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Abstract 
 
This paper describes an experiment in learning computer graphics algorithms through parallelizing three C code examples: Ray Tracing, 
Voxel Visualization, and Image Warping on PlayStation3 (PS3). An implementation of geometry subdivision of data for PS3, which is a 
physically distributed memory machine, provides, for example, display of  a 120×120×120 voxel slab  at  30 frames per second. We 
notice that all the code conversions were done by novices without Cell programming experience in a quite short time. 
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1. INTRODUCTION 
 
Computer graphics (CG) education is increasingly important to 
supply the growing needs of the film, games, and virtual reality 
industries. Learning goals in  CG and concepts that would be 
generally expected in even  a beginning course could be covered 
at several levels, from the algorithmic and mathematical to a 
general conceptual treatment followed by programming 
realization. 
During the last few decades, many educational practitioners have 
increasingly turned their attention to constructivist models of 
learning. Constructivist pedagogies have been successfully used in 
learning situations where the acquiring of a deep understanding of 
a subject is required [1],[2].  
A common educational approach is to use books and other 
educational components to give students a theoretical foundation, 
and a low-level programming library like OpenGL or use Java – 
developing of animated applets – for practical exercises and 
projects. This paper describes our experiment of using a 
constructivist-oriented approach in computer graphics education. 
Our main premise or “learning model” is that the fundamental 
concepts and algorithms of CG can be acquired through the 
experience with parallelizing old C codes related to CG. Also, we 
present time performance results for running three CG 
applications using parallel processors of  PlayStation3 (PS3) to 
achieve almost linear  speed up of calculations.  
Chips with two processors, or cores, are now standard, and four-
core chips are increasingly common. But right now, even with 
Dual-Core machines being common, most PC programmers don't 
know how to use parallel processing. In spite of the obvious fact 
that  microprocessor companies take a huge risk in adopting the 
multicore strategy, recently, two rather cutting-edge hardware 
consoles (XBox 360 and PS3) with heavy parallel processing 
power have been launched.  
The Xbox 360 (the second video game console produced by 
Microsoft) provides uniform memory and three completely similar 
PowerPC processors.  The PS3 uses the cell microprocessor 
developed by IBM, Sony and Toshiba as its CPU, utilizing seven 
of the eight "synergistic processing elements" ( SPEs). In PS3, six 
SPEs are only available because one SPE is reserved by PS3 OS 
and the other is disabled for improving yield. At peak performance, 
the chip reaches up to 200 GFlops. It has a heterogeneous 
multicore architecture that consists of a Power PC processor along 
with SPEs that are specialized for data processing. PS3 is not only 
one of the most advanced gaming devices in the world, oriented 

on polygon processing, but it is thought that PS3 is also the 
perfect tool for CG and image processing applications having 
much quantity of data processing in such applications such as the 
real time rendering of high-definition images, medical image 
processing, encoding and/or decoding a digital data stream, and in 
many various applications not related to games. Moreover, an 
improved version of the cell chip is also the basis of Roadrunner - 
the fastest computer in the world [3].  
Recently, many universities (for instance, the Department of 
Electrical Engineering and Computer Science at the 
Massachusetts Institute of Technology [4])  in order to provide a 
framework for research and teaching in the areas of multicore 
development and parallel programming have started projects on 
the PS3. The U.S. Air Force bought 300 PS3s for a research 
purpose [5]. IBM is also running a programming contest for 
college and university students in 25 different countries.  
Our goal is three-fold, first of all, as we mentioned above our goal 
is to attain a deep understanding of a subject, in particular CG 
algorithms. Second, is to give undergraduate students the chance 
to get hands-on experience on PS3 hardware. Many processing 
algorithms such as voxel visualization, image processing are 
“embarrassingly parallel” or almost ideally suited to 
parallelization while even a simple ray tracing or ray marching for 
implicitly defined objects creates a problem with load balancing - 
distributing work dynamically.  The fact that Cell-based systems 
are attractive for CG applications stimulated us to implement PS3 
for educational and research purposes. 
Finally, we are interested in the use of so called “dust code” in 
finding a way to make that old our programming code useful to 
provide a framework for research and teaching in the areas of 
geometry modeling and CG.  
Parallelization  of  CG  applications is mainly achieved by 
inserting directives in the source code. 
The remaining part of this paper is arranged as following: 
information and related literature review on the key techniques 
used is given in section 2. Section 3 presents the benchmark 
models. PS3 implementation is discussed in Section 4. The 
benchmark results are given in Section 5. And Section 6 
concludes the paper. 
 
2. BACKGROUND INFORMATION AND RELATED 
WORK 
 
Multiple data (SIMD) ray kernels and distributing work 
dynamically  can produce ray-traced images (without detail-



adding of reflective maps and shadows)  at interactive frame rates 
for complex scenes containing more than one million polygons [6], 
see also [7]. 
PS3 Cell contains one Power Processor Element (PPE—a 
standard PowerPC CPU) and eight  Synergistic Processor 
Elements (SPEs). SPEs live inside elements on the Element 
Interconnect Bus, which also talks to the Memory Interface 
Controller and I/O controllers. This path is very fast, DMA 
between elements and the 256 MByte XDR system memory 
achieves a peak rate of 25.6 GBytes/sec. The Cell’s SPEs provide 
very fast execution, but their local store holds only 256 Kbytes. 
Typically processing on the SPE involves shuttling data to and 
from main memory using DMA. DMA double buffer allowing the 
SPE's memory flow controller  to coordinate the best order of 
operations for loading and storing is used. For more information, 
see [8],[9]. 
Cell Broadband Engine processor provides a cost-effective 
alternative to current ray-tracing options and helps free studios 
from the limitations of low-fidelity, raster-based graphics 
approximations in their final production frames, see [10]. 
 
3. MODELS 
 
For some computer graphics applications, sequential 
implementations are too slow since computation grows as the 
square or cube of a modeled space. Faster approaches often rely 
on subdivision of 2D or 3D space where a partitioning of space is 
used to accelerate calculations. This partitioning - often simple 
geometry subdivision of 2D screen - in many applications forms 
the basis of  scalable multi-processor approaches to visualize   a 
scene or simulation. 

 
3.1 EXAMPLE I. RAY TRACING 
 
Ray tracing is one of the techniques to draw an image of a 
geometry scene. In our implementation of a network of Cell 
processors, a renderer calculates and renders a scene that consists 
of multiple implicitly defined spheres that includes coordinates of 
geometry objects, positions of a source of light and viewpoint, and 
others. The renderer can finely express reflectance, transparency, 
and refractions. This stage is the most complicated and CPU-
intensive: calculation of lighting and shadowing of the objects. 
The ray tracing procedure is pretty simple in some way. It goes 
from one pixel to another; however, computational complexity 
naturally increases with respect to the image size. Also, when one 
ray communes with a lot of objects, hidden surface removal 
performed by projecting nearest point from a viewpoint on plane 
of projection, calculating reflectance  maps and many others  
related to ray tracing techniques are computationally expensive. 
 
3.2 EXAMPLE II. VOXELIZATION AND VOXEL 
VISUALIZATION 
 
In many  CG, animation, and  geometry  applications continuous 
volume is represented by a 3D grid of voxels, see, for example, 
[11]. This representation is convenient for a number of 
applications such as mixing synthetic objects into medical 
imagery, 3D-visualization of tomography volume data, reverse 
engineering, and scientific visualization. In these fields, 3D data is 
measured or computed at a large number of points in 3D space 
and then rendered to produce informative images.  The main 
weakness of the voxel-based approach is that it is expensive in 
terms of computation and memory. Interaction is an effective 

technique for guiding the production of these images, allowing a 
doctor or scientist to navigate to various regions of interest and 
adjust the transfer function used to map the data into colors. 
Unfortunately, due to the size of these 3D datasets and the 
processing required to render them, interaction has only been 
possible with relatively small data sets and not of the most general 
organization. In particular, regular rectilinear grids of volume 
elements, or voxels, are well-suited to acceleration by modern 
graphics hardware. This hardware can take the form of a dedicated 
volume processor [12] or a more generic 3D graphics accelerator 
[13], see, also [14].  
For data of the right form and size, this hardware makes 
interaction possible. Nevertheless, volume data often comes in 
many sizes and forms that creates difficulties of using specific 
volume processors. Also, interaction is an effective technique for 
guiding the production of new volume models, see, for instance, 
[15] and references therein, that is considered as a continuation of 
the project.  
 
3.3 EXAMPLE III. IMAGE WARPING 
 
One of the image processing techniques is the image warping, see, 
for instance [16]. Image warping is the process of digitally 
manipulating an image where the image coordinates are 
transformed from pixels (i,j) to coordinates (x,y)  of destination 
image. Early interest in this area dates back to the mid-1960s 
when it was introduced for geometric applications, for example, 
distortion correction of lenses in remote sensing. It has found a 
new surge of interest from the CG field. This is largely due to 
increasingly powerful computers that make warping a viable tool 
for image synthesis and special effects. The most usual technique 
used in warping algorithms is based on spline interpolation. So, 
conventional image processing takes much time because the 
computer calculates a mapping over an image by calculating a 
spline; in our application,  we apply warping technique   based on 
the use of radial bases functions [17] that allows effectively 
produce forward and inverse mappings. Thus it seems reasonable 
and interesting for students to investigate opportunities of the use 
of PS3 and study numerical algorithms for calculating maps from 
the destination image to the source image in parallel and to check 
up speedup with respect to processing speed on a single processor.  
 
4. PS3 IMPLEMENTATION 
 
Load balancing is a central theme of multiprocessor-based 
systems for managing memory layout and assigning processors to 
jobs. In considered here applications, fortunately, there is no 
spatial and time dependency between processed data, therefore 
processors can be updated in parallel in any order. The master-
slave (or host-node) paradigm is used for load balancing to speed 
up calculations. It means that a separate “control” program (on 
PPE) called the master is responsible for process spawning, 
initialization, collection, and display of results. The slave 
programs (on SPEs) perform the actual computation involved; 
their workloads are allocated by the master dynamically. There is 
no room to show relative simplicity of software development. 
Nevertheless, let us notice that the main master program includes 
two functions – startRayTracing00 and getJob –  which 
provide , first of all, a preparation for SPE by spe_image_open, 
spe_context_create, spe_program_load, and pthread_create 
functions which are included in startRayTracing00. Secondly, 
ray tracing is performed by SPEs where each thread takes control 
of sending and getting necessary data. PPE is also used for ray 
tracing as well as SPEs. Processing data are distributed by getJob 



function. Synchronization is taken on each thread by using the 
mutex method in getJob function that provides correct 
distribution of job assignments. SPEs use DMA transfer that 
allows to access system memory for writing RGB data directly to 
a pixels array. It makes possible performing a complete image 
directly by SPEs without composing a final image by PPE. 
The DMA transfer controller is used to send data going to and 
from the main memory. 16 bytes multiple sequence alignment is 
used both on local store and main memory to provide the DMA 
transfer. Moreover, the size of data that can be sent by one time is 
up to 16 Kbytes. Because information transmitted in the ray 
tracing application is integer type (four bytes that show 
coordinates of the pixel and the color of the pixel) 4,000 of data or 
less can be sent at once. The automatic generation of accurate 
multiple alignments is potentially a daunting task. Nevertheless, 
experiments show that an improvement of the processing speed is 
not achieved when the number which can be sent is increasing 
from 1,000 to 4,000 while the processing speed is improved when 
this value is increasing from 1 to 1,000. Thus, size of parcel data 
to be sent at once was chosen to be 1,000. Let us notice that 
Phong [18] model was used. 
The SPEs are the Cells short-vector SIMD workhorses. It is 
important to exploit SIMD properties of SPEs as efficiently as 
possible to speed up the processing speed of a SPE program. 
While it is not quite clear how we can harness the power of the 
Cell and PS3 by using SIMD operations in ray tracing application, 
existing voxelization/visualization C code can be easily modified 
to add new capabilities for  model voxelization and real time 
visualization.  
 
5. PERFORMANCE EVALUATION 
 
The processing speed measurements were produced for the Cell 
processor and the Pentium processor for the examples shown in 
Figures 1, 2, 3. 
 

 
 

Figure 1. Ray-traced objects are rendered with detail-adding of 
reflective maps and shadows 

 
The performance results are shown in Tables 1,2,3; time is given 
in seconds. 
 

 
Table 1. Measurement results for Ray Tracing 

 
#PUs Processing time 
Pentium 4 3.2GHz 7.81 
Pentium M 1.6GHz 14.27 
PPE 5.60 
PPE + 1SPE 3.36 
PPE + 2SPE 2.44 
PPE + 3SPE 1.93 
PPE + 4SPE 1.60 
PPE + 5SPE 1.36 
PPE + 6SPE 1.18 

 
The image of  a voxel model  (defined by subtraction and union 
operations of three implicitly defined spheres) produced by the  
developed software algorithm is shown in Figure 2. The execution 
time of voxelization and vizualization by using 6 processors is 
0.1097 sec. The execution time of processing without using Cell 
was 1.3075 sec. Thus, the speed of processing using the cell is 
about order of magnitude higher than without using the cell 
processor that is explained by using SIMD operations for 
voxelization of the model. 
 

 
Figure 2. Result of voxel visualization. Size of the voxel slab is 

120x120x120 
 

Table 2. Processing characteristics 
 

#PUs Time of 
voxelization 

Time of 
visualization 

1SPE 0.4268  0.1103 
2SPE 0.2177  0.0688 
3SPE 0.1438  0.0473 
4SPE 0.11  0.0459 
5SPE 0.0891 0.0428 
6SPE 0.07 0.0397 
PPE 1.1938  0.1137 

 
Table3. Warping test results 

 
#PUs Processing time 
1SPE 1.96 
2SPE 0.99 
3SPE 0.65 
4SPE 0.50 
5SPE 0.41 
6SPE 0.35 
PPE 3.05 

 



   
 

Figure 4. Warping  of “Neko” image. Image size is 407×411 
 

Let   us  notice  that   almost   similar programming     approach 
discussed above for Ray Tracing was used for voxel vizualization 
and image warping. 
 
6. CONCLUSION REMARKS 
 
The PS3 Cell processor has unique architecture; therefore a 
special treatment of programs developed for conventional 
computers is needed. Comparison of performance of Pentium 4 
3.2GHz processor and using 6 Cell processors shows that the Cell 
processor system demonstrates about 7 times performance speed 
up of Pentium 4 processor. It has been said that the processing 
speed of Cell processor is from several to tens times faster than 
Pentium D processor. Nevertheless, we were not able to attain ten 
times acceleration of ray tracing by the use of Cell processor. 
Without any doubt, we can state that we succeeded in the using 
Cell processor with respect to Pentium 4 which performance is 
lower than Pentium D. Cell processor shows about 7 times 
performance speed up of Pentium 4 processor and about 12 times 
performance speed up of Pentium M processor. Moreover, 
because the processing speed has improved by increasing the 
number of used SPEs almost linearly, it seems that multiple data 
alignment procedure is reasonable and accurate. 
However, the improvement of the processing speed by SPEs was 
less than our expectation. We suppose that there are two reasons 
of it. First one is related to uneasy question how to assign 
processing operations. SPE works well on simple operations, that 
is conditional branches must be eliminated. The second is that 
SIMD operations were not used in the software development of 
ray tracing  and image warping algorithms. In future, we are 
planning to rewrite the source code of the SPE`s program which 
uses only scalar operations by using SIMD operations. It is a 
serious problem because of the initial code was not accustomed to 
the idea of the vector data. It seems that without proper compiling 
tools SIMDimization process can be a serious obstacle for a wide 
application of Cell processors. 
The results presented are from a short initial evaluation. There is 
still much scope for optimization and these results should be 
considered as representative of the performance that can be 
obtained from the first naïve parallelizing of old C codes.  
The main lesson learned is the fact that students with no 
background in Cell parallel programming, were able to get their 
projects done from scratch in just about three months. This largely 

goes to show that we can expect rather simple  migration of   
“embarrassingly parallel”  CG applications   to the Cell processor. 
 
ACKNOWLEGEMENTS 
 
I would like to thank my former undergraduate students Y. Mukai,  
T. Suganami, and I. Tatsuma, for their encouragement to 
participate in this project. 
 
REFERENCES 
 
 [1] C.T. Fosnot, Ed. Constructivism. Theory, Perspectives, and 

Practice. Teachers College P, 1996.   
[2]E. Von Glasersfeld. Radical Constructivism and 

Teaching,2001,http://www.umass.edu/srri/vonGlasersfeld/onlin
ePapers/html/geneva/

[3] http://www.lanl.gov/roadrunner/
[4] http://www.ps3cluster.org/index.html
[5] https://www.fbo.gov/
[6] C. Benthin, I. Wald_, M. Scherbaum,  H. Friedrich, Ray 

Tracing on the Cell Processor, , IEEE Symposium on 
Interactive Ray Tracing, 2006, pp. 15-23. 

[7]Real-Time Ray Tracing on the Playstation3 Cell Processor, 
http://eric_rollins.home.mindspring.com/ray/ray.html

[8] IBM, Cell Broadband Engine Programming Handbook, 
Version 1.1, April 2007. 

[9] IBM, Cell broadband Engine Architecture, Version 1.01, 
October 2006. 

[10]Interactive Ray Tracer for Cell Broadband Engine,  
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105
AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt

[11] B. Lichtenberg, R. Crane, and S. Naqvi, Introduction To 
Volume Rendering, Prentice Hall PTR, 1998. 

[12] H. Pfister, J. Hardenbergh, J.  Knittel, H. Lauer, and L. Seiler. 
The VolumePro Real-Time Ray-casting System. Proceedings of 
SIGGRAPH 99. pp. 251-260. 

[13] B. Cabral, N. Cam, and J. Foran. Accelerated Volume 
Rendering and Tomographics Reconstruction Using Texture 
Mapping Hardware. Proceedings of 1994 ACM Symmposium 
on Volume Visualization. pp. 91-98. 

[14] U. Neumann, Interactive Volume Rendering on a 
Multicomputer, Proceedings of the 1992 Symposium on 
Interactive 3D Graphics, SI3D '92, March 29 - April 1, 1992, 
Cambridge, MA, USA. ACM, 1992, pp.  87-93. 

[15] T. A. Galyean and J. F. Hughes, Sculpting: An Interactive 
Volumetric Modeling Technique, Computer Graphics, Vol. 25, 
No. 4, 1991, pp 267-274. 

[16] G. Wolberg, Digital Image Warping (Systems), Wiley-IEEE 
Computer Society, 1990. 

[17] V.A. Vasilenko, Spline Functions: Theory, Algorithms,, 
Programs, Nauka Publisher, Novosibirsk, 1983, (in Russian) 

[18] J. F. Blinn, "Models of Light Reflection for Computer 
Synthesized Pictures". Proc. 4th annual conference on computer 
graphics and interactive techniques, 1977, pp. 192-198.

 

 

http://www.umass.edu/srri/vonGlasersfeld/onlinePapers/html/geneva/
http://www.umass.edu/srri/vonGlasersfeld/onlinePapers/html/geneva/
http://www.lanl.gov/roadrunner/
http://www.ps3cluster.org/index.html
https://www.fbo.gov/
http://eric_rollins.home.mindspring.com/ray/ray.html
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt

