
The Experience of The “Dust” C Code Implementation on PS3

Vladimir Savchenko
Faculty of Computer and Information Sciences, Hosei University

Tokyo, Japan
vsavchen@k.hosei.ac.jp

Abstract

This paper describes an experiment in learning computer graphics algorithms through parallelizing three C code examples: Ray Tracing,
Voxel Visualization, and Image Warping on PlayStation3 (PS3). An implementation of geometry subdivision of data for PS3, which is a
physically distributed memory machine, provides, for example, display of a 120×120×120 voxel slab at 30 frames per second. We
notice that all the code conversions were done by novices without Cell programming experience in a quite short time.
Keywords: PlayStation3, Cell, Educational approach

1. INTRODUCTION

Computer graphics (CG) education is increasingly important to
supply the growing needs of the film, games, and virtual reality
industries. Learning goals in CG and concepts that would be
generally expected in even a beginning course could be covered
at several levels, from the algorithmic and mathematical to a
general conceptual treatment followed by programming
realization.
During the last few decades, many educational practitioners have
increasingly turned their attention to constructivist models of
learning. Constructivist pedagogies have been successfully used in
learning situations where the acquiring of a deep understanding of
a subject is required [1],[2].
A common educational approach is to use books and other
educational components to give students a theoretical foundation,
and a low-level programming library like OpenGL or use Java –
developing of animated applets – for practical exercises and
projects. This paper describes our experiment of using a
constructivist-oriented approach in computer graphics education.
Our main premise or “learning model” is that the fundamental
concepts and algorithms of CG can be acquired through the
experience with parallelizing old C codes related to CG. Also, we
present time performance results for running three CG
applications using parallel processors of PlayStation3 (PS3) to
achieve almost linear speed up of calculations.
Chips with two processors, or cores, are now standard, and four-
core chips are increasingly common. But right now, even with
Dual-Core machines being common, most PC programmers don't
know how to use parallel processing. In spite of the obvious fact
that microprocessor companies take a huge risk in adopting the
multicore strategy, recently, two rather cutting-edge hardware
consoles (XBox 360 and PS3) with heavy parallel processing
power have been launched.
The Xbox 360 (the second video game console produced by
Microsoft) provides uniform memory and three completely similar
PowerPC processors. The PS3 uses the cell microprocessor
developed by IBM, Sony and Toshiba as its CPU, utilizing seven
of the eight "synergistic processing elements" (SPEs). In PS3, six
SPEs are only available because one SPE is reserved by PS3 OS
and the other is disabled for improving yield. At peak performance,
the chip reaches up to 200 GFlops. It has a heterogeneous
multicore architecture that consists of a Power PC processor along
with SPEs that are specialized for data processing. PS3 is not only
one of the most advanced gaming devices in the world, oriented

on polygon processing, but it is thought that PS3 is also the
perfect tool for CG and image processing applications having
much quantity of data processing in such applications such as the
real time rendering of high-definition images, medical image
processing, encoding and/or decoding a digital data stream, and in
many various applications not related to games. Moreover, an
improved version of the cell chip is also the basis of Roadrunner -
the fastest computer in the world [3].
Recently, many universities (for instance, the Department of
Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology [4]) in order to provide a
framework for research and teaching in the areas of multicore
development and parallel programming have started projects on
the PS3. The U.S. Air Force bought 300 PS3s for a research
purpose [5]. IBM is also running a programming contest for
college and university students in 25 different countries.
Our goal is three-fold, first of all, as we mentioned above our goal
is to attain a deep understanding of a subject, in particular CG
algorithms. Second, is to give undergraduate students the chance
to get hands-on experience on PS3 hardware. Many processing
algorithms such as voxel visualization, image processing are
“embarrassingly parallel” or almost ideally suited to
parallelization while even a simple ray tracing or ray marching for
implicitly defined objects creates a problem with load balancing -
distributing work dynamically. The fact that Cell-based systems
are attractive for CG applications stimulated us to implement PS3
for educational and research purposes.
Finally, we are interested in the use of so called “dust code” in
finding a way to make that old our programming code useful to
provide a framework for research and teaching in the areas of
geometry modeling and CG.
Parallelization of CG applications is mainly achieved by
inserting directives in the source code.
The remaining part of this paper is arranged as following:
information and related literature review on the key techniques
used is given in section 2. Section 3 presents the benchmark
models. PS3 implementation is discussed in Section 4. The
benchmark results are given in Section 5. And Section 6
concludes the paper.

2. BACKGROUND INFORMATION AND RELATED
WORK

Multiple data (SIMD) ray kernels and distributing work
dynamically can produce ray-traced images (without detail-

adding of reflective maps and shadows) at interactive frame rates
for complex scenes containing more than one million polygons [6],
see also [7].
PS3 Cell contains one Power Processor Element (PPE—a
standard PowerPC CPU) and eight Synergistic Processor
Elements (SPEs). SPEs live inside elements on the Element
Interconnect Bus, which also talks to the Memory Interface
Controller and I/O controllers. This path is very fast, DMA
between elements and the 256 MByte XDR system memory
achieves a peak rate of 25.6 GBytes/sec. The Cell’s SPEs provide
very fast execution, but their local store holds only 256 Kbytes.
Typically processing on the SPE involves shuttling data to and
from main memory using DMA. DMA double buffer allowing the
SPE's memory flow controller to coordinate the best order of
operations for loading and storing is used. For more information,
see [8],[9].
Cell Broadband Engine processor provides a cost-effective
alternative to current ray-tracing options and helps free studios
from the limitations of low-fidelity, raster-based graphics
approximations in their final production frames, see [10].

3. MODELS

For some computer graphics applications, sequential
implementations are too slow since computation grows as the
square or cube of a modeled space. Faster approaches often rely
on subdivision of 2D or 3D space where a partitioning of space is
used to accelerate calculations. This partitioning - often simple
geometry subdivision of 2D screen - in many applications forms
the basis of scalable multi-processor approaches to visualize a
scene or simulation.

3.1 EXAMPLE I. RAY TRACING

Ray tracing is one of the techniques to draw an image of a
geometry scene. In our implementation of a network of Cell
processors, a renderer calculates and renders a scene that consists
of multiple implicitly defined spheres that includes coordinates of
geometry objects, positions of a source of light and viewpoint, and
others. The renderer can finely express reflectance, transparency,
and refractions. This stage is the most complicated and CPU-
intensive: calculation of lighting and shadowing of the objects.
The ray tracing procedure is pretty simple in some way. It goes
from one pixel to another; however, computational complexity
naturally increases with respect to the image size. Also, when one
ray communes with a lot of objects, hidden surface removal
performed by projecting nearest point from a viewpoint on plane
of projection, calculating reflectance maps and many others
related to ray tracing techniques are computationally expensive.

3.2 EXAMPLE II. VOXELIZATION AND VOXEL
VISUALIZATION

In many CG, animation, and geometry applications continuous
volume is represented by a 3D grid of voxels, see, for example,
[11]. This representation is convenient for a number of
applications such as mixing synthetic objects into medical
imagery, 3D-visualization of tomography volume data, reverse
engineering, and scientific visualization. In these fields, 3D data is
measured or computed at a large number of points in 3D space
and then rendered to produce informative images. The main
weakness of the voxel-based approach is that it is expensive in
terms of computation and memory. Interaction is an effective

technique for guiding the production of these images, allowing a
doctor or scientist to navigate to various regions of interest and
adjust the transfer function used to map the data into colors.
Unfortunately, due to the size of these 3D datasets and the
processing required to render them, interaction has only been
possible with relatively small data sets and not of the most general
organization. In particular, regular rectilinear grids of volume
elements, or voxels, are well-suited to acceleration by modern
graphics hardware. This hardware can take the form of a dedicated
volume processor [12] or a more generic 3D graphics accelerator
[13], see, also [14].
For data of the right form and size, this hardware makes
interaction possible. Nevertheless, volume data often comes in
many sizes and forms that creates difficulties of using specific
volume processors. Also, interaction is an effective technique for
guiding the production of new volume models, see, for instance,
[15] and references therein, that is considered as a continuation of
the project.

3.3 EXAMPLE III. IMAGE WARPING

One of the image processing techniques is the image warping, see,
for instance [16]. Image warping is the process of digitally
manipulating an image where the image coordinates are
transformed from pixels (i,j) to coordinates (x,y) of destination
image. Early interest in this area dates back to the mid-1960s
when it was introduced for geometric applications, for example,
distortion correction of lenses in remote sensing. It has found a
new surge of interest from the CG field. This is largely due to
increasingly powerful computers that make warping a viable tool
for image synthesis and special effects. The most usual technique
used in warping algorithms is based on spline interpolation. So,
conventional image processing takes much time because the
computer calculates a mapping over an image by calculating a
spline; in our application, we apply warping technique based on
the use of radial bases functions [17] that allows effectively
produce forward and inverse mappings. Thus it seems reasonable
and interesting for students to investigate opportunities of the use
of PS3 and study numerical algorithms for calculating maps from
the destination image to the source image in parallel and to check
up speedup with respect to processing speed on a single processor.

4. PS3 IMPLEMENTATION

Load balancing is a central theme of multiprocessor-based
systems for managing memory layout and assigning processors to
jobs. In considered here applications, fortunately, there is no
spatial and time dependency between processed data, therefore
processors can be updated in parallel in any order. The master-
slave (or host-node) paradigm is used for load balancing to speed
up calculations. It means that a separate “control” program (on
PPE) called the master is responsible for process spawning,
initialization, collection, and display of results. The slave
programs (on SPEs) perform the actual computation involved;
their workloads are allocated by the master dynamically. There is
no room to show relative simplicity of software development.
Nevertheless, let us notice that the main master program includes
two functions – startRayTracing00 and getJob – which
provide , first of all, a preparation for SPE by spe_image_open,
spe_context_create, spe_program_load, and pthread_create
functions which are included in startRayTracing00. Secondly,
ray tracing is performed by SPEs where each thread takes control
of sending and getting necessary data. PPE is also used for ray
tracing as well as SPEs. Processing data are distributed by getJob

function. Synchronization is taken on each thread by using the
mutex method in getJob function that provides correct
distribution of job assignments. SPEs use DMA transfer that
allows to access system memory for writing RGB data directly to
a pixels array. It makes possible performing a complete image
directly by SPEs without composing a final image by PPE.
The DMA transfer controller is used to send data going to and
from the main memory. 16 bytes multiple sequence alignment is
used both on local store and main memory to provide the DMA
transfer. Moreover, the size of data that can be sent by one time is
up to 16 Kbytes. Because information transmitted in the ray
tracing application is integer type (four bytes that show
coordinates of the pixel and the color of the pixel) 4,000 of data or
less can be sent at once. The automatic generation of accurate
multiple alignments is potentially a daunting task. Nevertheless,
experiments show that an improvement of the processing speed is
not achieved when the number which can be sent is increasing
from 1,000 to 4,000 while the processing speed is improved when
this value is increasing from 1 to 1,000. Thus, size of parcel data
to be sent at once was chosen to be 1,000. Let us notice that
Phong [18] model was used.
The SPEs are the Cells short-vector SIMD workhorses. It is
important to exploit SIMD properties of SPEs as efficiently as
possible to speed up the processing speed of a SPE program.
While it is not quite clear how we can harness the power of the
Cell and PS3 by using SIMD operations in ray tracing application,
existing voxelization/visualization C code can be easily modified
to add new capabilities for model voxelization and real time
visualization.

5. PERFORMANCE EVALUATION

The processing speed measurements were produced for the Cell
processor and the Pentium processor for the examples shown in
Figures 1, 2, 3.

Figure 1. Ray-traced objects are rendered with detail-adding of
reflective maps and shadows

The performance results are shown in Tables 1,2,3; time is given
in seconds.

Table 1. Measurement results for Ray Tracing

#PUs Processing time
Pentium 4 3.2GHz 7.81
Pentium M 1.6GHz 14.27
PPE 5.60
PPE + 1SPE 3.36
PPE + 2SPE 2.44
PPE + 3SPE 1.93
PPE + 4SPE 1.60
PPE + 5SPE 1.36
PPE + 6SPE 1.18

The image of a voxel model (defined by subtraction and union
operations of three implicitly defined spheres) produced by the
developed software algorithm is shown in Figure 2. The execution
time of voxelization and vizualization by using 6 processors is
0.1097 sec. The execution time of processing without using Cell
was 1.3075 sec. Thus, the speed of processing using the cell is
about order of magnitude higher than without using the cell
processor that is explained by using SIMD operations for
voxelization of the model.

Figure 2. Result of voxel visualization. Size of the voxel slab is

120x120x120

Table 2. Processing characteristics

#PUs Time of
voxelization

Time of
visualization

1SPE 0.4268 0.1103
2SPE 0.2177 0.0688
3SPE 0.1438 0.0473
4SPE 0.11 0.0459
5SPE 0.0891 0.0428
6SPE 0.07 0.0397
PPE 1.1938 0.1137

Table3. Warping test results

#PUs Processing time
1SPE 1.96
2SPE 0.99
3SPE 0.65
4SPE 0.50
5SPE 0.41
6SPE 0.35
PPE 3.05

Figure 4. Warping of “Neko” image. Image size is 407×411

Let us notice that almost similar programming approach
discussed above for Ray Tracing was used for voxel vizualization
and image warping.

6. CONCLUSION REMARKS

The PS3 Cell processor has unique architecture; therefore a
special treatment of programs developed for conventional
computers is needed. Comparison of performance of Pentium 4
3.2GHz processor and using 6 Cell processors shows that the Cell
processor system demonstrates about 7 times performance speed
up of Pentium 4 processor. It has been said that the processing
speed of Cell processor is from several to tens times faster than
Pentium D processor. Nevertheless, we were not able to attain ten
times acceleration of ray tracing by the use of Cell processor.
Without any doubt, we can state that we succeeded in the using
Cell processor with respect to Pentium 4 which performance is
lower than Pentium D. Cell processor shows about 7 times
performance speed up of Pentium 4 processor and about 12 times
performance speed up of Pentium M processor. Moreover,
because the processing speed has improved by increasing the
number of used SPEs almost linearly, it seems that multiple data
alignment procedure is reasonable and accurate.
However, the improvement of the processing speed by SPEs was
less than our expectation. We suppose that there are two reasons
of it. First one is related to uneasy question how to assign
processing operations. SPE works well on simple operations, that
is conditional branches must be eliminated. The second is that
SIMD operations were not used in the software development of
ray tracing and image warping algorithms. In future, we are
planning to rewrite the source code of the SPE`s program which
uses only scalar operations by using SIMD operations. It is a
serious problem because of the initial code was not accustomed to
the idea of the vector data. It seems that without proper compiling
tools SIMDimization process can be a serious obstacle for a wide
application of Cell processors.
The results presented are from a short initial evaluation. There is
still much scope for optimization and these results should be
considered as representative of the performance that can be
obtained from the first naïve parallelizing of old C codes.
The main lesson learned is the fact that students with no
background in Cell parallel programming, were able to get their
projects done from scratch in just about three months. This largely

goes to show that we can expect rather simple migration of
“embarrassingly parallel” CG applications to the Cell processor.

ACKNOWLEGEMENTS

I would like to thank my former undergraduate students Y. Mukai,
T. Suganami, and I. Tatsuma, for their encouragement to
participate in this project.

REFERENCES

 [1] C.T. Fosnot, Ed. Constructivism. Theory, Perspectives, and

Practice. Teachers College P, 1996.
[2]E. Von Glasersfeld. Radical Constructivism and

Teaching,2001,http://www.umass.edu/srri/vonGlasersfeld/onlin
ePapers/html/geneva/

[3] http://www.lanl.gov/roadrunner/
[4] http://www.ps3cluster.org/index.html
[5] https://www.fbo.gov/
[6] C. Benthin, I. Wald_, M. Scherbaum, H. Friedrich, Ray

Tracing on the Cell Processor, , IEEE Symposium on
Interactive Ray Tracing, 2006, pp. 15-23.

[7]Real-Time Ray Tracing on the Playstation3 Cell Processor,
http://eric_rollins.home.mindspring.com/ray/ray.html

[8] IBM, Cell Broadband Engine Programming Handbook,
Version 1.1, April 2007.

[9] IBM, Cell broadband Engine Architecture, Version 1.01,
October 2006.

[10]Interactive Ray Tracer for Cell Broadband Engine,
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105
AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt

[11] B. Lichtenberg, R. Crane, and S. Naqvi, Introduction To
Volume Rendering, Prentice Hall PTR, 1998.

[12] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The VolumePro Real-Time Ray-casting System. Proceedings of
SIGGRAPH 99. pp. 251-260.

[13] B. Cabral, N. Cam, and J. Foran. Accelerated Volume
Rendering and Tomographics Reconstruction Using Texture
Mapping Hardware. Proceedings of 1994 ACM Symmposium
on Volume Visualization. pp. 91-98.

[14] U. Neumann, Interactive Volume Rendering on a
Multicomputer, Proceedings of the 1992 Symposium on
Interactive 3D Graphics, SI3D '92, March 29 - April 1, 1992,
Cambridge, MA, USA. ACM, 1992, pp. 87-93.

[15] T. A. Galyean and J. F. Hughes, Sculpting: An Interactive
Volumetric Modeling Technique, Computer Graphics, Vol. 25,
No. 4, 1991, pp 267-274.

[16] G. Wolberg, Digital Image Warping (Systems), Wiley-IEEE
Computer Society, 1990.

[17] V.A. Vasilenko, Spline Functions: Theory, Algorithms,,
Programs, Nauka Publisher, Novosibirsk, 1983, (in Russian)

[18] J. F. Blinn, "Models of Light Reflection for Computer
Synthesized Pictures". Proc. 4th annual conference on computer
graphics and interactive techniques, 1977, pp. 192-198.

http://www.umass.edu/srri/vonGlasersfeld/onlinePapers/html/geneva/
http://www.umass.edu/srri/vonGlasersfeld/onlinePapers/html/geneva/
http://www.lanl.gov/roadrunner/
http://www.ps3cluster.org/index.html
https://www.fbo.gov/
http://eric_rollins.home.mindspring.com/ray/ray.html
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt
http://www.alphaworks.ibm.com/tech/irt?open&S_TACT=105AGX59&S_CMP=GRsite-jw18&ca=dgr-jw18awirt

