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Figure 1. 64-bit extension overhead for  large models. Models are ray-traced with shadows at 1024x1024 on 
a 2-way 3GHz Intel ®Core™2 Duo machine (4 threads for  construction/render ing) with 8 GB RAM 

ABSTRACT 
Any rendering solution needs fast acceleration structures to 

reduce the complexity of solving search problems. We address the 
following problems of constructing acceleration structures for the 
large number of primitives: compact memory layout, efficient 
traversal capability, memory address space independence, parallel 
construction capability and 32/64 bit efficiency. 
This proposed kd-tree layout solution solves the above problems 
completely with highest possible efficiency. It is easily applied to 
other hierarchical acceleration structure types as well. 
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tracing, proximity search. 

1. Introduction 
Rendering algorithms use acceleration structures to reduce the 
complexity of solving search problems [1]. Making their usage 
practical for high-speed parallel requires addressing of the 
following problems:  

• Efficient traversal capability – compact representation 
should not slow down the traversal step 

• Memory address space independence –an acceleration 
structure could be saved/loaded/transferred easily 

• Parallel construction capability - the data format of 
acceleration structure should support creation in 
multiple parallel threads 

• 32 and 64 bit efficiency – the acceleration structure size 
should not explode on 64 bit architectures. The 32 bit 
mode acceleration structure mode should have exactly 
the same binary representation on 64 bit architectures. 

In this paper we propose specific memory layout solving the 
above problems. We use kd-tree as example, but the solution we 
proposed is also applicable to a wide range of partitioning 
hierarchies.  

2. Previous work 
The kd-tree is basically a binary tree in which each node 

corresponds to a spatial cell. Inner node of kd-tree represents 
splitting plane and refers to the two child nodes. Each leaf node, 
in contrast, stores primitives counter and refers to a corresponding 
list of primitives. 

A compact kd-tree layout has been proposed in [3]. It uses only 
eight bytes per node. Storing offsets instead of pointers makes the 
data structure independent of the base address changes:   

3. Solution 

Efficient leaf/node test 
During traversal the leaf/internal node test is executed at each 
traversal step and the branch depends on its results, so its 
performance is critical. Having 0 as a leaf indicator allows 
reducing the test to exactly 1 instruction before branch:  

and  Node, 0x03  
jz ProcessLeaf 

 

/* basic 8-byte layout for a kd-tree node */ 
struct KDTreeNode { 

union{ 
//position of axis-aligned split plane 
float split_position; 
// or number of leaf primitives 
unsigned int items; 

} 
unsigned int dim_offset_flag; 

//’dim_offset_flag’ bits encode multiple data: 
// bits[0..1]: encode the split plane dimension 
// bits[2..30]: encode an unsigned address offset 
// bit[31]: encodes whether node is an inner node or 
leaf 
}; 
// macros for extracting node information 
#define DIMENSION(n) (n->dim_offset_flag & 0x3) 
#define ISLEAF(n) (n->dim_offset_flag & (UINT)(1<<31)) 
#define OFFSET(n) (n->dim_offset_flag & 0x7FFFFFFC) 

a) Asian Dragon model, 7.2M triangles, 
64-bit extension consumes only 2Mb of 
1.3Gb acceleration structure, 
extension processing time is <0.5% of 
rendering time 

b) Thai Statue model, 10M triangles,  
64-bit extension consumes only 2.1Mb of 
1.4Gb acceleration structure, 
extension processing time is <0.5% of 
rendering time 
 

d) Thai Statue model replicated 7 times 
(70M triangles total)  
64-bit extension consumes only 4Mb of 
7Gb acceleration structure, extension 
processing time is <0.5% of rendering time 
 



32 and 64 bit efficiency 
To handle an unpredictability of resulting tree size a 

construction algorithm usually allocates memory by continuous 
regions. The number of links between those sub-trees is relatively 
small (<<1% of total number of total number of kd-tree nodes).  

The typical region size is way smaller than 4GBs. So the nodes 
can use 32-bit offsets to reference children within the same 
region. The only nodes that need 64-bit offsets are the nodes 
having children located in another memory region. Since the 
number of such nodes is small they are encoded as extensions of 
32-bit nodes. We use negative values of the primitive counter to 
indicate that the leaf is special, and it is a 64-bit extended node. 

Multiple threads construction 
 When the tree is constructed in multiple threads each thread 

builds some sub-tree [2]. Thus different threads may create a 
parent node and its children nodes. So when a parent is created the 
offset to children nodes may be unknown. That fact prevents from 
allocating 64-bit offset data next to a node. The 64-bit extended 
node data (actual 64-bit offset, actual leaf/axis and actual 
counter/split fields) is stored in a special per-thread table. 
64-bit extension node is a special type of leaf with the following 
values of its fields: 

a) -(entry+1), where entry is a table entry number, is 
stored in items field; 

a)  (tbl)<<2 where tbl is a table number, is stored in 
dim_offset_flag field; note that 2 least-significant bits 
are zeroed, indicating a leaf.  

Each construction thread creates its own 64-bit node table to 

avoid contention.  If a table becomes full the correspondent thread 
just increases its size by re-allocation and data copy. Since the 

table is small it does not affect construction performance. The 
tests on models with up to 70M polygons demonstrated that 256-
entry per-thread tables were never full. Storage or transmission of 
the tree located in multiple memory regions requires only 
adjustment of cross-region offsets in the table.  

Modifications of traversal algorithm 
The tree constructed by 32-bit code can be rendered by 64-bit 

code without any modifications. To avoid testing 64-bit extension 
indicator at each traversal step the extended nodes are stored as 
leaves. Since the probability of traversing leaf is very small 
comparing to probability of traversing internal node the additional 
64-bit extension test is performed at a very small fraction of 
traversal steps.   

4.  Memory/Performance considerations 
Our experiments with variety of models proved that memory 

overhead from using proposed 64-bit extensions is negligible 
(refer to Figure 1 for examples models). 

Also managing per-thread 64-bit node tables doesn’t affect 
construction performance. Our measurements show that 
construction slowdown is <1% and thus is negligible too. We also 
performed tests for 1-128 construction threads with wide range of 
models (1-100M polygons). They demonstrated that 128-entry 
per-thread tables are far most than sufficient to connect portions 
of a tree constructed with different threads. 

The performance of rendering using new layout supporting 64-
bit extensions is the same as of rendering the efficient layout 
supporting 32-bits only (see Figure 1 for details). Even on 
complex models and high memory regions granularity the 
slowdown using the proposed layout was less than 0.5% 
comparing with 32-bit only offsets and one continuous memory 
region for the whole tree. 
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/* 8-byte layout for a kd-tree node */ 
struct KDTreeNode { 

union{ 
float split_position; 
unsigned int items; 

} 
int dim_offset_flag; 

// ’dim_offset_flag’ bits encode data in a new way 
// bits[0..1] : indicate either  
// • a leaf(if set to 0) 
    // if ‘items’ field is >=0 it is true leaf           

// otherwise it is 64-bit extension 
// • an inner node with split plane dimension  
//   (if set to 1,2,3 for x,y,z axis corresp.) 
// bits[2..31] : encode a signed address offset 
}; 

// relocation table's entries  
struct TableEntry{ 
      //actual leaf/node but with offset==0 
 KDTreeNode node;  
      //true offset  
 __int64 offset; 
}; 
#define ISLEAF(n) (!(n.dim_offset_flag&0x3))  
#define DIMENSION(n) ((n.dim_offset_flag&0x3)-1) 
#define IS_64BIT_EXT(n) (n.items<0) 
#define HASITEMS(n) (n.items) 
 
#define MAKELEAF(n,its,ofs) n.items = its; \ 

n. dim_offset_flag = ofs; 
#define ENCODE64BIT_EXT(n,table_id,entry_id) \  

MAKELEAF(n,-(entry_id+1),table_id<<2) 
 
#define DECODE64BIT_EXT(node, newadr) \ 
   int tab_id = (node.dim_offset_flag)>>2; \ 
   int entry_id = -node.items-1; \ 
   TableEntry e = m_tables[tab_id][entry_id]; \ 
   newadr = &node + e.offset; \ 
   node =  e.node; 

register KDTreeNode node = m_root; 
// ADRINT is  int or __int64 (32/64-bit architectures)  
ADRINT newadr = &node; 
traverse_loop: 
while (!ISLEAF(node)){ 
       //get dimension, traversal order, etc 
        const ADRINT adr0 = newadr+…;//front child 
         const ADRINT adr1 = newadr+…;//back child 
        //traverse of either back/front child or both 
        //… 
} 
//processing leaves 
const int nitems = HASITEMS(node); 
if(nitems>0){ 
       //... 
} 
#ifndef _M_X64 
else if(IS_64BIT_EXT(node)){ 
//64-bit extensions processing: 
//newadr is patched using relocation table 
   DECODE64BIT_EXT(node, newadr); 
      goto traverse_loop; 
 } 
#endif// _M_X64 
//popping from stack etc 


	Efficient acceleration structures layout for rendering on 32- and 64-bit many-core architectures
	Abstract
	Introduction
	Previous work
	Solution
	Efficient leaf/node test
	32 and 64 bit efficiency
	Multiple threads construction
	Modifications of traversal algorithm
	Memory/Performance considerations
	References

