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Abstract 
A wide variety of drawing packages is available for architectural 
design. However, most of these systems are oriented to the 
production of final technical drawings, and only few support the 
early phase of design. In this paper, we present a new approach 
for a design system to support this phase. The method is based on 
a framework from architecture on the meaning of drawings in 
architectural design during the early design stage. In such 
drawings, not only standard graphics elements like contours, but 
also other elements like grids and axes of symmetry play an 
important role. The interactions between such elements encode 
high-level knowledge related to the design process. These 
elements are encountered also in standard drawing systems, but 
often only as tools. We propose to consider such elements as 
graphical objects. Relations between these objects can be defined 
to capture higher-level information on the structure of the design. 
Additionally, we offer a natural user interface for the designers, 
which enables them to explore design space effectively and 
efficiently. 
Keywords: drawing system, early architectural design, 
geometrical transformations, user interface. 

1. INTRODUCTION 

Current drawing systems have reached a high level of 
sophistication, and are suited for the production of the final 
technical drawings in the final phases of the design process. 
However, they do not offer support for the early phase of the 
design process when concept formation is important. Such 
drawing systems require designers to specify many details in the 
drawing, while the designer does not care about them in this stage 
of the design process. Moreover, detailed drawing restricts the 
design creativity, whereas a system that supports early design 
should support and stimulate the generation of new ideas.  
In order to develop a system that supports architects in an 
architectural fashion, it is necessary to look at the way architects 
work in the early phase of design. Research of H. Achten [1] in 
the use of drawings by architects leads to the view that architects 
use well-defined forms of graphic representations (graphic units) 
to depict their design intentions. Examples of these graphic units 
are contours, circulation schemes, grids, schematic subdivisions, 
axes of symmetry, and zones. The design is developed by means 
of these graphic units and interactions between them. We use the 
results of Achten [1] as a basis for our approach and propose to 
use these graphic units as the basic building blocks.  
Current drawing systems typically offer only a basic set of 
primitives, supplemented with tools to achieve additional effects: 
to mirror objects, to align objects with respect to each other, to 
align them to a grid, etc. These tools have a limited scope: for 

instance, the fact that two objects are mirrored copies of each 
other is not stored explicitly; after a mirroring tool has been 
applied, higher-level knowledge (relations between objects) 
disappears.  
In computer graphics terms, our approach can be formulated as 
follows. We propose to represent tools as geometric objects 
(presented in a form of graphic units) themselves: for instance, to 
introduce a symmetry axis as an object that has a graphic 
representation, can be manipulated, and influences other objects. 
Graphic units in this case allow establishing permanent relations 
between them, which is not possible when tools are used instead. 
Therefore the relations between graphic units can be used to store 
high-level information related to a design process.  
In the next section we overview existing approaches for the 
support of designers in drawing systems and briefly present our 
approach. In section 3 we give a description of graphic units and 
their features. In section 4 we describe the handling of geometric 
transformation of objects in more detail and give some examples. 
In section 5 we present a user interface for the system. In section 
6 we evaluate the system and in section 7 we draw conclusions. 

2. BACKGROUND 

Several directions have been pursued to support designers in the 
early phase of design. One direction is to attempt to bring a 
drawing tool closer to a sketching tool, another direction is to 
offer more support for conceptual information, for instance on 
relations between objects. 
Sketching tools like SILK [12], SmartSketch [20] provide 
beautification. The designer can sketch free hand, the systems 
attempts to recognize common graphic elements from this input. 
The Pegasus [11] system introduces predictive drawing that 
predicts the user's next drawing operation based on the existing 
drawing. But in general, systems supporting freehand sketching 
with beautification techniques still suffer from a lot of limitations 
[19]. 
The other direction for design support aims at enabling the user to 
enter and use higher-level information. As a first step, many 
drawing systems offer tools and aids, such as mirroring, 
alignment, grids, gravity [22], and snap-dragging [6]. With these 
tools users can establish relationships between objects, but 
unfortunately most of the systems forget these relationships after 
the positioning operation is complete [9]. Another well-known 
support aid is grouping. Objects are merged, possibly recursively, 
and can be manipulated as a group. 
Constraint techniques make a powerful addition to the interaction 
techniques available in graphical editors. SketchPad [22] was the 
first drawing system that used explicit constraints, defined by the 
user. It allowed lines to be constrained by relationships with other 
lines (perpendicular, parallel, etc.). ThingLab [13] extended that 
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notion by providing a general simulation environment. 
Constraints in Sketchpad and ThingLab are bi-directional and 
allow objects to be attached and updated simultaneously. Many 
other systems have been developed that provide constraint-based 
solutions for graphical applications, such as Garnet  [15], Coral 
[23], Unidraw [25], ArtKit [24], WHIZZ'ED [8], Briar's [10] and 
Inventor [21]. 
Complex interactions of many constraints require sophisticated 
constraint satisfaction techniques. Constraint satisfaction 
problems are sometimes impossible to solve, if, for example, there 
are conflicting constraints. Even if the solver is able to find a 
solution, it must help the user understand how and why it got to 
the new state. In fact, the success of constraint-based approaches 
to drawing has been limited by difficulty in creating constraints, 
solving them, and presenting them to users. 
In our work we do not focus on improving existing approaches 
(such as defining a new type of sketching tool or building a new 
constraint based drawing system), but we rather offer a new 
approach, which is based on the designer's view on drawings.  
Research in the use of drawings by architects on the early design 
stage has led to the framework of Generic Representations: 
Architects use well-defined forms of graphic representations to 
depict their design intentions [3]. These forms have been 
identified and described as graphic units. A graphic unit is a set of 
graphic elements that are organized in a specific way and that 
have a generally agreed upon meaning for the designer. Some 
examples are: contour, functional symbols, circulation scheme, 
zone, etc. Graphic units can be considered as a medium to express 
the ideas in an architectural design [2]. A set of related graphic 
units defines a generic representation [1], where relations 
between graphic units play an important role. We propose to use 
graphic units as building blocks for a design system, i.e. to treat 
them as geometrical objects that can be edited, manipulated, and 
can be interrelated [17].  
The user in such a system defines a design in terms of graphic 
units and relations between them. We use the idea of data-flow 
for the propagation of manipulations on graphic units. 
Manipulations are propagated through a graph, where the nodes 
are graphic units and edges are relations between them. 
In summary, we aim at enabling the designer to use graphics units 
with an architectural meaning, such that these graphic units have 
intuitive behavior and respond to the user actions in meaningful 
and predictive way. 
 

3. APPROACH 

We begin the description of our approach by presenting graphic 
units and their features. 

3.1 Overview 
A user can create, edit, and delete graphic units: instances of 
predefined types of graphic units. Each graphic unit has a visual 
representation, and can be geometrically transformed. For this we 
use geometric transformation tool, the KITE manipulator [16]. 
Standard geometric transformations (translation, rotation, 
scaling), and also skewing are supported. 
Besides the type of a graphic unit, it has more detailed 
information associated, for instance the exact shape of a contour. 
The user can change this information in a standard way: for 

instance to change the shape of a contour the user drags its 
vertices. 
The user can define uni- and bi-directional relations between 
graphic units. A relation between graphic units presents the 
semantic and physical connection between them and is visualized 
as an arrow. 
Transformations of a graphic unit are propagated along relations 
between graphic units. The spanning tree algorithm is used to 
define a subtree of the graph for the propagation of the 
transformation. Separate decisions can be made how the 
transformations are dealt with when they are propagated along the 
graph. The user can define which types of transformations have to 
be passed and/or applied for each graphic unit and relation.  
For the manipulation of connected graphic units we use a special 
geometrical engine [18]. In section 4 we will elaborate this 
further. 
 

3.2 Types of graphic units 
Every graphic unit has a special meaning for the architect. Below 
we give a description of the main graphic units in our system and 
their features (for other graphic units see Achten [2]).  
Contour: the most encountered graphic unit in the drawing of the 
architect. It is the basic unit to construct the design. The variety of 
contours is large: open contour, closed contour, self-intersecting 
contour, etc. In our system a contour is represented as a list of 
connected points. A contour is visualized as a polyline (see Figure 
1). 
 

 
Figure 1. Contours.  
 

It has no special features implemented, except gravity: it is sticky 
for other objects. 
Grid: the alignment frame for the elements, which structures the 
design. The variety of grids is large: rectangular (Cartesian) grid, 
tartan grid, hierarchical (generic) grid [4], polar grid, curvilinear 
grid, etc. The Cartesian grid covers about 75% of grids that the 
architect uses in a design process. The Cartesian grid is an 
orthogonal grid with constant spacing. We have defined grids as 
two sets of not necessarily orthogonal lines. Each set is called a 
grid component and is visualized as a set of parallel lines. The i-th 
line in the set is defined by 

pitbtx ⋅⋅+⋅−+= )sin,(cos)cos,(sin)( αααα , 

where b  defines the position of the grid component, α defines 
the orientation of the grid component, and defines the period of 
the grid component. By combination of grids more complex grids, 
such as the tartan grid can be defined (see Figure 2). 

p
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Figure 2. A – One dimensional grid; B – tartan grid; C 
– complex grid. 
 

A grid has gravity: Vertices close to a grid line snap to it. In order 
to avoid complex images the grid is highlighted only for related 
(connected by relations) objects and fades away from them, 
according to:  

1
1 kT

D
=

+
,  [0,1]T ∈

where T is the transparency of the grid, D is the distance from the 
related object, and k is the fading coefficient. 
Axial system: presents a notion of symmetry between objects in 
the drawing of the architects. In our design system the user can 
mirror an instance of a selected graphic unit by creating an axial 
system. An axial system keeps the symmetry between twin 
graphic units by transferring mirrored geometrical transformations 
between twin graphic units. An axial system is visualized as a 
dashed line (see Figure 3). 

 
Figure 3. Axial system mirrors contours. 

 
Zone: presents a general characteristic for the set of objects, 
which geometrically belong to some area. For instance, to define 
the space that is related to water (kitchen, toilet, etc.) architects 
use a wet zone. A zone is visualized as a semitransparent filled 
polygon (see Figure 4). 

 
 Figure 4. Zone. 

 
Zones structure the design. Semantically it is close to standard 
grouping. The difference is that the decision whether an object 
belongs to a group or not, is based on its spatial location. All 

objects that are covered by a zone are related to this zone. If an 
object is moved outside a zone then the relation between them is 
deleted, if it is moved inside a zone, a new relation is created. 
Image: for inspiration in the design process architects often use 
images. The designer can place different images on his workspace 
in order to trace elements and to draw on top of them, or he can 
place them in the drawing as illustrations. 

4. GEOMETRICAL ENGINE 

We have defined the basic building blocks, we now describe a 
geometrical engine, that handles transformations of graphic units. 
The engine is based on the propagation of geometrical 
transformations between anchor points (see details in 4.1) using 
the relations between them, where the anchor points define the 
origins for the local transformations of associated graphic units. 

4.1 Anchor points 
Anchor points are used by the geometrical engine as start- and end 
points for the propagation of geometrical transformations, and to 
provide for the user geometrical flexibility for the manipulation of 
graphic units. An anchor point can be associated to a graphic unit. 
If it is associated to a graphic unit, then the anchor point has 
properties that tell which types of transformations have to be 
passed to this graphic unit (e.g. is the graphic unit scalable, 
translatable, etc.). The user can define relations between anchor 
points along which transformations are propagated. Relations 
have also associated properties that record which types of 
transformations must be passed or blocked. Every graphic unit has 
at least one anchor point associated (one anchor point is created 
automatically for every graphic unit). In section 4.5 we will 
elaborate on the case where a graphic unit has more than one 
anchor point. Figure 5 shows the links between anchor points, 
graphic units, and relations in UML notation.  

 
 Figure 5. Relations, anchor points and graphic units. 
 
Every graphic unit has a local origin for transformations. The 
origin is the position of the associated anchor point. The 
propagation of a transformation starts at a point selected by the 
user. Next the transformation is propagated through the anchor 
points and relations, affecting the graphic units that are associated 
to the anchor points.  Anchor points and relations can be added 
and changed by direct manipulation.  

4.2 The anchor points graph 
Anchor points and relations between them establish a directed 
graph (APG - anchor points graph), where the anchor points are 
the nodes and the relations are the edges of the graph. At most 
one relation exists between two points in each direction. The 
geometrical engine uses the graph of anchor points as a 
transformable skeleton for the propagation of manipulations 
between graphic units. We do not impose restrictions to the graph 
of anchor points: the graph does not have to be connected; 
multiple independent subgraphs can be used; the graphs can 
contain cycles. However, this can lead to ambiguities, for instance 
multiple paths can exist from the anchor point to which the 
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transformation was applied to an anchor point downstream. To 
prevent these ambiguities, we derive a spanning tree [5, 14] on the 
fly when transformations are propagated. This ensures that every 
connected graphic unit is affected only once.  
In the next sections we will describe in more detail how linear 
(rotation, scaling, and skewing) and non-linear (translation) 
transformations are propagated over a unique path in the graph 
resulting in displacement of anchor points. 

4.3 Propagation of linear transformations 
Consider a linear transformation L applied in anchor point a , 
which is used as a local origin. The transformation L is 
propagated over the spanning tree resulting in a displacement 
r

 of anchor point x: ),( xL∆

),()()( axLxaxLaxT −∆+=−+=
r

   (1) 

Given a spanning tree of the graph, a unique path in this tree 
exists between a and another anchor point b: 

. For every anchor point b we write L(b) in 
terms of this unique path between a and b. The transformation of 
b, ignoring blocking relations on the path from  to , 
can be expressed as 

bbbba n == ,...,, 10

ab =0 bbn =

 T   (2) ∑
=

−−∆+=−∆+=
n

i
iin bbLbabLbb

1
1 ),(),()(

rr

where we use that b , and that ∆∑
=

−−=−
n

i
ii bba

1
1 ),( xL

r
  is a 

linear function of x. 
The effect of blocking relations is defined as 

∑
=

−−∆⋅+=
n

i
ii bbLibbT

1
1),()()(

r
φ    (3) 

where the function )(iφ  defines the blocking characteristics of a 
relation between anchor points b  and  ; 

1−i ib ( ) }1,0{∈iφ . 

A geometrical transformation is propagated through the graph of 
anchor points as long as these points have outgoing relations. The 
system supports two modes for propagation of geometrical 
transformations in the graph, which are defined by different 
functions )( iφ . We offer two possibilities: 

( ) RiPi =1φ    (4) 

( ) ∏
=

=

=
ni

i
RiPi

1
2φ

   (5)
 

where  is a blocking property of relation R  between points 

 and b ;  P . In (4) the blocking properties of 

relation  independently define the transformation propagated 
from node to node in the APG. In (5) the chain of relations from 
the start relation  to the relation is taken into account: once 
blocked, the transformation is not propagated further. 

RiP

i

iR

i

ib 1− }1,0{∈Ri

1R iR

As an example, an anticlockwise rotation is applied in point b  to 

the graph of anchor points {  (see figure 6). The 
dashed lines depict blocking relations. Figure A shows the initial 

positions of the anchor points; figure B shows the result of the 
transformation if 

0

}3210 ,,, bbbb

2φφ =

1

; figure C shows the result of a 
transformations if φφ = . 

t∆

xT )(

bT )(

AP

 
Figure 6. The propagation of rotation in the chain of anchor 

points. Dashed lines visualize the relations that block rotation; 
normal lines visualize the relations that do not block rotation. 

 

4.4 Propagation of translation 
Consider a translation  applied in anchor point a. Therefore the 
transformation T of the point x without blocking is given by 

tx ∆+=    (6) 

In a chain of anchor points from a to b:  the bbbba n == ,...,, 10

t∆  transformation of an anchor point b with blocking relations is 
simply  

tnb ∆⋅+= )(φ   (7) 

 

4.5 Transformation of graphic units  
We have described how geometric transformations are propagated 
through the graph of anchor points, next we consider how these 
transformations affect graphic units.   
A graphic unit can have more than one associated anchor point 
(see Figure 7). This can be used to define auxiliary local origins 
for the transformations of a graphic unit. An anchor point has at 
most one associated graphic unit: in some special cases an anchor 
point can exist without a graphic unit. 
 

GU
AP APAP

AP

GU

 
      Figure 7. Relations, anchor points and graphic units. 
 
Anchor points serve as local origins for transformations, the 
graphic unit itself is defined by a different set of points, which 
describe e.g. the shape of a contour or the spacing and direction of 
a grid. These points are transformed similarly as anchor points 
themselves; implicitly relations from anchor points to these other 
points are used.  
Furthermore, an anchor point has a set of attributes that define 
which transformations are passed to the points k  of the graphics 
unit. If the geometrical transformation now reaches an anchor 

p
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point on its propagation path and the attribute of an anchor point 
allows the transformation of the associated graphic unit, then a 
graphic unit is transformed, where the anchor point serves as 
origin for the transformation. We can present the new position of 
a point k  as a sum of this point's position displacement after the 

transformation T, and the original position of point : 
p

kp

kp +

T∆ p

φ

0

( ) ( ) GUkbk PbpTip ⋅−∆⋅+∆=′ ,φ   (8) 

where ( bpk −,

( )i

 is the displacement of point k  as a result of 
the transformation T, applied with respect to the anchor point b; 
function  is defined in equation (4) and (5); P  is the 
blocking property of an anchor point for the transformation of 
graphic unit, ; 

GU

}1,0{∈GUP b∆  is a transformation of the anchor 
point b (which serves as a local origin), see (3). We define 

 for translation, because the transformation is already 

handled in 

=GUP

b∆ .   

)

The possibility to define the attributes in relations and anchor 
points for each type of transformation individually gives a high 
flexibility in drawing, editing, and therefore in the exploration of 
design space.  
 

4.6 Example 
Figure 8 shows a graph of anchor points, as it is presented to the 
user. Colours are used to visualize the spanning tree. Red (gray on 
picture) is used for the visualisation of relations and graphic units 
that will be transformed; blue (black on picture) is used for 
relations and graphic units that are in the tree, but blocked for this 
transformation. The remaining elements are coloured white. 

 
Figure 8. The propagation of a transformation 
 

We give three examples in order to illustrate how the graph of 
graphic units can be transformed (see Figure 9). 
On each of them three connected anchor points are used and a 
rotation is applied to the first anchor point (AP1). Figures A in all 
pictures show the placement of objects before the transformation 
begins, figures B show the objects after the transformation. 
The variety in properties of relations and anchor points assists to 
achieve a large range of geometrical functionality in the 
manipulations of graphic units. In other words, the designer can 
specify the structure of his design explicitly, which enables him to 
explore different realizations efficiently. 

 

 

 
Figure 9. Examples of transformation. We use colour for the 
visualization of properties: black is used for the transforming 

relations and anchor points; red (gray) is used for relations and 
anchor points that block rotation. 

5. USER INTERFACE 

The system offers many options to define the relations between 
graphic units. But having too many options sometimes is not 
productive since the user has to manage a complicated user 
interface (relations and anchor points sometimes become 
intricate). In order to solve this problem we provide an extra user 
interface (skin) on top of the interface of the geometrical engine 
(see Figure 10). This extra user interface uses a natural interaction 
technique for architects and hides relations, anchor points, and 
their properties from the user.  

 
Figure 10. An extra user interface is provided on top of 

the user interface of the geometrical engine. 
 
The system creates and deletes relations and anchor points 
without the need for explicit actions of the user. As a starting 
point for this user interface we use a well-known design 
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metaphor, which is called "paper and scissors": the designer is 
experimenting by means of constructing and assembling different 
objects from paper, placing them on top of each other and 
manipulating them.   
In order to apply this concept in our system we make one 
assumption: Every graphic unit has a depth that can be changed 
by the user.  Using the depth and layout geometry the system 
extracts information about relations between graphic units. We 
look at an example (see Figure 11): we put one sheet of paper (B) 
on top of the other (A). If we manipulate sheet A, then sheet B 
will be affected also, because the user implicitly implies a relation 
A B between two sheets of paper. The system is capable to 
reconstruct (establish and delete) such relations between graphic 
units using the following criterion: If graphic units have an 
overlapping area, the relation between them is created (from the 
bottom one to the top one).  

 
Figure 11. Example with two sheets of paper.  

  
Moreover, the idea of auxiliary local origins (or anchor points) is 
implemented in the new interface as a pin (the equivalent of the 
paper-pin). The pin between graphic units A and B (see Figure 
12) represents an anchor point that belongs to A, and has an 
outgoing relation to B. 
 

 
   Figure 12. The Pin. 

 
The user is provided with pins that can connect graphic units and 
block propagation of particular transformations. The user can 
modify the pin by switching on/off the blocking of 
transformations. The pin, which blocks all transformations, 
visualized as a nail-head pyramid, where each nail-head has its 
own colour and marks the blocking of a particular transformation 
(see Figure 13). 

 
Figure 13. The arrows visualize the relations between graphic 
units that are extracted by the system from a design example.  

 

The user also can use a clip (the equivalent of a paper-clip), which 
simply is an equivalent of a bi-directional relation between 
graphic units. 

6. RESULTS 

We have implemented a prototype of the system and tested it with 
a few architects (see Figure 14). Despite that the current 
implementation of the prototype is not perfect yet (the drawing 
part is rather primitive) architects find it useful and inspiring for 
the creation of new ideas during the design process. It is suitable 
especially for the preliminary design phase; the phase that follows 
a sketch design phase in the early design stage. 

 
Figure 14. A design example made by an architect in the 

preliminary design phase.  
 
Furthermore, architects like that objects can be manipulated 
effortlessly (what is provided by the functionality of the 
geometrical engine, see Figure 15), and the familiarity of the 
interaction style.  Moreover they were pleased to have a user 
interface, that provides all functionality in visual way avoiding 
the need to use textual languages to program parameterized 
design [7] such as in AutoCAD, ArchiCAD, MicroStation, 
Pro/ENGINEER, CATIA, etc. 

 
Figure 15. Here the Pin is used to stick the "North-South" sign to 

a grid and to freeze its orientation.  
  
Summarising, the designer in our system can specify the structure 
of his design implicitly, focusing more on the design process 
rather than on the interaction with the system. 

7. CONCLUSION 

In this paper we introduced a new approach for a design system 
for architects, based on a framework of architect drawings. 
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Despite that a constrained based geometrical engine is used as a 
basis for this system, the paper is focusing on a technique how to 
capture and how to use high-level architectural information, 
which is defined in relations between design elements, rather than 
focusing on constraints problems. 
We have implemented the prototype of the system and discussed 
it with architects. The system supports and stimulates the 
generation of new ideas, which is very important on the early 
stages of design. 
At the moment we are exploring directions for improving our 
system. New functionalities can be added, such as new types of 
graphic units. It is not so difficult to offer many options and much 
flexibility, the main challenge however is to tune the interaction 
techniques and settle the visual metaphor on top of the system in 
such a way that the user can define what he wants in an intuitive 
way.  
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