, but blocked for this
transformation. The remaining elements are coloured white.

Figure 8. The propagation of a transformation

We give three examples in order to illustrate how the graph of
graphic units can be transformed (see Figure 9).
On each of them three connected anchor points are used and a
rotation is applied to the first anchor point (AP1). Figures A in all
pictures show the placement of objects before the transformation
begins, figures B show the objects after the transformation.
The variety in properties of relations and anchor points assists to
achieve a large range of geometrical functionality in the
manipulations of graphic units. In other words, the designer can
specify the structure of his design explicitly, which enables him to
explore different realizations efficiently.

Figure 9. Examples of transformation. We use colour for the
visualization of properties: black is used for the transforming

relations and anchor points; red (gray) is used for relations and
anchor points that block rotation.

5. USER INTERFACE

The system offers many options to define the relations between
graphic units. But having too many options sometimes is not
productive since the user has to manage a complicated user
interface (relations and anchor points sometimes become
intricate). In order to solve this problem we provide an extra user
interface (skin) on top of the interface of the geometrical engine
(see Figure 10). This extra user interface uses a natural interaction
technique for architects and hides relations, anchor points, and
their properties from the user.

Figure 10. An extra user interface is provided on top of

the user interface of the geometrical engine.

The system creates and deletes relations and anchor points
without the need for explicit actions of the user. As a starting
point for this user interface we use a well-known design

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

metaphor, which is called "paper and scissors": the designer is
experimenting by means of constructing and assembling different
objects from paper, placing them on top of each other and
manipulating them.
In order to apply this concept in our system we make one
assumption: Every graphic unit has a depth that can be changed
by the user. Using the depth and layout geometry the system
extracts information about relations between graphic units. We
look at an example (see Figure 11): we put one sheet of paper (B)
on top of the other (A). If we manipulate sheet A, then sheet B
will be affected also, because the user implicitly implies a relation
A B between two sheets of paper. The system is capable to
reconstruct (establish and delete) such relations between graphic
units using the following criterion: If graphic units have an
overlapping area, the relation between them is created (from the
bottom one to the top one).

Figure 11. Example with two sheets of paper.

Moreover, the idea of auxiliary local origins (or anchor points) is
implemented in the new interface as a pin (the equivalent of the
paper-pin). The pin between graphic units A and B (see Figure
12) represents an anchor point that belongs to A, and has an
outgoing relation to B.

 Figure 12. The Pin.

The user is provided with pins that can connect graphic units and
block propagation of particular transformations. The user can
modify the pin by switching on/off the blocking of
transformations. The pin, which blocks all transformations,
visualized as a nail-head pyramid, where each nail-head has its
own colour and marks the blocking of a particular transformation
(see Figure 13).

Figure 13. The arrows visualize the relations between graphic
units that are extracted by the system from a design example.

The user also can use a clip (the equivalent of a paper-clip), which
simply is an equivalent of a bi-directional relation between
graphic units.

6. RESULTS

We have implemented a prototype of the system and tested it with
a few architects (see Figure 14). Despite that the current
implementation of the prototype is not perfect yet (the drawing
part is rather primitive) architects find it useful and inspiring for
the creation of new ideas during the design process. It is suitable
especially for the preliminary design phase; the phase that follows
a sketch design phase in the early design stage.

Figure 14. A design example made by an architect in the

preliminary design phase.

Furthermore, architects like that objects can be manipulated
effortlessly (what is provided by the functionality of the
geometrical engine, see Figure 15), and the familiarity of the
interaction style. Moreover they were pleased to have a user
interface, that provides all functionality in visual way avoiding
the need to use textual languages to program parameterized
design [7] such as in AutoCAD, ArchiCAD, MicroStation,
Pro/ENGINEER, CATIA, etc.

Figure 15. Here the Pin is used to stick the "North-South" sign to

a grid and to freeze its orientation.

Summarising, the designer in our system can specify the structure
of his design implicitly, focusing more on the design process
rather than on the interaction with the system.

7. CONCLUSION

In this paper we introduced a new approach for a design system
for architects, based on a framework of architect drawings.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Despite that a constrained based geometrical engine is used as a
basis for this system, the paper is focusing on a technique how to
capture and how to use high-level architectural information,
which is defined in relations between design elements, rather than
focusing on constraints problems.
We have implemented the prototype of the system and discussed
it with architects. The system supports and stimulates the
generation of new ideas, which is very important on the early
stages of design.
At the moment we are exploring directions for improving our
system. New functionalities can be added, such as new types of
graphic units. It is not so difficult to offer many options and much
flexibility, the main challenge however is to tune the interaction
techniques and settle the visual metaphor on top of the system in
such a way that the user can define what he wants in an intuitive
way.

Acknowledgements

We thank Kees van Overveld for his advice and contribution to
this work.

References

[1] H.H. Achten, Generic Representations: Typical Design
without the use of Types, Proceedings of Computer Aided
Architectural Design'97, p. 117-133, 1997.
[2] H.H. Achten, Generic Representations - An Approach for
Modelling Procedural and Declarative Knowledge of Building
Types in Architectural Design, PhD thesis, Eindhoven University
of Technology, 1997.
[3] H.H. Achten, Generic representations - Knowledge
representation for architectural design, Journal of Architectural
Management (13), 1997.
[4] M.F.Th. Bax, The Design of a Generic Grid, Proc. of
International Design Participation Conference, 1985.
[5] R.E. Bellman, On a routing problem, Quarterly of Applied
Mathematics 16(1), p. 87-90, 1957.
[6] E.A. Bier, M.C. Stone, Snap-dragging, Proc. of
SIGGRAPH'86, 1986.
[7] Philip T. Cox and Trevor J. Smedley, LSD:A Logic-Based
Visual Language for Designing Structured Objects, Journal of
Visual Languages and Computing, v.9(5) , p. 509-534, 1998.
[8] O. Esteban, S. Chatty, P. Palanque, Whizz'Ed: a visual
environment for building highly interactive software, Proc. of
Interact'95, p. 121-126, 1995.
[9] M. Gleicher, Integrating Constraints and Direct
Manipulation, Symposium on Interactive 3D Graphics, p. 171-
174, 1992.
[10] M. Gleicher, A Graphics Toolkit Based on Differential
Constraints, ACM: Symposium on User Interface Software and
Technology, p. 109-120, 1993.
[11] T. Igarashi, S. Kawachiya, H. Tanaka, S. Matsuoka, Pegasus:
A Drawing System for Rapid Geometric Design, ACM
Symposium on User Interface Software and Technology, p. 105-
114, 1997.

[12] J. A. Landay, B. A. Myers, Interactive sketching for the early
stages of user interface design, Proc. of ACM CHI '95 Conference
on Human Factors in Computing Systems, p. 43-50, 1995.
[13] J.M. Maloney, A. Borning, B.N. Freeman-Benson,
Constraint Technology for User-Interface Construction in
ThingLab II, Proc. of OOPSLA'89, p. 381-388}, 1989.
[14] E.M. Moore, The shortest path through a maze, International
Symposium on the Theory of Switching, p. 285-292, 1959.
[15] B.A. Myers, Garnet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces, IEEE Computer, v. 23 (11), p.
71-85, 1990.
[16] S.S. Pranovich, J.J. van Wijk, C.W.A.M. van Overveld, The
Kite geometry manipulator, Extened abstracts CHI2002, p. 764-
765, 2002.
[17] S. Pranovich, H. Achten, J.J. van Wijk, Towards an
architectural design system based on generic representations,
Proc. of Artificial Intelligence in design'02, p. 153-164, 2002.
[18] S. Pranovich and J.J. van Wijk, A design system based on
Architectural representations, To appear in:Interact'03, 2003.
[19] T. Sezgin, T. Stahovich, R. Davis, Sketch based interfaces:
Early processing for sketch understanding, Proc. of Perceptive
User Interfaces Workshop'01, 2001
[20] SmartSketch, 2003, http://www.intergraph.com/smartsketch
[21] P.S. Strauss, R. Carey, An object-oriented 3d graphics
toolkit, Proc. of SIGGRAPH '92, p. 341-349, 1992.
[22] I.E. Sutherland, Sketchpad: a manmachine graphical
communication system, AFIPS Spring Joint Computer
Conference, p. 329-346, 1963.
[23] P.A. Szekely, B.A. Myers, A user interface toolkit based on
graphical objects and constraints, Proc. of OOPSLA'88, p. 36-45,
1988.
[24] R.H. Tyson, S.E. Hudson, G.L. Newell, Inegrating gesture
and snapping into a user interface toolkit, Proc. of
SIGGRAPH'90: Symposium on User Interface Software and
Technologies, p. 112-121, 1990.
[25] J.M. Vlissides, M.A. Linton, Unidraw: A framework for
building domain-specific graphical editors, Proc. of
SIGGRAPH'89: Symposium on User Interface Software and
Technologies, 1989.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

	INTRODUCTION
	BACKGROUND
	APPROACH
	Overview
	Types of graphic units

	GEOMETRICAL ENGINE
	Anchor points
	The anchor points graph
	Propagation of linear transformations
	Propagation of translation
	Transformation of graphic units
	Example

	USER INTERFACE
	RESULTS
	CONCLUSION

