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Abstract 
Motion capture (MC) data are the most reliable source of 
information about human body motion. Such data are widely used 
in different kinds of applications, for example, movies creation, 
game development, physical simulation of human body etc. The 
task of markers registration on the surface of 3D mesh model, 
describing human body, is a necessary step of all mentioned 
applications.  In publicly available MC databases, like Carnegie 
Mellon University (CMU) Graphics Lab Motion Capture 
Database, each marker has unique name and some semantic 
information about marker position on actor body; MC data 
contain time series of 3D marker positions and skeleton bones 
transformations.  We present method for unsupervised search of 
correspondence between motion capture markers and 3D mesh 
vertices. Template mesh is a model of human in initial (T-shirt) 
pose, for registration any frame with arbitrary pose may be 
chosen. Correlated correspondence of markers to mesh vertices is 
reached by optimizing of joint probabilistic distribution over 
correspondence variables, represented as Markov Random Field 
(MRF). We define potentials, preserving geodesic distances 
between pairs of markers and correspondent vertices.  Markers are 
added into consideration in portions by several steps. For each 
marker subset we create a Graphic Model as a minimum spanning 
tree, and execute Pearl inference procedure from Intel Open-
Source Probabilistic Network Library (PNL). The obtaining 
results may be employed for pose deformation model learning in 
human animation and also in all mentioned applications.  
Keywords: Motion capture, markers registration, mesh 
registration, body animation, Markov Random Field, correlated 
correspondence. 

1. INTRODUCTION 

Within last 10 years human animation (both face and body 
animation) have made impressive progress from fully handmade 
models, deformed by artists into a set of key poses, to automatic 
model creation and deformation by use of laser scans and MC 
data. Though nowadays synthetic personages are widely 
employed in movies, games, and entertainment, the role of artists 
in creation of really impressive and lifelike animation still 
remains important. 
Further automation and improvement of body animation quality 
aren’t possible without research of human motion. There are two 
main directions of body movement investigation and modeling: 
geometry-based approaches and physical simulation. The first 
large group has made several important steps and now remains the 
main direction of human animation development. Such 
approaches rely upon using laser scanner or motion capture data.   

Physical and biophysical simulation of body movements still 
suffers from serious problems like inadequate deepness of 
simulation and difficulty of real phenomenon detailed 
description [1]. It is necessary to point that deep physical 
modeling is still a hard task for current computer architecture 
generation. At the same time processing of collision response and 
virtual actors interaction demands dynamic simulation of motion. 
Currently for getting appropriate result physical simulation uses 
motion capture data for mapping to dynamic-driven model [2]. 
Some applications use dynamic simulation for a short time 
interval to process interaction, and then returns to pseudo-physical 
movement control under guidance of MC data. 
These data also used for manipulation like retargeting, edition and 
combining; result information also applied for virtual personages 
animation.  
In our method we employ data base of Carnegie Mellon 
University, known as CMU Graphics Lab Motion Capture 
Database [3]. It contains more than 1600 trials in 6 categories of 
motion, from hundreds to thousands of frames, frame rate is 120 
fps.  For each frame there are a set of 3D markers coordinates and 
a set of skeleton bones rotation angles.  
For use of such data in animation it is necessary to resolve a 
problem of finding correlated positions of markers on the surface 
of mesh body model. Usual mesh registration methods couldn’t be 
directly applied to this task taking into account the next reasons:  
- there is no information about surface to which markers belong, 
therefore it’s impossible to calculate and employ surface normal, 
spin or exact distance along the surface; 
- marker data are sparse. 
From the other hand, MC data have qualities, which may be 
employed: 
- there exists some semantic information about markers, and it 
may be used as prior data; 
- for each frame data about skeleton bones are provided; 
- since the main task is to obtain the best correlated 
correspondence between marker positions on the mesh surface, 
we are able to chose any frame with relatively simple pose or use 
several frames for control of results.  
Presented unsupervised method for markers registration on the 
surface of 3D mesh establishes the best correspondent vertices for 
a set of markers. The method gives possibility to obtain the data 
for learning of body mesh model deformation on a set of variable 
poses. Since in different sequences markers are placed on varied 
positions, the set of correspondent vertices from different trials, 
taken together, presents motion of some mesh area. It is important 
to point, that in common case we can’t use information about 
skeleton angles directly for calculation of marker position, since it 
contains both component from rigid body part transformation and 
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non-rigid one, determined by muscle bulging and irregular 
stretching.  
We shortly present related work in the section 2, give detailed 
description of our probabilistic model and method in section 3, 
and discuss results in section 4.  

2. RELATED WORK 

The group of earliest 3D human animation methods were based 
on interpolation between key poses. Quality of obtained 
animation depends mainly on model appearance in key 
deformations. If such poses were manually created by artists, final 
animation might look perfect: the more key poses – the better. 
Improved with some tools for artist work automation, this 
technique still is actively used.   
The next step was made with creation of methods referenced as 
skinning, vertex blending, bones blending or enveloping. The idea 
was introduced by Nadia Magnenat Thalmann [4] for modeling of 
various joints in the hand, and later a number of similar methods 
appeared [5-8]. The common idea was: each surface vertex moves 
according to underlying skeleton movement. Vertex position is 
calculated as a weighted blending of limb transformations.  For 
resolving well-known problem like elbow collapse or twisting 
some special processing was proposed. For instance, in work of 
Weber [5] for prevention of undesirable surface deformation 
additional bones were added to skeleton.    
Some approaches tried to combine advantages of both mentioned 
methods [6, 7]. Pose-space deformation [6] overcomes artifacts 
for elbow or shoulders by use ready shapes, but needs artist work 
for desirable poses creation. New body deformations are 
calculated as a result of scattered interpolation. The obvious 
frustration is that some human poses aren’t reachable as a 
combination of predefined ones: extrapolation may give bad 
results. In fact it is only one step to automation, but nothing new 
was added to the understanding of human body deformation 
process. 
In the work [9], presented SCAPE method, the problem of 
animation by laser scans is treated as a shape completion task. 
The SCAPE method uses a set of laser 3D scans for learning of 
pose deformation and shape deformation models. Then, having a 
single scan of a person and time series of 50-60 markers, the 
method predict for each frame a full shape of the person, in a pose 
consistent with the observed marker positions. The contribution of 
this work looks important, since the new approach to description 
of body surface deformation was proposed. Authors introduced 
separate transformation terms for 3 main sources of deformation: 
(1) rigid part, defined by skeleton bones rotation, (2) nonrigid part 
due to muscle bulging and tissue deformation, (3) ‘body shape’ 
deformation, determined by personal body type and defined by  
weight, height, muscularity, etc. One of the steps in the SCAPE 
method is estimation of correspondence between template mesh 
and each instance mesh, obtaining from scans. 
The next work, closely related to ours, describes ‘correlated 
correspondence’ method [10]. The method is applied for 3D scans 
registration of deformed objects and registers two meshes by 
optimizing a joint probabilistic model over point-to-point 
correspondences between them. Authors use Markov Network 
with potentials, penalizing difference in distances and 
transformations for correspondent point pairs, a set of markers is 
employed. For each marker in the network all others (not only 
neighboring) are considered as linked by edges; some additional 

constraints for geodesic distance decrease the number of 
neighbors in network. In fact correlated correspondence is an 
evolution of extended version Iterative Closest Point algorithm 
(ICP) [11], applied for nonrigid object models and used for 
simultaneously registering scans and recovering the surface 
configuration. 
We present implementation of the method, which is related to the 
ideas of correlated correspondence, but is developed for 
registration of scattered motion capture markers on 3D mesh 
surface. Our contribution is a new scheme of Graphical Model 
creation as a minimum spanning tree. We also propose simplified 
form of pairwise Gaussian potentials in MRF, which makes the 
method fast and efficient. The potentials preserve only distance 
information, while the data about affine transformation of body 
surface are defined directly by skeleton angles from motion 
capture data files. We developed original algorithm of rough 
marker positions estimation and geodesic distance calculation 
with use of these positions. We employ Pearl inference procedure 
from Probabilistic Network Library (PNL) for search of final 
distribution.     

3. METHOD OF MARKERS REGISTRATION ON 3D 
MESH 

In the description of presented method we use, when possible, the 
terms and notations, introduces in related works [9, 10].  

3.1 Problem statement 
The input is: 

- template mesh X = ( XV , XE ), where XV  = (x1, …, 
xN) denotes vertices and XE is a set of links between 
them; 

- a set of markers Z = (m1, …, mk).  
Correspondence of marker mn to mesh is described as a 
correspondence variable nc , where icn = , if mn corresponds to 
mesh vertex xi.  
The task of registration is estimation the set of optimal 
correspondences C = (c1, …, ck ) of markers Z to vertices of mesh 
X. 

3.2 Probabilistic model 
Z provides information about relative 3D markers position. 
Though some distances possibly were changed as a result of pose 
deformation, some of them still remains unchanged (for example, 
if two markers are on the same limb), and others got only small 
changes. We describe probability distribution of correspondence 
variables as ( )kcψ , where 

( )
22 2/

2
1 σ
πσ

ψ id
k eic −== ,                          (1) 

id is Euclidian distance between ix and point kO , correspondent 
to the marker position in undistorted model.    
We model joint distribution of correspondence variable C as a 
pairwise Markov Random Field (MRF). For each pair of adjacent 
markers km  and lm we define a probabilistic potential 
( )lk cc ,ψ that preserve distances between adjacent markers and 

penalize body limbs deformation: 
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where Z
jiD → is scaled to body dimension geodesic distance 

between adjacent markers, and X
jiD →  is geodesic distance 

between vertices i and j in X, correspondent to the markers. We 
search the optimal value for C as a giving maximum likelihood 
for joint distribution in form 

∏∏Ω
= lk lkk k cccCp , ),()(1)( ψψ , 

Ω  is a normalizing constant. 
The most probable values for correspondence set C is determined 
using Pearl inference, also known as belief propagation algorithm 
[12];  we exploited its implementation from Intel Open-Source 
Probabilistic Network Library (PNL) [13]. 

3.3 Search of correspondent vertices 
Calculations are executed in several steps, start with 7-11 markers 
and put into consideration more on the each next step. The 
correspondences, calculated on the previous steps, are used as 
evidence on the next ones. In current realization the order of 
markers consideration is fixed and chosen with the intention to 
have first of all positions of markers, using for calculation of 
geodesic distances (see below).     

 
Figure 1: CMU motion capture markers.  

We have some prior information about position of markers on the 
mesh (we denote it as kO ). To initialize the process, we define 
manually kO  for all markers on the first step: we point mesh 
vertices, which are approximately in suitable positions.  These 
rough positions later are corrected as a result of inference. It is 
important, that we need to define centers kO manually only once 
for one mesh model; these points may be used for any sequences 
later. After getting results for the step, if was calculated that 

ick = , than vertex ix replaces estimated vertex kO .   

For the next steps kO is estimated using position of already 
placed markers. We define simplified structure of the body as a 
tree with root in pelvis and 7 other body parts (back of the model 
is one of these parts), each part has the marker, connecting this 

body part to the parent one. For instance, for right arm such 
marker is RSHO, which connects it to torso; for left leg LFWT 
marker connects it to pelvis. On the first step at least one marker 
for each body part is defined by kO . If now the next marker mn is 
added to consideration, to estimate position of nO  the algorithm 
works in the next way: 

1) define body part number pn, corresponding to mn; 
2) find marker ms, which belongs to the same body part pn 

and already have value kO  or kx ;  

3) define marker mp, connecting pn to parent body part; 

4) sz and nz are vectors from mp to ms and from mp to mn, 

respectively, calculate angle
ns

ns
zz

zz
⋅
⋅

= arccosα  and 

axis of rotation 
αsin⋅⋅

×
=

ns
ns

r zz
zzz , αM is rotation 

matrix around the axis rz by α , R is matrix of 

uniform scaling by ration 
s

n
z
z

; 

5) sx and nx are vectors from px to sx  and from px  to 

nO , pM is matrix of rotation for body part np  from 
CMU data; 

6) calculate nÔ  as end point of vector 

sppn xMMRMx α
1−= ; 

7) find nO  as vertex in X , nearest to nÔ . 

         
Figure 2: a – marker positions (front) in CMU data, b – result for 
correspondent vertices calculation. 
This procedure gives approximate estimation, and then 
probabilistic part of the method calculates more precise marker 
position. Figure 3 presents an example of such situation.  
The method employs minimum spanning tree (MST) as a 
Graphical Model for MRF, since in this case Pearl inference gives 
exact result. The weight of MST edge is geodesic distance 
between correspondent markers. For MST creation marker CLAV 
is used as a start point, and then for each step all valid for current 
step markers are added one by one in order of increase the 
minimal geodesic distance of a new marker to all others, already 
presented in MST (Boruvka’s algorithm, also known as ‘Sollin’s’ 
algorithm).  
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Since we haven’t information about surface to which markers 
belong, it is impossible to calculate geodesic distance between 
markers along the surface. To resolve the problem we use body 
tree and markers, “connecting” each body part to parent. The 
algorithm of geodesic distance calculation finds the way in tree to 
connect markers and calculated geodesic distance along this way. 
Geodesic distance in X also is calculating in the same way, but 
instead of “connecting” markers correspondent vertices from 
mesh are used.  

 
Figure 3: white boxes – estimated positions of Ok, color rotated 
boxes – calculated marker positions. It is seen, that inference 
gives plausible result, even having shifted estimation of Ok. 

 
Figure 4: pose influence on result, in the right corner 
correspondent actor pose is shown.  

4. APPLICATIONS AND DISCUSSION 

The results of method application are presented on figures 2, 3. 
Source markers coordinates are obtained from converted c3d files. 
The order of markers in sequences is controlled via Deep 
Exploration (Right Hemisphere, version 3.5.10). We used mesh 
model of about 24K vertices in ‘T-shirt’ pose in our experiments. 
For getting stable output different parameters were investigated: 
influence of object poses in employed frame, value δ in functions 
(1), (2), and different schemes of markers involving into 
consideration. We find out that the best results were obtained for 
the frames with small flexion of limbs, see fig. 4 for an example. 
The best value of δ is about 0.02 of mesh model “height”, and this 
value also may influences to proper final distribution of markers. 
It is necessary to point, that in some cases part of markers looks 
placed well, but another part looks shifted. It is desirable to 

distinguish well and incorrectly placed markers, in order to use 
only reliable data. This work is on the way now. 

5. CONCLUSION 

Proposed method of motion capture markers registration may be 
employed in combination with and as a part in any geometry-
based approach to human animation, if the approach exploits 
motion capture data. Some limitations of current method 
implementation like predefined order of markers consideration 
aren’t critical and will be a point of future improvement. We also 
intend to work on of proper evaluation of the obtained result 
quality and separation of marker position by their reliability. 
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