
3D Sketch Stroke Segmentation and Fitting in Virtual Reality

Michele Fiorentino, Giuseppe Monno, Pietro Alexander Renzulli, Antonio E. Uva
D.Dis – Politecnico di Bari, Bari, Italy

{m.fiorentino, gmonno, a.uva}@poliba.it

Abstract
In this paper we present a method which tries to automatically
represent the designer’s intention while sketching three-
dimensional curves in a Virtual Reality environment. We translate
conceptual sketch strokes into a suitable B-spline representation
with a three step method. Firstly a data filter is used to eliminate
redundancy and noise in ‘pen’ position recorded by the 3D
tracking system. Secondly an knowledge based algorithm tries to
interpret user’s intention, according to direction, speed and
curvature of the virtual pen segmenting the stroke into two types
of curves joined respectively with C0 and G1 continuity. Lastly an
algorithm translates the points of each segmented sketch stroke
into a cubic B-spline with adaptive approximation. This method,
which has been integrated in our Virtual Reality sketching
system, is illustrated and tested with various types of sketches.
Keywords: Geometric modelling, VR-virtual reality, 3D tracking,
sketching, curve segmentation, spline approximation.

1. INTRODUCTION

1.1 Curve sketching in conceptual design
Conceptual design is one of the initial phases of the design

process, performed by the industrial designer. This professional
figure must take into account the market and user requirements to
determine aesthetic and visual impact of the product in order to
give it the ‘added value’ and ‘desirability’. In particular the
designer represents the conceptual ideas in the form of various
solutions by sketching. These ideas are then passed on to the
engineering designers for the preliminary and detailed design. The
engineering design phase nowadays is nearly all computerised.
On the other hand in the conceptual design process there has been
much less use of computing[1]. Current CAD software do not
provide sketching facilities that are as intuitive and flexible as
traditional tools such as pen and paper. In order to represent
sketches into a digital format some mathematical knowledge is
normally needed. Splitting of curves, number of control points
and order of curves should be taken into account by the user. Such
approach represents a concrete limit to the free expression of
ideas and alternatives evaluation, typical of conceptual design.
However, the ongoing research and the increase in computer
performance are contributing to an acceleration of the integration
of the sketching phase into the rest of the design cycle. Use of
Virtual Reality (VR) techniques, instead of traditional two-
dimensional devices (monitor, keyboard and mouse), have made
possible sketching directly in 3D space in a more intuitive
fashion. Previous works provided some functionalities for
creating free form surfaces from 3D curves. They showed the
unexploited potentiality of real 3D conceptual design in VR. We
think that Virtual Reality offers a better perception of three-
dimensionality that in combination with 3D interaction, provides

direct drawing and positioning and constitutes an environment for
expressing ideas and concepts. Understanding the user’s intention
while sketching in the virtual environment motivates the work
described in this paper.

1.2 Previous Work
Many sketching systems have been developed in the past,

some which use a mouse, others which use a pen and tablet,
others, for example Grossman et al. [5], use a tracking system to
trace the movements in 3D space. Most of these interfaces limit
the curve tracing to a constrained 2d plane (table or tablet) and
then for example, create 3D shapes by extrusion or sweeping
along a path which is drawn on the same constrained plane. In the
“digital tape drawing system” [5], 3D curves are drawn onto a
monoscopic display by using “depth planes”: a 2D curve is
extruded along a line to form a curved plane and subsequently
another 2D curve is projected onto the plane to give it its 3D
form. Wesche and Droske [6] proposed some sketching tools based
on an energy approach for the conceptual drawing of curves and
surfaces in a particular Virtual Environment called Responsive
Workbench. In a further work Wesche and Seidel [7] presented for
the same environment some tools which perform indirect drawing
and modification of a curve network for surface design.

The majority of these sketching systems seems to need the
splitting of the inputted curves into separate segments. Van Dijk’s
et al. [3] algorithm does not perform segmentation, but the authors
conclude that one way to improve the 2D sketching could be the
recognition of ‘sharp corners’.

Many authors have concentrated their efforts solely on the
segmentation and representation of the curves without an
investigation of the interface. Initial research concentrated solely
on polygonal representation of each segment in which straight
lines are used to connect neighbouring points/pixels to form the
overall curve [8] ,[9]. More recent methods also use arcs, circles,
other conic sections and freeform parametric curves for
representation [2],[5]. Eggli et al. [4] let the user select different
predetermined modes of sketching which allow representations
preferring either lines and circles, or horizontal and vertical lines
or B–spline curves. Van Dijk and Mayer [3] use free-form curves
exclusively. The segmentation process has been pursued either by
breakpoint detection or edge approximation. The first involves
detection of corner points by looking at the discontinuity of the
tangent to the contour or of the curvature. The second approach,
as in Ray [8], fits lines or arcs to the entire sketched segment,
calculating a ‘goodness of fit parameter’, reducing the segment
and repeating the evaluation until the curve is ‘good’ enough
hence creating a sub-segment. Qin et al. [2] point out that these
methods however can require heavy computation which makes
them unsuitable for on-line segmentation.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Filtering may be necessary to eliminate noise especially for
the breakpoint detection methods. Ji-Hwei and Li [11] use
Gaussian scale-space filtering to eliminate false dominant points.
Van Dijk et al [3], on the other hand, use a filter routine on the
segments in order to have a more ‘manageable number of points’.
In Qin’s et al. [2] points which are too close together are filtered
out by fixing a minimum threshold and by considering sketching
acceleration. This procedure for segmenting 2D freehand sketches
uses adaptive thresholds and fuzzy logic based on dynamic
features such as drawing direction, speed and acceleration to
determine corner points. It is a very robust method that does not
involve heavy computation and interprets the user’s sketching in
satisfactorily manner. Similarly, Eggli et al. [4] also take into
account factors such as the length of the curve, designer’s skill
and sketching speed and to interpret the user’s intention. Poedehl
[4] identifies certain terms used by designers to communicate
intentions. He describes and measures each term in order make
such measures usable in optimisation algorithms. Likewise
Giannini et al. 13 identify certain terms commonly used for shape
evaluation and modification and have developed ‘modifiers’ to
change the shape of curves and surfaces. Many modeller
interfaces allow direct manipulation of the generated curves via
the use of control points. Van Dijk’s and Mayer’s method [3] of
modifying a curve, by locally adding more strokes, is very similar
to what happens when sketching with pen and paper but, it seems
to need some improvement to work properly. Although many
studies about free form sketching have been carried out in the
past, most of them rely on a planar paradigm based on
geometrical information without taking in account additional
parameters provided during the sketching phase, and some are not
suitable for real time computation.

1.3 Our Approach
We propose a method for understanding, analysing and

representing the user’s intention when sketching curves directly in
3D space, using VR techniques. Three main steps are followed:

 a preliminary filter eliminates superfluous data and noise;

 a segmentation algorithm, which uses position, speed and
curvature to determine dynamic thresholds, extracts two
types of curve segments. The first type, called type A,
represents segments, divided by sharp corners, which should
only have C0 continuity between them. The second, type B,
represents segments with smoother joints having G1
continuity;

 a spline approximation algorithm translates the points each
segment into a spline, automatically specifying the number
of control points, according to a style adaptive weight.

The whole algorithm has been implemented not just to be a post-
processing phase of a 3D tracking task, but to accept a continuous
flow of data and to continuously generate splines that
approximate the original tracked points according to the user’s
intention. A first prototype was implemented with Matlab [16]
software in order to set and fine tune all the parameters. Hence,
the algorithm has been ported in our Virtual Reality sketching
system called in order to perform real time sketching.

Figure 1: a) the filtered points, b) segmentation, c) spline
approximation.

This paper is organized as follows. In section 2 we present the
approach for the filtering and curve segmentation. In section 3 we
describe the spline approximation technique, while section 4
includes a presentation of the case study results. In section 5 the
results are discussed, some concluding remarks are made together
with some suggestions for future work.

1.4 The VR System
Our system is a VR based cad system developed for

conceptual design. Built with an expandable architecture, is
support 3D input and output. The user is provided with a pen
device to sketch stokes in 3D space and a menu tablet to browse
options. The tracking system used, is an optical 3D tracking
system by Art (Advanced Realtime Tracking GmbH). The system
comprises two infrared (IR) emitters and camera receivers which
receive the rays reflected by ‘markers’, triangulating their
position in space. The tracking markers, which are IR-reflective
spheres, are attached to the interaction device. When an activator
(sketch button) on the pen is pressed, data is received as a series
of 3D point coordinates. The sampling frequency is customizable
and is set to 60 Hz. The tracked information is sent via LAN to

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

the processing and graphical unit for computations. The scene is
displayed in passive stereo mode, using two projectors and
polarized filters. The user who is wearing polarized glasses
perceives a single 3D image of the sketch.

2. CURVE SPLITTING ACCORDING TO USER
INTENTION.

2.1 The input data and filtering.
An accurate experimental study has been performed by the

authors [17] to evaluate some important factors affecting tracking
data: the accuracy of the optical tracking system we use, and
human factors which influence interaction in a VR environment
such as and limb posture, speed, and direction during pointing.
Previously used VR tracking systems, like magnetic and acoustic
ones, suffered from drawbacks in precision, latency, resolution
and repeatability of measurements. The higher precision achieved
with optical systems allows research to be addressed to better
reduce the error generated by human factors. We found that the
optical tracking system itself has a positional error with an
average of 0,35mm with a standard deviation (noise) of 0,045mm.
This error is way lower than the human error (this was not true
with magnetic trackers) therefore we decide to ignore the error of
the system. One aspect emphasized by our experiments is the high
anisotropy in the user error while pointing in Virtual
Environments. The error along the direction between the user
head and the pointing tip is always higher and ranging between
1,8 and 2,6 times the error along the horizontal and the vertical
directions. The following table shows maximum and mean values
for the error along the three directions referred to the user head.

Table 1: Statistic error values (mm) for the performed test

ERROR Total Horiz.
Error

Vert.
Error

Depth
Error

Max
Value 17,31 7,28 9,53 19,50

Mean
Value 6,21 4,81 5,29 10,12

Such considerations lead to the design and the calibration of a
preliminary anisotropic data filter. By pursuing a similar approach
to the one used by Qin et al. [2], the points which are too close to
each other are eliminated. For a series of n points {Pi | i =
1,2,3,….n} each with 3 coordinate values attributed to them, each
point is recalculated as follows:

ii PP =+1 if the components of the points distance along the
aforementioned directions are all lower than three thresholds
defined according to the tests performed:

;11

;6

;5

1

1

1

mmPP

mmPP

mmPP

depthii

verticalii

horizontalii

<−

<−

<−

+

+

+

 For the reasons explained above, the input data is affected by
quantization errors and noise. This error propagates in the discrete

speed calculations and angular deviation more significantly for
higher sampling frequencies. Therefore we smooth the position
data by applying a Gaussian filter.

Figure 2: a) data directly from the tracking system, b) data after
filtering.
2.2 Primary Segmentation – type A curves

In a similar manner to the approach followed by Qin et al. [2]
we distinguish two types of curves according to segmentation
points. We first detect primary segmentation points where the
angular deviation is important.

For each point Pi a directional deviation α, i.e. the angle
subtended by two vectors, is evaluated. The first vector is
calculated between the point Pi and the preceding point with
index (i-m); the second vector is calculated between the point Pi
and the successive point with index (i+m),

() ()() - , -angle imimii PPPP +−=α

where m is the alpha adaptive support length given by:









+×= 5.02round avg

S
S

m

where Savg is the average sketching speed and S is the speed at
point Pi.. The purpose of m is to avoid picking points too close to
each other, whilst the pen is moving slowly, when it is likely that
unintentional drawing deviations may occur. Similarly when the
pen is moving quickly, unintentional drawing deviations are
unlikely and hence small values of m may be used to calculate the
directional deviation α. We had to limit the value of the support
m to 10 due to the fact that sketching with our system, compared
to Qin’s et al. which uses a mouse, is more fluid and reaches
higher speeds. As the pen moves along, if a point with value of α
superior to a predetermined threshold is encountered, it is
classified as a primary segmentation point. If a series of
successive points have values of α superior to the threshold, the
algorithm carries on until a point with an inferior α value is
reached and then classifies as a primary segmentation point the
one in the series that has the max α value. The first point is
always considered as primary segmentation point. For our tests
we set the α threshold to 90. Hence all the points between the first
point and the first primary segmentation point encountered are

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

considered as part of a type A curve segment which is flushed
onto the following step for the secondary segmentation analysis.
In the meantime this algorithm moves on to the new points
acquired by the tracking system, classifying the first point as a
primary segmentation point and searching again for a second one
to create a new segment.

Figure 3: a) directional deviation plot for all the points; one
point is above the alpha threshold (apart from the initial and last
point which are by definition segmentation points). b) The
primary segmentation points of the sketched curve.
2.3 Secondary Segmentation - type B curves

This secondary segmentation analysis is performed to capture
turning points which may occur due to a combination of slight
changes in curvature and velocity. For each point in the segment
the value of α, previously calculated, is compared to an adaptive
total threshold βt and the speed is compared to an adaptive speed
constraint ϖ.

The adaptive total threshold βt is itself a combination of
various thresholds. Firstly a basic angle tolerance β0 is
established. It represents a limit below which a point is unlikely to
be a turning point. This threshold was established by asking
several users to sketch a straight line in 3D space and then
measuring the max value of the directional deviation α for each
user. We found that appropriate value for β0 = [3 ÷ 5]

Secondly a linearity adaptive threshold βlin is calculated. The
purpose of βlin is to take into account the fact that when sketching

a curve, the total threshold above which a point is classified as a
turning point should be larger than when sketching a line. The
linearity adaptive threshold calculation considers the linearity of a
segment, which is defined as the ratio of the distance between the
two segmentation points to the cumulative arc length between the
two points. Hence for each point of the segment,

()nplin L L120 4 ×−⋅+=β

where Ln is the linearity between point Pi and the last point of
the segment (the first primary segmentation point) and Lp is the
linearity between point Pi and the first point of the segment (the
second primary segmentation point).

Next an adaptive velocity threshold βs is established. This
threshold takes into account the fact that if the pen is moving with
a high speed, it is likely to trace a smooth curve, hence an abrupt
change in direction is more likely to be a tuning point than one at
slow speed. So

S
Savg

s 7 ⋅=β ;

βs is limited to a maximum value of 15.

The adaptive total threshold βt can now be calculated

s0t ββββ ++= lin

Finally, to account for the fact that when in proximity of a
turning point the sketching speed tends to be lower than average,
an adaptive speed constraint ϖ is introduced where

)LLS (npavg ××=ϖ

For every point of the type A segment, the point becomes a
turning point (secondary segmentation point) if three conditions
are fulfilled:

βt < α

ϖ<speed

ϖ×> minsKspeed

As a result two smaller segments called type B segments are
created from the type A segment. We noticed that when sketching
with a pen directly in 3D space, the user at times reaches the end
of the curve and does not immediately release the button.
Consequently the tracking system records unwanted points which
are close to each other with low speed therefore they are potential
turning points. The last speed condition is introduced to avoid
recognizing such points as turning points. We found that a value
of Ksmin of 3% gave satisfactory results. Once the type B analysis
is finished the algorithm starts again to look for the next primary
segmentation point. The whole process of segmentation is carried
out on-line until the user releases the pen button.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Figure 4: Secondary segmentation points are detected if the
angular deviation is above β limit (fig a) and if the velocity is
below the speed threshold ϖ (fig b). Secondary segmentation
points include the primary segmentation points (fig c).

3. SPLINE GENERATION
Curve fitting follows the generation of the segments. B

splines are used to approximate the segments.

3.1 Detail Level Function.
We noted that when sketching if the speed is low, it is more

likely that the intention is to represent something in a detailed
manner. On the contrary if the speed is high, the user is not trying
to represent a detail with the generated curve. Moreover, during
the modification of a curve generated at high speed it is unlikely

that the user will need many control points for local curve
repositioning. Similarly if the curvature is low, the control points
necessary for modification will be few. An adaptive ‘detail level’
weight Li is evaluated according to curvature and speed for each
segment. This weight tries to understand with how much ‘tension’
the user wants to represent the segment. The adaptive ‘detail
level’ weight associated to each segment is evaluated as follows
for each segment:

avg

i

1

S
Length

Length

L Arc

Chord








−

=

where LengthChord is the distance between the extremities of
the segment, LengthArc is the segment arc length and Savg is the
average speed of the segment.

3.2 B-spline Approximation
The final result of the complete algorithm is to provide a set

of mathematical representations of the curves keeping them
simple for further analysis and modification. Therefore we decide
to use B-spline representation for curves where the spline Sp is
specified by its nondecreasing knot sequence knotS and by the
control points sequence. The input in this step is basically a set of
n points Pi. We perform a least-squares spline approximation. The
original problem of least-squares approximation with B-spline
curves has been solved by Carl de Boor 15 whose implementation
has been followed in our approach. Basically, given the order k
and the not-decreasing knot sequence knotS, the algorithm gives
the control points CPs of the approximant B-spline Sp for which
the weighted standard deviation:

()∑
=

⋅=
n

i
ii SpPdistw

n
onStdDeviati

1

2,1

is minimized, where the weights wi associated to Pi forces the
spline to pass closer to the points. Since after the previous
segmentation phase each segment is quite smooth, we decide ‘a
priori’ to use cubic splines to keep C2 continuity inside the
segment (order = 4), and knotS uniformly distributed with
multiplicity equal to order at extremities. We also use a higher
weight on the extreme last points to force the fit to come very
close to the extremities of the sampled curve segment and to try to
preserve the tangent direction. The number of control points is
evaluated adaptively for each segment i according to the detail
level function in section 3.1.

)70(min iLroundNumCPsNumCPs ⋅+=

For this application we decide to keep the minimum number
of control points equal to 4. Since the result is an approximating
B-spline, and it is not guaranteed to pass through the extremities,
we force the control points in order to have C0 continuity on the
joint between two type A segments and G1 continuity on the joint
between type B segments.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Figure 5: The generated spline (continuous curve) generated
from the points (dotted curve). The control points are represents
by the small circles. The control graph joins the CPs with straight
lines.

4. RESULTS
Real-time sketch cases have been generated and tested with

the algorithm described in this paper. Figure 6 shows the input
points, the approximating spline (the continuous curve) and the
CPs (small empty circles) with their control graph. The primary
segmentation points are represented with a coloured square,
whilst the secondary segmentation points are represented with a
coloured circle.

Figure 6: The approximating spline and its segmentation points.

The straighter segments have only 4 CPs whist the more
curvilinear segment has 12 CPs. In Figure 7 the shortest segment
has the same number of CPs as the other longer and more
curvilinear segments. This is because that segment is drawn at a
lower velocity (the points are closer together).

Figure 7: The approximating spline and its segmentation points.

In Figure 8 the same curve is sketched twice but with different
speeds. As intended, the slower sketch has more segmentation
points and control points to represent the details and to allow for
more ‘local’ modification with the control points.

Figure 8: Influence of speed: top sketch is drawn at a higher
speed than bottom one.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

Other cases of free-form sketches and their representation are
illustrated in the following Figure 9.

Figure 9: Test Cases

Sharp corners are recognized as join points with C0 continuity
and smoother corners as join points with G1 continuity. Splines

representing straighter segments and those drawn at higher have
few CPs. Whilst, splines drawn with a large curvature or at low
speed are represented with splines with a larger number of CPs to
allow for more ‘local’ modification.

Figure 9: User session in Spacedesign.

5. CONCLUSION AND FUTURE WORK
An algorithm for representing the designer’s intention while

sketching on-line three-dimensional curves has been implemented
in our VR Cad system. The algorithm uses position, speed and
curvature data to determine dynamic thresholds needed for the
segmentation of the sketch stroke. The same data are also used to
evaluate a style adaptive weight which influences the number of
spline control points used to approximate each segment of the
stroke.

We tested the proposed algorithm integrated in our VR
system, with multiple users. A series of sketch strokes have been
automatically converted into B-spline accordingly to nature of the
stroke. The segmentation procedure work quite well in nearly all
the test cases, extracting correctly the two different classes of
curves. There are some cases however where the intended sketch
is not interpreted precisely. This is due mainly to unpredictable
movements of the user’s hand which are difficult to discriminate
from the desired intention.

In the future our intention is to find a better trade-off between
error filtering and detection accuracy. We also want to provide
the designer with post-sketching editing function which may
preserve the parametric relationships between the segments.

6. REFERENCES

[1] M. Tovey; “Styling and design intuition analysis in industrial
design”. Design Studies 18 (1997) pp.5-31.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

[2] Qin, Sheng-Feng, David K. Wright, and Ivan N. Jordanov,
“On-line segmentation of freehand sketches by knowledge-based
nonlinear thresholding operations”. Pattern Recognition, vol.34
(2001), number 10, pp. 1885-1893.
[3] Dijk C.G.C. van , Mayer A.A.C., "Sketch input for
conceptual surface design." Computers In Industry 1997, vol.34,
Iss. 1, pp.125-137.
[4] Eggli, Lynn, Ching-yao Hsu, Beat D Bruederlin, and
Gershon Elber, “Inferring 3D Models from Freehand Sketches
and Constraints”. Computer-Aided Design, 29(2): 101-112, 1997.
[5] T. Grossman, R. Balakrishnan, G. Kurtenbach, G.
Fitzmaurice, A. Khan, B. Buxton, “Creating Principal 3D Curves
with Digital Tape Drawing”. ACM CHI 2002, vol. 4, Isssue no.1,
p.121-128.
[6] G. Wesche and M. Droske, “Conceptual Free-Form Styling
on the Responsive Workbench”. VRST 2000 Proceedings, pages
83-91, Seoul, Korea, October 2000.
[7] G. Wesche and H.-P. Seidel, “FreeDrawer-A Free-Form
Sketching System on the Responsive Workbench”. VRST 2001
Proceedings, pages 167-174, Banff, Alberta, Canada, November
2001.
[8] Ray, B.K. and K.S. Ray, “A new split and merge technique
for polygonal approximation of chain coded curves”. Pattern
Recognition Letters, vol.16 (1995), number 2, pp. 161-169.
[9] Horng, Ji-Hwei, “Improving fitting quality of polygonal
approximation by using the dynamic programming technique”.
Pattern Recognition Letters, vol. 23 (2002), number 14 pp. 1657-
1673.
[10] Ichoku, C., B. Deffontaines, and J. Chorowicz,
“Segmentation of digital plane curves: A dynamic focusing
approach”. Pattern Recognition Letters, vol. 17 (1996), number 7,
pp. 741-750.
[11] Ji-Hwei Horng, Johnny T. Li, “A dynamic programming
approach for fitting digital planar curves with line segments and
circular arcs”. Pattern Recognition Letters, Volume 22 (Feb.
2001), Number 2, February 2001 183-197.
[12] Gerd Podehl, “Terms and Measures for Styling Properties”.
7th International Design Conference – Design (May 2002).
[13] F. Giannini, M. Monti, “An Innovative Approach to the
Aesthetic Design”. Common Ground – The Design Research
Society Conference 2002.
[14] M. Fiorentino, R. De Amicis, A. Stork, G. Monno; “Surface
Design In Virtual Reality As Industrial Application”. In Proc. of
Design Conference - Design 2002, Dubrovnik, Croatia, May 14 -
17, 2002.
[15] De Boor C., “A Practical Guide to Splines”. Springer-Verlag,
New York, 1978.
[16] http://www.mathworks.com/
[17] M. Fiorentino, G. Monno, P. A. Renzulli, A. E. Uva, “3D
Pointing in Virtual Reality: Experimental study”, International
Conference on Tools And Methods Evolution In Engineering
Design, Napoli, Italy, 4-6 June 2003.

About the authors

Michele Fiorentino is a Researcher at Politecnico di Bari, Italy
faculty of Mechanical Engineering. His contact email is
m.fiorentino@poliba.it.
Giuseppe Monno is a Full Professor at Politecnico di Bari, Italy
faculty of Mechanical Engineering. His contact email is
gmonno@poliba.it.
Pietro Alexander Renzulli is a Ph.D. student at Politecnico di
Bari, Italy faculty of Mechanical Engineering.
Antonio E. Uva is a Researcher at Politecnico di Bari, Italy
faculty of Mechanical Engineering. His contact email is
a.uva@poliba.it.

International Conference Graphicon 2003, Moscow, Russia, http://www.graphicon.ru/

