
The Review of Design Concepts for the Distributed GPGPU Random Search
Computations with the Graphics API Based Core

Oleg Nazarkin
Automated Control Systems Department

Lipetsk State Technical University, Lipetsk, Russia
nazarkino@mail.ru

Abstract
GPGPU methods, which are naturally scalable and natively
targeted on the parallel graphics pipeline architecture well-suit
for distributed computations. In this paper, the key-points of
GPU-oriented distributed processing for the random search tasks
is discussed.

Keywords: GPGPU clusters, GPU-oriented Monte-Carlo
implementation, random search.

1.REASONS FOR GPGPU CLUSTERS

Main reasons are following: 1) cluster give acceleration of data
processing to allow interactive or real-time control in the tasks,
where it is impossible with a single computer; 2) GPU
orientation gives large amount of cheap computational power;
3) naturally scalable, natively targeted on the parallel graphics
pipeline architecture, GPGPU methods well-suit for distributed
computations with no or little change; 4) more effective load of
cluster nodes, as GPU-oriented core utilize CPU power, too.

Random search and evaluation tasks (in a class of Monte-Carlo
methods) are among those that best suite for cluster with
powerful GPU-equipped computational nodes and narrow-band
communications channels (e.g. 100 Mbit/s LAN, or even
Internet). Conditional search of multiple-arguments functions

extrema is concerned: find ()
()XF

Xcond

minarg in constraints,

defined by ()Xcond

. Algorithms of function evaluation in
every input multidimensional random point, as well as argument
constraints checks, if needed, are defined as sequences of GPU
instructions (actually they are the parts of program that drives
pixel pipeline).

Advantage of graphics APIs (e.g. Direct3D, OpenGL) usage
instead of GPGPU APIs (e.g. CUDA, CTM): 1) fitting the non-
graphic software into native optimized architectural paradigm of
graphics pipeline; 2) independence of specific software, provided
by GPU chip manufacturer (no need to setup additional drivers);
3) totally unified application architecture, ease of building
homogeneous cluster, from software point of view, on the
hardware of different vendors.

The fact that GPUs are still nowadays considered of being hard
to program should stimulate the development of effective and
easy-to-use frameworks that map computational task elements
onto graphics pipeline [1]. The were attempts to utilize graphics
engine even before GPUs become flexibly programmable ([2]
references the previous implementation of calculations using
texture blending).

2.RANDOM SEARCH GPGPU CORE TYPES

The main goal of the core architecture is to provide fast and
flexible framework, allowing specification of analytic and table
user functions and data. Tasks are divided in 2 groups.

1) Tasks with small search dimensions (up to 8-12 components
in X

). For the tasks of this type the framework is able to

associate each task variable with a separate texture sampler, thus
allowing all data fetches to be parallel and independent. This
pattern brings the fastest render pass, due to the most simple
data access.
2) Tasks with medium and high search dimensions (up to
hundreds components in X

). Instead of separate 2d-textures,

bound to individual samplers, multiple layers of single volume
texture are used, and all arguments fetches are done by the single
sampler. With growth of search function arguments count, the
requirements of user data support also grow. The proposed
pattern allows more samplers to be bound with user data tables.

The framework implementation should transparently select data
layout type, depending on task description.

3.HIERARCHICAL CLUSTER CONSTRUCTION

Implemented computational cores may be wrapped with the
components that expose a kind of Remote Object Interface and
implement messages exchange through one of the common
transport protocols, e.g. TCP/IP. This components represent GPU
stations, being the nodes of distributed computational network;
special central dispatcher node is needed to control the network.
Dispatcher node can implement GPU station interface and, in its
turn, perform as a slave GPU-node for higher level dispatchers.
This allows to build up hierarchical clusters, useful in that cases,
when it is impossible or inefficient to connect available graphics
workstations in a "flat" network. Multiple inhomogeneous GPU-
nodes may use significantly different cluster control strategies,
aiming load-balancing nodes of varying power, or compensation
of varying communication segments throughput. The balancing
strategies, applied in the intermediate dispatcher nodes, should
adjust task solution stages parameters.

4.REFERENCES

[1] D. Goddeke et al. Exploring weak scalability for FEM
calculations on a GPU-enhanced cluster. Parallel Computing
33:10-11. pp. 685-699. 2007.

[2] Zhe Fan et al. GPU Cluster for High Performance
Computing. Proceedings of the ACM/IEEE SuperComputing
2004 (SC'04), November, 2004

	1.Reasons for GPGPU clusters
	2.Random Search GPGPU Core TYPES
	3.hierarchical Cluster CONSTRUCTION
	4.REFERENCES

