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Abstract 
In this paper we present a method which tries to automatically 
represent the designer’s intention while sketching three-
dimensional curves in a Virtual Reality environment. We translate 
conceptual sketch strokes into a suitable B-spline representation 
with a three step method. Firstly a data filter is used to eliminate 
redundancy and noise in ‘pen’ position recorded by the 3D 
tracking system. Secondly an knowledge based algorithm tries to 
interpret user’s intention, according to direction, speed and 
curvature of the virtual pen segmenting the stroke into two types 
of curves joined respectively with C0 and G1 continuity. Lastly an 
algorithm translates the points of each segmented sketch stroke 
into a cubic B-spline with adaptive approximation. This method, 
which has been integrated in our Virtual Reality sketching 
system, is illustrated and tested with various types of sketches. 
Keywords: Geometric modelling, VR-virtual reality, 3D tracking, 
sketching, curve segmentation, spline approximation. 

1. INTRODUCTION 

1.1 Curve sketching in conceptual design  
Conceptual design is one of the initial phases of the design 

process, performed by the industrial designer. This professional 
figure must take into account the market and user requirements to 
determine aesthetic and visual impact of the product in order to 
give it the ‘added value’ and ‘desirability’. In particular the 
designer represents the conceptual ideas in the form of various 
solutions by sketching. These ideas are then passed on to the 
engineering designers for the preliminary and detailed design. The 
engineering design phase nowadays is nearly all computerised. 
On the other hand in the conceptual design process there has been 
much less use of computing[1]. Current CAD software do not 
provide sketching facilities that are as intuitive and flexible as 
traditional tools such as pen and paper. In order to represent 
sketches into a digital format some mathematical knowledge is 
normally needed. Splitting of curves, number of control points 
and order of curves should be taken into account by the user. Such 
approach represents a concrete limit to the free expression of 
ideas and alternatives evaluation, typical of conceptual design. 
However, the ongoing research and the increase in computer 
performance are contributing to an acceleration of the integration 
of the sketching phase into the rest of the design cycle. Use of 
Virtual Reality (VR) techniques, instead of traditional two-
dimensional devices (monitor, keyboard and mouse), have made 
possible sketching directly in 3D space in a more intuitive 
fashion. Previous works provided some functionalities for 
creating free form surfaces from 3D curves. They showed the 
unexploited potentiality of real 3D conceptual design in VR. We 
think that Virtual Reality offers a better perception of three-
dimensionality that in combination with 3D interaction, provides 

direct drawing and positioning and constitutes an environment for 
expressing ideas and concepts. Understanding the user’s intention 
while sketching in the virtual environment motivates the work 
described in this paper. 

1.2 Previous Work 
Many sketching systems have been developed in the past, 

some which use a mouse, others which use a pen and tablet, 
others, for example Grossman et al. [5], use a tracking system to 
trace the movements in 3D space. Most of these interfaces limit 
the curve tracing to a constrained 2d plane (table or tablet) and 
then for example, create 3D shapes by extrusion or sweeping 
along a path which is drawn on the same constrained plane. In the 
“digital tape drawing system” [5], 3D curves are drawn onto a 
monoscopic display by using “depth planes”: a 2D curve is 
extruded along a line to form a curved plane and subsequently 
another 2D curve is projected onto the plane to give it its 3D 
form. Wesche and Droske [6] proposed some sketching tools based 
on an energy approach for the conceptual drawing of curves and 
surfaces in a particular Virtual Environment called Responsive 
Workbench. In a further work Wesche and Seidel [7]  presented for 
the same environment some tools which perform indirect drawing 
and modification of a curve network for surface design. 

The majority of these sketching systems seems to need the 
splitting of the inputted curves into separate segments. Van Dijk’s 
et al. [3] algorithm does not perform segmentation, but the authors 
conclude that one way to improve the 2D sketching could be the 
recognition of ‘sharp corners’.  

Many authors have concentrated their efforts solely on the 
segmentation and representation of the curves without an 
investigation of the interface. Initial research concentrated solely 
on polygonal representation of each segment in which straight 
lines are used to connect neighbouring points/pixels to form the 
overall curve [8] ,[9]. More recent methods also use arcs, circles, 
other conic sections and freeform parametric curves for 
representation [2],[5]. Eggli et al. [4] let the user select different 
predetermined modes of sketching which allow representations 
preferring either lines and circles, or horizontal and vertical lines 
or B–spline curves. Van Dijk and Mayer [3] use free-form curves 
exclusively. The segmentation process has been pursued either by 
breakpoint detection or edge approximation. The first involves 
detection of corner points by looking at the discontinuity of the 
tangent to the contour or of the curvature. The second approach, 
as in Ray [8], fits lines or arcs to the entire sketched segment, 
calculating a ‘goodness of fit parameter’, reducing the segment 
and repeating the evaluation until the curve is ‘good’ enough 
hence creating a sub-segment. Qin et al. [2] point out that these 
methods however can require heavy computation which makes 
them unsuitable for on-line segmentation. 
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Filtering may be necessary to eliminate noise especially for 
the breakpoint detection methods. Ji-Hwei and Li [11] use 
Gaussian scale-space filtering to eliminate false dominant points. 
Van Dijk et al [3], on the other hand, use a filter routine on the 
segments in order to have a more ‘manageable number of points’. 
In Qin’s et al. [2] points which are too close together are filtered 
out by fixing a minimum threshold and by considering sketching 
acceleration. This procedure for segmenting 2D freehand sketches 
uses adaptive thresholds and fuzzy logic based on dynamic 
features such as drawing direction, speed and acceleration to 
determine corner points. It is a very robust method that does not 
involve heavy computation and interprets the user’s sketching in 
satisfactorily manner. Similarly, Eggli et al. [4] also take into 
account factors such as the length of the curve, designer’s skill 
and sketching speed and to interpret the user’s intention. Poedehl 
[4] identifies certain terms used by designers to communicate 
intentions. He describes and measures each term in order make 
such measures usable in optimisation algorithms. Likewise 
Giannini et al. 13 identify certain terms commonly used for shape 
evaluation and modification and have developed ‘modifiers’ to 
change the shape of curves and surfaces. Many modeller 
interfaces allow direct manipulation of the generated curves via 
the use of control points. Van Dijk’s and Mayer’s method [3] of 
modifying a curve, by locally adding more strokes, is very similar 
to what happens when sketching with pen and paper but, it seems 
to need some improvement to work properly. Although many 
studies about free form sketching have been carried out in the 
past, most of them rely on a planar paradigm based on 
geometrical information without taking in account additional 
parameters provided during the sketching phase, and some are not 
suitable for real time computation. 

1.3 Our Approach 
We propose a method for understanding, analysing and 

representing the user’s intention when sketching curves directly in 
3D space, using VR techniques. Three main steps are followed: 

 a preliminary filter eliminates superfluous data and noise; 

 a segmentation algorithm, which uses position, speed and 
curvature to determine dynamic thresholds, extracts two 
types of curve segments. The first type, called type A, 
represents segments, divided by sharp corners, which should 
only have C0 continuity between them. The second, type B, 
represents segments with smoother joints having G1 
continuity; 

 a spline approximation algorithm translates the points each 
segment into a spline, automatically specifying the number 
of control points, according to a style adaptive weight. 

The whole algorithm has been implemented not just to be a post-
processing phase of a 3D tracking task, but to accept a continuous 
flow of data and to continuously generate splines that 
approximate the original tracked points according to the user’s 
intention. A first prototype was implemented with Matlab [16] 
software in order to set and fine tune all the parameters. Hence, 
the algorithm has been ported in our Virtual Reality sketching 
system called in order to perform real time sketching. 

 

 

 

Figure 1: a) the filtered points, b) segmentation, c) spline 
approximation. 
 

This paper is organized as follows. In section 2 we present the 
approach for the filtering and curve segmentation. In section 3 we 
describe the spline approximation technique, while section 4 
includes a presentation of the case study results. In section 5 the 
results are discussed, some concluding remarks are made together 
with some suggestions for future work. 

1.4 The VR System  
Our system is a VR based cad system developed for 

conceptual design. Built with an expandable architecture, is 
support 3D input and output. The user is provided with a pen 
device to sketch stokes in 3D space and a menu tablet to browse 
options. The tracking system used, is an optical 3D tracking 
system by Art (Advanced Realtime Tracking GmbH). The system 
comprises two infrared (IR) emitters and camera receivers which 
receive the rays reflected by ‘markers’, triangulating their 
position in space. The tracking markers, which are IR-reflective 
spheres, are attached to the interaction device. When an activator 
(sketch button) on the pen is pressed, data is received as a series 
of 3D point coordinates. The sampling frequency is customizable 
and is set to 60 Hz. The tracked information is sent via LAN to 
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the processing and graphical unit for computations. The scene is 
displayed in passive stereo mode, using two projectors and 
polarized filters. The user who is wearing polarized glasses 
perceives a single 3D image of the sketch. 

2. CURVE SPLITTING ACCORDING TO USER 
INTENTION. 

2.1 The input data and filtering. 
An accurate experimental study has been performed by the 

authors [17] to evaluate some important factors affecting tracking 
data: the accuracy of the optical tracking system we use, and 
human factors which influence interaction in a VR environment 
such as and limb posture, speed, and direction during pointing. 
Previously used VR tracking systems, like magnetic and acoustic 
ones, suffered from drawbacks in precision, latency, resolution 
and repeatability of measurements. The higher precision achieved 
with optical systems allows research to be addressed to better 
reduce the error generated by human factors. We found that the  
optical tracking system itself has a positional error with an 
average of 0,35mm with a standard deviation (noise) of 0,045mm. 
This error is way lower than the human error (this was not true 
with magnetic trackers) therefore we decide to ignore the error of 
the system. One aspect emphasized by our experiments is the high 
anisotropy in the user error while pointing in Virtual 
Environments. The error along the direction between the user 
head and the pointing tip is always higher and ranging between 
1,8 and 2,6 times the error along the horizontal and the vertical 
directions. The following table shows maximum and mean values 
for the error along the three directions referred to the user head.  

Table 1: Statistic error values (mm) for the performed test 

ERROR Total  Horiz. 
Error 

Vert. 
Error 

Depth 
Error  

Max 
Value 17,31 7,28 9,53 19,50 

Mean 
Value 6,21 4,81 5,29 10,12 

 

Such considerations lead to the design and the calibration of a 
preliminary anisotropic data filter. By pursuing a similar approach 
to the one used by Qin et al. [2], the points which are too close to 
each other are eliminated. For a series of n points {Pi | i = 
1,2,3,….n} each with 3 coordinate values attributed to them, each 
point is recalculated as follows: 

ii PP =+1   if the components of the points distance along the 
aforementioned directions are all lower than three thresholds 
defined according to the tests performed: 
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 For the reasons explained above, the input data is affected by 
quantization errors and noise. This error propagates in the discrete 

speed calculations and angular deviation more significantly for 
higher sampling frequencies. Therefore we smooth the position 
data by applying a Gaussian filter.  

  

Figure 2: a) data directly from the tracking system, b) data after 
filtering. 
2.2 Primary Segmentation – type A curves 

In a similar manner to the approach followed by Qin et al. [2] 
we distinguish two types of curves according to segmentation 
points. We first detect primary segmentation points where the 
angular deviation is important. 

For each point Pi a directional deviation α, i.e. the angle 
subtended by two vectors, is evaluated. The first vector is 
calculated between the point Pi and the preceding point with 
index (i-m); the second vector is calculated between the point Pi 
and the successive point with index (i+m), 

( ) ( )( )  - , -angle imimii PPPP +−=α  

where m is the alpha adaptive support length given by: 









+×= 5.02round avg

S
S

m  

where Savg is the average sketching speed and S is the speed at 
point Pi.. The purpose of m is to avoid picking points too close to 
each other, whilst the pen is moving slowly, when it is likely that 
unintentional drawing deviations may occur. Similarly when the 
pen is moving quickly, unintentional drawing deviations are 
unlikely and hence small values of m may be used to calculate the 
directional deviation  α. We had to limit the value of the support 
m to 10 due to the fact that sketching with our system, compared 
to Qin’s et al. which uses a mouse, is more fluid and reaches 
higher speeds. As the pen moves along, if a point with value of α 
superior to a predetermined threshold is encountered, it is 
classified as a primary segmentation point. If a series of 
successive points have values of α superior to the threshold, the 
algorithm carries on until a point with an inferior  α  value is 
reached and then classifies as a primary segmentation point the 
one in the series that has the max α value. The first point is 
always considered as primary segmentation point. For our tests 
we set the α threshold to 90. Hence all the points between the first 
point and the first primary segmentation point encountered are 
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considered as part of a type A curve segment which is flushed 
onto the following step for the secondary segmentation analysis. 
In the meantime this algorithm moves on to the new points 
acquired by the tracking system, classifying the first point as a 
primary segmentation point and searching again for a second one 
to create a new segment. 

 

 

Figure 3: a) directional deviation plot for all the points; one 
point is above the alpha threshold (apart from the initial and last 
point which are by definition segmentation points). b) The 
primary segmentation points of the sketched curve. 
2.3 Secondary Segmentation - type B curves 

This secondary segmentation analysis is performed to capture 
turning points which may occur due to a combination of slight 
changes in curvature and velocity. For each point in the segment 
the value of α, previously calculated, is compared to an adaptive 
total threshold  βt and the speed is compared to an adaptive speed 
constraint ϖ. 

The adaptive total threshold βt is itself a combination of 
various thresholds. Firstly a basic angle tolerance β0 is 
established. It represents a limit below which a point is unlikely to 
be a turning point. This threshold was established by asking 
several users to sketch a straight line in 3D space and then 
measuring the max value of the directional deviation  α for each 
user. We found that appropriate value for β0 = [3 ÷ 5] 

Secondly a linearity adaptive threshold βlin is calculated. The 
purpose of βlin is to take into account the fact that when sketching 

a curve, the total threshold above which a point is classified as a 
turning point should be larger than when sketching a line. The 
linearity adaptive threshold calculation considers the linearity of a 
segment, which is defined as the ratio of the distance between the 
two segmentation points to the cumulative arc length between the 
two points. Hence for each point of the segment, 

( )nplin L L120 4  ×−⋅+=β  

where Ln is the linearity between point Pi and the last point of 
the segment (the first primary segmentation point) and Lp is the 
linearity between point Pi and the first point of the segment (the 
second primary segmentation point). 

Next an adaptive velocity threshold βs is established. This 
threshold takes into account the fact that if the pen is moving with 
a high speed, it is likely to trace a smooth curve, hence an abrupt 
change in direction is more likely to be a tuning point than one at 
slow speed. So 

S
Savg

s 7  ⋅=β ;  

βs is limited to a maximum value of 15. 

The adaptive total threshold βt can now be calculated 

s0t   ββββ ++= lin  

Finally, to account for the fact that when in proximity of a 
turning point the sketching speed tends to be lower than average, 
an adaptive speed constraint ϖ is introduced where 

)LLS ( npavg ××=ϖ  

For every point of the type A segment, the point becomes a 
turning point (secondary segmentation point) if three conditions 
are fulfilled: 

βt < α  

ϖ<speed  

ϖ×> minsKspeed  

As a result two smaller segments called type B segments are 
created from the type A segment. We noticed that when sketching 
with a pen directly in 3D space, the user at times reaches the end 
of the curve and does not immediately release the button. 
Consequently the tracking system records unwanted points which 
are close to each other with low speed therefore they are potential 
turning points. The last speed condition is introduced to avoid 
recognizing such points as turning points. We found that a value 
of Ksmin of 3% gave satisfactory results. Once the type B analysis 
is finished the algorithm starts again to look for the next primary 
segmentation point. The whole process of segmentation is carried 
out on-line until the user releases the pen button. 
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Figure 4: Secondary segmentation points are detected if the 
angular deviation is above β limit (fig a) and if the velocity is 
below the speed threshold ϖ (fig b). Secondary segmentation 
points include the primary segmentation points (fig c). 

3. SPLINE GENERATION 
Curve fitting follows the generation of the segments. B 

splines are used to approximate the segments. 

3.1 Detail Level Function. 
We noted that when sketching if the speed is low, it is more 

likely that the intention is to represent something in a detailed 
manner. On the contrary if the speed is high, the user is not trying 
to represent a detail with the generated curve. Moreover, during 
the modification of a curve generated at high speed it is unlikely 

that the user will need many control points for local curve 
repositioning. Similarly if the curvature is low, the control points 
necessary for modification will be few. An adaptive ‘detail level’ 
weight Li is evaluated according to curvature and speed for each 
segment. This weight tries to understand with how much ‘tension’ 
the user wants to represent the segment. The adaptive ‘detail 
level’ weight associated to each segment is evaluated as follows 
for each segment: 

 
avg

i

1
  

S
Length

Length

L Arc

Chord








−

=  

where LengthChord is the distance between the extremities of 
the segment, LengthArc is the segment arc length and Savg is the 
average speed of the segment. 

3.2 B-spline Approximation 
The final result of the complete algorithm is to provide a set 

of mathematical representations of the curves keeping them 
simple for further analysis and modification. Therefore we decide 
to use B-spline representation for curves where the spline Sp is 
specified by its nondecreasing knot sequence knotS and by the 
control points sequence. The input in this step is basically a set of 
n points Pi. We perform a least-squares spline approximation. The 
original problem of least-squares approximation with B-spline 
curves has been solved by Carl de Boor 15 whose implementation 
has been followed in our approach. Basically, given the order k 
and the not-decreasing knot sequence knotS, the algorithm gives 
the control points CPs of the approximant B-spline Sp for which 
the weighted standard deviation: 

( )∑
=

⋅=
n

i
ii SpPdistw

n
onStdDeviati

1

2,1

 

is minimized, where the weights wi associated to Pi forces the 
spline to pass closer to the points. Since after the previous 
segmentation phase each segment is quite smooth, we decide ‘a 
priori’ to use cubic splines to keep C2 continuity inside the 
segment (order = 4), and knotS uniformly distributed with 
multiplicity equal to order at extremities. We also use a higher 
weight on the extreme last points to force the fit to come very 
close to the extremities of the sampled curve segment and to try to 
preserve the tangent direction. The number of control points is 
evaluated adaptively for each segment i according to the detail 
level function in section 3.1. 

)70(min iLroundNumCPsNumCPs ⋅+=  

For this application we decide to keep the minimum number 
of control points equal to 4. Since the result is an approximating 
B-spline, and it is not guaranteed to pass through the extremities, 
we force the control points in order to have C0 continuity on the 
joint between two type A segments and G1 continuity on the joint 
between type B segments. 
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Figure 5: The generated spline (continuous curve) generated 
from the points (dotted curve). The control points are represents 
by the small circles. The control graph joins the CPs with straight 
lines. 

4. RESULTS 
Real-time sketch cases have been generated and tested with 

the algorithm described in this paper. Figure 6 shows the input 
points, the approximating spline (the continuous curve) and the 
CPs (small empty circles) with their control graph. The primary 
segmentation points are represented with a coloured square, 
whilst the secondary segmentation points are represented with a 
coloured circle. 

 

Figure 6: The approximating spline and its segmentation points. 

The straighter segments have only 4 CPs whist the more 
curvilinear segment has 12 CPs. In Figure 7 the shortest segment 
has the same number of CPs as the other longer and more 
curvilinear segments. This is because that segment is drawn at a 
lower velocity (the points are closer together). 

 

Figure 7: The approximating spline and its segmentation points. 

In Figure 8 the same curve is sketched twice but with different 
speeds. As intended, the slower sketch has more segmentation 
points and control points to represent the details and to allow for 
more ‘local’ modification with the control points. 

 

 

Figure 8: Influence of speed: top sketch is drawn at a higher 
speed than bottom one. 
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Other cases of free-form sketches and their representation are 
illustrated in the following Figure 9. 

 

 

 

 

Figure 9: Test Cases 

Sharp corners are recognized as join points with C0 continuity 
and smoother corners as join points with G1 continuity. Splines 

representing straighter segments and those drawn at higher have 
few CPs. Whilst, splines drawn with a large curvature or at low 
speed are represented with splines with a larger number of CPs to 
allow for more ‘local’ modification. 

 

Figure 9: User session in Spacedesign. 

5. CONCLUSION AND FUTURE WORK 
An algorithm for representing the designer’s intention while 

sketching on-line three-dimensional curves has been implemented 
in our VR Cad system. The algorithm uses position, speed and 
curvature data to determine dynamic thresholds needed for the 
segmentation of the sketch stroke. The same data are also used to 
evaluate a style adaptive weight which influences the number of 
spline control points used to approximate each segment of the 
stroke. 

We tested the proposed algorithm integrated in our VR 
system, with multiple users. A series of sketch strokes have been 
automatically converted into B-spline accordingly to nature of the 
stroke. The segmentation procedure work quite well in nearly all 
the test cases, extracting correctly the two different classes of 
curves. There are some cases however where the intended sketch 
is not interpreted precisely. This is due mainly to unpredictable 
movements of the user’s hand which are difficult to discriminate 
from the desired intention. 

In the future our intention is to find a better trade-off between 
error filtering and detection accuracy. We also want to provide 
the designer with post-sketching editing function which may 
preserve the parametric relationships between the segments. 
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