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Abstract 
Term “super-resolution” is typically used for a high-resolution 
image produced from several low-resolution noisy observations. 
In this paper, we consider the problem of high-quality 
interpolation of a single noise-free image. Several aspects of the 
corresponding super-resolution algorithm are investigated: choice 
of regularization term, dependence of the result on initial 
approximation, convergence speed, and heuristics to facilitate 
convergence and improve the visual quality of the resulting 
image. 
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1. INTRODUCTION 

Linear methods for image interpolation are usually constructed to 
deal with bandlimited signals. The interpolated one-dimensional 
signal is defined as: ( )∑+∞
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K(x) – is the interpolation filter, h is the sampling step. In a two-
dimensional case, the interpolation is typically performed 
separately for each axis. The most popular weight functions are 
box filter (or nearest neighbor), tent function (or bilinear), ideal 
low-pass filter, Lanczos filter, Gaussian filter, and bicubic 
interpolation [1].  
For every algorithm which is using linear interpolation there are 
some typical artifacts: blurriness, ringing effect, and jagged edges 
[6]. Reduction of one of these artifacts increases the others. 
As usual, non-linear algorithms are used to scale two-dimensional 
images with a fixed ratio without constructing continuous image. 
Interpolated pixel values are calculated as a linear combination of 
nearest sampled values, but the main difference with the linear 
interpolation is the variability of coefficients which depend on 
surrounding pixel intensities. 
The main idea of gradient algorithms is the fact that directed 
interpolation along edges results in better interpolation than non-
directed linear interpolation. The direction and the intensity of an 
edge in a point are defined by the local gradient information. 
One of these algorithms is WADI [2], which is based on the 
modification of bilinear interpolation. It computes the derivate 
along the normal to every side of a square formed by four 
sampled pixels and modifies coefficients of bilinear interpolation 
in a special way: the side with greater derivative results in smaller 
coefficients for points of this side. 
Gradient algorithms are fast in the class of non-linear algorithms 
and produce better results than linear interpolation; it makes edges 
less jagged and more realistic. 
NEDI algorithm (New Edge-Directed Interpolation) is a typical 
non-linear algorithm, which doubles the resolution of images [3]. 
It uses the concept of self-similarity. The assumption is that 
coefficients of linear combination used for destination pixel 

interpolation are the same as coefficients used for interpolation of 
source image pixels by pixels of the decimated source image. This 
algorithm provides very good interpolation quality but it is very 
complex, so it is often executed only in small areas with strong 
edges while simpler algorithms process the rest of area. 
The rest of the paper is organized as follows. In section 2, we 
introduce the super-resolution method for image interpolation and 
the process of regularization. In section 3, we discuss several 
variants and modifications of the method and describe their 
influence on the resulting image with respect to visual artifacts 
and PSNR quality by giving the results of our experiments. 
Section 4 concludes the paper by summarizing variants of the 
super-resolution method that provide best image quality. 

2. SUPER-RESOLUTION METHOD 

Super-resolution method is typically used to restore a high-
resolution image from several low-resolution noisy observations 
[4]. In this paper, we consider the interpolation of a single image. 
So, we will formulate the problem as 

yAx = , (1) 

where x is the unknown high-resolution image (represented as a 
vector of pixel values), y is the known low-resolution image, and 
A is the downscaling operator typically consisting of decimation 
D following a low-pass filtering H: 

DHA =  (2) 

The choice of the low-pass filtering operator depends on a point 
spread function of the imaging system that produced the low-
resolution image. If the imaging system is unknown we will 
assume that operator H is a simple box filter. 

2.1 Regularization 
The equation (1) is generally ill-posed and a small change of the 
input vector y can cause a huge change of the resulting vector x. 
For the equation (1), the regularized solution is found as: 
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where the first term is called as “discrepancy”, )(xF  is the 
stabilizer and α>0 is the coefficient of regularization [5]. 
The most popular and universal stabilizer is the Tikhonov 
functional. It is calculated as a grid approximation of the 
functional: 
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and n=2, p=2. For each α>0 the solution x is correct: it is unique, 
defined for every y and continuously depends on y. We can write 
the Euler equation for this case: yAxAA TT =Δ+ )( 2 . 

But in this case the algorithm becomes linear because x is the 
solution of the system of linear equations. So, this method inherits 
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drawbacks of linear interpolation algorithms and we need to find 
more adaptive stabilizer for image resampling. 
We will consider Total Variation (TV) and Bilateral TV (BTV) 
stabilizers [4], which are working in l1 norm (n=1, p=1): 

1
)( xxTV ∇= , (5) 

where x∇  is the gradient operator (its modulus), 
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where s
xS  and t

yS  are shift operators along x and y axes by s and 

t pixels respectively, γ=0.8. 

2.2 Inverse iterations 
To solve the equation (3) with a stabilizer (6) the iterative 
steepest-descent method can be used: 
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z=sign x is a vector with per-element applied sign function; DT is 
an up-scaling operation. If D in (2) is the simplest decimation 
operator that takes every k-th pixel, DT is the up-scaling operator 
by zero insertion. If H in (2) is a symmetric filtering, then HT

 is 
equal to H. x0 is the initial approximation of the high resolution 
image. 

3. STUDY OF THE METHOD 

We have used the described method to perform image 
enlargement by the factor of 2. The operator H has been set to box 
filter. 
The following paragraphs describe our experiments with various 
modifications of the super-resolution method and obtained results. 
To evaluate the quality of results, we have selected several 
diverse test images and scaled them down using a box filter. Then 
we applied different variants of the super-resolution algorithm and 
compared the enlarged images with original high-resolution 
(“ground truth”) copies. Thus, descriptions of noticed artifacts 
will be supported with PSNR measurements. 

3.1 Dependence on initial approximation 
The simplest form of the initial approximation high-resolution 
image would be a zero image. However such an approximation 
will take long to converge to the solution. A better choice would 
be the original image upscaled by some simple algorithm, such as 
bilinear interpolation or a gradient-directed interpolation. 
We have found that using gradient-directed interpolation as initial 
approximation image results in slightly better quality that when 
using bicubic interpolation and significantly better quality than 
using bilinear interpolation. Bilinear interpolation used for initial 
approximation leaves the jagged edges artifact in the resulting 
image, and it cannot be completely eliminated by the following 
super-resolution iterations. 
Even better results can be obtained using NEDI enlargement of 
the original image as initial approximation. 

We have tested this method with different initial images: zero-
filled, bilinear, bicubic, gradient-interpolated and using NEDI 
algorithm aimed at getting the fastest convergence of iterative 
method. We’d like to get a good approximation after small 
number of iterations. That’s why using the best possible initial 
approximation (NEDI) helps getting better results after fixed 
number of iterations. Fig. 1 displays improvement of SNR (ISNR) 
against bilinear interpolation for the super-resolution method with 
different initial approximations. 
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Figure 1: Dependence of SNR on initial approximation after 16 

iterations. 
 

3.2 Convergence speed 
In the described iterative method, we can’t reach a precision less 
than β, because sign function can only take values of -1, 0, and 1 
and it is multiplied by β to form the correction term at each 
iteration. So, if we want to get closer to the optimal image we 
need to decrease the value of β and increase the number of 
iterations. 
Also it can be noted that after a certain number of iterations with 
constant β, iterated images start fluctuating around the optimal 
image without approaching the target image closely. 
To improve the convergence speed we can use the variable 
coefficient β. First, we have chosen the following way: a number 
of iterations are processed with a constant coefficient until the 
image starts fluctuating. When this happens, β is decreased by 
some fixed ratio and the process continues until the next start of 
fluctuations and so on. The task is to detect fluctuations and to 
choose the optimal ratio of β modification. We need to operate 
with the discrepancy to detect the fluctuations. Before the 
beginning of fluctuations the discrepancy has a tendency to 
decrease, but when fluctuations begin the discrepancy starts to 
randomly oscillate around some mean value. So, the following 
algorithm can be applied: we count a discrepancy at each iteration 
and when it becomes greater than on the previous iteration, the 
counter of oscillations is increased. If a counter is greater than a 
threshold, it is reset and the value of β is decreased. The greater 
value of the threshold results in more precise detection of the 
beginning of fluctuations, but makes the convergence speed 
lower. In practice we set the threshold value to 2 oscillations. 
Finally, we need to define the divisor for β. Practically, small 
divisors lower the convergence speed, while big divisors result in 
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worse quality, but there isn’t any optimal intermediate value. If 
the divisor is big the algorithm needs more iterations before the 
image starts to fluctuating than when the divisor is smaller. The 
optimal divisor range is from 2 to 4. For any value of divisor from 
this range, the convergence speed and the quality are 
approximately the same. 
We have noted that the number of iterations between updates of β 
for a fixed divisor depends very weakly on the source image and 
iteration number. So, after the first fluctuation, we may use the 
geometric progression instead of the piecewise constant behavior 
of β (fig. 2). 
So, we have used the following strategy: a certain number of first 
iterations are processed with a constant coefficient, and after the 
beginning of fluctuations, the coefficient is exponentially 
decreased (geometrical progression). Good selection of the initial 
approximation image makes it possible to fix the number of 
iterations with some constant initial β and the method becomes 
independent on the source image. 
Here are some graphs for different ways of changing β. The thick 
line is β, the thin line is the discrepancy, and the dotted line is the 
mean square error between the current solution x and the ground 
truth result. The vertical scale is logarithmic. 
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Figure 2: Variation of MSE and discrepancy depending on β. 

 

3.3 Effects of regularization 
3.3.1 Ringing suppression 
Despite of excellent interpolation of edges, iterative method using 
TV and BTV has some artifacts: big regularization coefficient 
results in watercolor effect and loss of fine details, but it very 
strongly suppresses the ringing artifact (Gibbs phenomenon). 

Image becomes piecewise constant; in other words it looks 
“painted” with strokes of paintbrush. Small regularization amount 
α leaves much ringing around edges and doesn’t make them 
sharper or less jagged. If the first approximation image was 
produced by a bad interpolation method, the super-resolution 
method won’t improve it in absence of regularization. 
Strong regularization using Tikhonov stabilizer results in strong 
blur, weak regularization leaves jagged edges. 
l1-regularization (such as TV or BTV) is different: strong 
regularization sharpens the edges, trying to make the image 
piecewise-constant [6]. The Gibbs phenomenon is effectively 
suppressed. 

3.3.2 Noise reduction 
Many real images captured at low resolution contain noise, 
typically white noise. Different interpolation algorithms have 
different tolerance to such noise, some of them smooth the noise, 
and others tend to amplify it. For example, bilinear interpolation 
usually smoothes noise (together with image contours), while 
bicubic or 12-tap NEDI [3] interpolations slightly amplify it (due 
to overshoot/ringing property of their resampling filters). 
Super-resolution algorithm produces even sharper images and the 
high-frequency component of noise is typically amplified. 
However the process of regularization helps preventing noise 
amplification by minimizing the total variation of the resulting 
image. If the strength of regularization (value of α) is increased, 
the noise is suppressed, while the sharpness of image contours is 
preserved, see [6] for examples. 

3.4 Effects of changing the internal upsampling 
algorithm 
The whole iterative method of super-resolution (7) can be viewed 
as several simple steps: 

1. Downscale the current approximation image. 
2. Compare it with the original low-resolution image and 

truncate the difference using the sign function. 
3. Enlarge the difference. 
4. Add the (amplified) enlarged difference to the current 

approximation. 
5. Add the (amplified) regularization term to the current 

approximation. 
6. Go to 1 until convergence. 

The next improvement of the iterative method is modifying D and 
H operators. Originally, the upsampling HTDT of the sign operator 
of the discrepancy )( yDHxsignDH TT −  is simple: we 
interpolate the discrepancy with zeros and apply the filter HT. 
This is a linear method and it does not preserve edge directions, 
so it results in some edge jaggedness. We propose to use edge-
directional interpolation (such as gradient interpolation) at this 
stage to reduce effect of jagged edges. The coefficients of 
gradient interpolation can be calculated only once, using the first 
approximation image x0. The gradient interpolation is applied at 
each iteration to enlarge the modified difference. This 
modification of the original method increases both PSNR and 
visual quality. Fig. 3 compares PSNR for bilinear vs. gradient 
upsampling of discrepancy. 
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Figure 3: Dependence of SNR on discrepancy upsampling 

algorithm. 
3.5 Future work 
We are currently investigating the following modifications of the 
super-resolution algorithm. 
The strength of regularization can be made image-adaptive. The 
main purposes of regularization are reduction of ringing and 
reduction of noise level. So, it is possible to apply more 
regularization in areas of high-contrast edges and in noisy areas, 
while at the same time preventing excessive “watercolor” artifact 
in other areas. 
In the effort to generate plausible high-frequency content, we 
have developed a patch-based algorithm for substitution of high-
frequency details in the current approximation xn from the original 
low-resolution image y. We call this stage “fractal substitution” 
because substituted details are selected using a self-similarity 
criterion across 2 scales. 

4. CONCLUSION 

We have analyzed properties of super-resolution method applied 
to the interpolation of a single image. It was shown that 
modifications of the original super-resolution method given by (7) 
can improve the visual quality and PSNR of resulting images. The 
example of work of the algorithm is given on a fig. 4, more 
examples can be found in [6]. 
The careful choice of initial approximation prevents jagged edges 
artifact from happening. We suggest using the NEDI algorithm to 
calculate the initial approximation image. 
The gradient-directed interpolation used for upsampling of the 
difference image prevents jagged edges occurring in the process 
of iterations. 
The choice of Bilateral TV regularization (6) doesn’t blur the 
edges while reducing the ringing artifact and limiting the noise 
amplification. 
The adaptive way of modification of β parameter allows reducing 
the number of required iterations to 16-20 iterations for producing 
results with best PSNR. 
The simulation on a 1 GHz P3 computer has shown that it takes 
approximately 1 minute to produce a 1-megapixel enlarged image 
from a quarter-megapixel source image (for 16 iterations). 

 
Figure 4: Comparison of visual quality for bilinear interpolation 

(left) and the proposed super-resolution algorithm (right). 
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