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Abstract

Prediction of visible differences involves modeling of the human
visual response to distortions in the image data. Following the
approach of Daly [1], this paper introduces several algorithm im-
provements allowing for more accurate calculation of threshold ele-
vation and modeling of the facilitation effect during phase-coherent
masking. This is achieved by introducing a complex-valued cortex
transform that separates the response magnitude from the instanta-
neous phase within each band of the cortex transform. The magni-
tude component is used for calculation of the mask contrast. The
phase component takes part in modeling of the facilitation effect.

Keywords: Visible Differences Predictor, VDP, Cortex Transform,
Image Quality Assessment, Complex Cortex Transform, Human Vi-
sual System, HVS, Masking.

1. INTRODUCTION

Prediction of visible differences means estimation of subjective vis-
ibility of distortions in the image data. Algorithms for prediction
of such differences are important in automated quality assessment
of imaging systems, including lossy compression of video signals,
assessment of transmission channel distortions, optimization of re-
alistic image synthesis algorithms, etc.

Many image quality metrics have been proposed in the literature.
The most successful objective metrics include models of the Human
Visual System (HVS) for prediction of such effects as non-uniform
sensitivity to spatial frequencies and visual masking, like the Visual
Differences Predictor (VDP) proposed by Daly [1].

Daly’s VDP uses a (modified) cortex transform [2] to decompose
the image into subbands of different spatial frequency and orienta-
tion. It allows modeling of frequency-dependent and orientation-
dependent masking in the human visual system. For each cortex
transform band, the contrast of the difference signal and the con-
trast of the masking signal are evaluated. Threshold elevations are
calculated from the contrast of the mask signal. They are used to
calculate the probability of detection of the difference signal, sub-
ject to visual masking. The detection probabilities are summed over
all cortex transform subbands.

The work of Mantiuk et. al. [3] proposes several improvements to
the model of Daly, including evaluation of contrast in JND (just
noticeable difference) units, and varying CSF (contrast sensitivity
function) depending on the local luminance adaptation level.

A shortcoming of the “traditional” cortex transform is the inability
to accurately model phase-invariant masking (explained in the next
section). For example, a chirp image signal in Fig. 1a would pro-
duce an oscillating signal in each cortex band, as in Fig. 1b. This,
in turn, would produce an oscillating mask contrast signal and os-
cillating threshold elevation, as in Fig. 1c.

In this paper, a modification of the cortex transform is introduced to

obtain phase-independent estimates of the masking contrast, as in
Fig. 1d. Section 2 describes the cortex transform and its phase-
variance. Section 3 introduces the Complex Cortex Transform
(CCT) and its computation algorithm. Section 4 illustrates the use
of CCT for evaluation of masking thresholds in VDP. Section 5
presents the computational results of threshold elevations.
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Figure 1: (a) A chirp image; (b) Response of a “traditional” cor-
tex filter (only positive signal part is shown); (c) Threshold eleva-
tion image (or mask contrast) produced using a “traditional” cortex
filter; (d) Threshold elevation image produced using a “complex”
cortex filter proposed in this paper.

2. CORTEX TRANSFORM IN VDP

The cortex transform is first described by Watson in [2] as an ef-
ficient means of modeling the neural response of retinal cells to
visual stimuli. The cortex filter in the frequency domain is pro-
duced as a product of 2 filters: the ‘dom’ filter providing frequency
selectivity and the ‘fan’ filter providing orientation selectivity:

cortex,; (p, 0) = domy, (p) - fan; (), (1)

where k is the index of the frequency band, [ is the index of orienta-
tion, and (p, 0) are polar coordinates in the frequency space (corre-
sponding Cartesian coordinates will later be denoted as (wl, (/.)2)).
Fig. 2 illustrates frequency responses of several cortex filters, and
Fig. 3a shows the example impulse response (point spread function)
of the cortex filter.

The cortex transform decomposes the input image (4, j) into a set
of subband images By (7, j) (cortex bands) as follows

Bia(i,j) = F~ ' {cortexr (p,0) - F{I(i,5)}}, ()

where F is the 2D discrete Fourier transform.
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Figure 2: Frequency responses of several cortex filters (brightness
represents gain for the given spatial frequency).

(a) Responses plotted separately for cortexo,o; 1,05 1,25 1,45 2,15 2,35
2,5 3,05 3,25 3,45 4,15 4,35 4,55 5,05 5,2} 5,4 — €ach filter produces 2
symmetrical blobs on a complex 2D frequency plane;

(b) Responses of 8 (out of 31) cortex filters are added together to-
wards a constant gain.

It can be noted (Fig. 2) that cortex filters are linear-phase band-
pass filters. Their frequency responses are designed to sum up to
1, which means that the sum of cortex bands is equal to the input
image: Zk,l By (i,7) = 1(i, 7).

One of the problems with the cortex transform is that real-valued
cortex bands lack separation between magnitude and phase compo-
nents of the neural response. According to formula (14.32) in [1],
the strength of visual masking 7. (4, 7) (also known as Threshold
Elevation) dePends on the absolute value of the normalized mask
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where k1, k2, s, and b are psychophysically derived constants.

The normalized mask contrast m¥! (i, §) is calculated as the cor-
tex transform of the CSF-filtered input image in the perceptually
linearized luminance scale:

mEt (i, j) = F {cortexr s (p, 0) - esf(p, 0) - F{I(i,5)}} (4)

It is easy to see that for sinusoidal mask signals, the mask con-
trast m>' (i, j) exhibits oscillations between 0 and the magnitude
of the masker (Fig. 6a,b). These oscillations are also present in the
threshold elevation map. Their cause lies in insufficient separation
of magnitude and phase of neural response by the modulus opera-
tion |m* (i, 7)| in Eq. (3).

According to this simplified model, sinusoidal gratings produce
maximal threshold elevation at positive and negative peaks of the
masker waveform and absolutely no masking at zero crossings
of the waveform. This contradicts with psychophysical data [4]
assuming that sinusoidal gratings produce spatially uniform (or
nearly-uniform) threshold elevation.

3. THE COMPLEX CORTEX TRANSFORM

3.1 Explanation of Goals

To eliminate this mismatch between calculated masking maps
and psychophysical experiments, we suggest a more sophisticated
model for separation of magnitude and phase information in the

neural response. The importance of such separation has been ac-
knowledged in [1] and [3], but the separation algorithm has not
been elaborated.

Our proposed algorithm stems from the publication of Pollen and
Ronner [5] which investigates phase relationships between adjacent
cells in the visual cortex. It has been found that adjacent simple
neural cells are often tuned to the same orientation and spatial fre-
quency, but their responses differ by the phase angle that is often ap-
proximately 7 /2. In other words, receptive fields of corresponding
neural cells comprise quadrature (phase-complementary) filters.

A recently published Berkeley Wavelet Transform [6] is the orthog-
onal wavelet transform using phase-complementary wavelets of 4
different orientations. Its filters are localized in space, frequency
and orientation, so the transform is suitable for modeling of visual
receptive fields.

However our method is based on the cortex transform [2],[1] be-
cause it allows for more flexible tiling of the 2D frequency plane
and better frequency/orientation selectivity. Our goal is to modify
the cortex transform in order to enable efficient magnitude/phase
separation and provide the shift invariance of magnitude estimates
for sinusoidal gratings.

3.2 A 2D Hilbert Transform

A well studied method for extracting magnitude and phase infor-
mation of narrow-band 1D signals is the Hilbert transform [7].
The Hilbert transform can be considered as a filter that rotates
every frequency component of the signal by /2, for example
H (cost) = sint. The Hilbert transform can be used to convert
a real-valued signal f(¢) into an analytic complex-valued signal
f(t) + iH f(t), whose instantaneous magnitude and phase are de-
fined as

A(t) =\ 2(1) + (Hf())?, Q)

HI(L)
f@

An efficient computational algorithm for the Hilbert transform em-
ploys a direct 7/2 phase rotation of the complex-valued Fourier
spectrum (F f) (w) of signal f(¢):

¢(t) = arctan 6)

(FHS) () = i-sgn(w) - (Ff) (@)

One problem with the Hilbert transform is that it does not have
a trivial extension to the 2D case. One possible 2D extension
called “skewed Hilbert transform” [8] applies a 1D Hilbert trans-
form along only vertical or only horizontal direction in a 2D image.
This is equivalent to multiplying the 2D Fourier spectrum of the
image (FI) (w1,w2) by either isgnw; or 7sgnwsy (for vertical or
horizontal direction).

In order to build phase-complementary filters of arbitrary orienta-
tion, we are proposing a modification of the skewed 2D Hilbert
transform that multiplies a 2D Fourier spectrum of the image by
the similar filter

Hi(wi,w2) = isgn(pwi + qwa), @)

where the line equation p w1 4+q w2 = 0 specifies the desired “direc-
tion” of the modified 2D Hilbert transform, and [ is the orientation
index from Eq. (1).



3.3 Design of Quadrature Cortex Filters

For each cortex filter cortexy,; (w1, ws), we are designing a phase-
complementary filter cortex; (w1, w2 ) with the same passband fre-
quency range and orientation using the modified 2D Hilbert trans-
form of the impulse response of the filter. Their frequency re-
sponses are related as

—

cortexk,l(wl,wg) = H; (wl, OL)Q) . conexk,l(wl, (JJQ),

where p and ¢ in Eq. (7) are linked with the cortex filter orientation
angle 6. (depending on [) as

tan 6. = B.
q

Fig. 3 shows impulse responses of 2 phase-complementary cortex
filters for k = 2, ] = 1, and §. = 7/6. It can be noted that
cortexy,1 is a linear-phase filter and its impulse response is centrally
symmetrical (Fig. 3a).
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Figure 3: Impulse responses of a pair of phase-complementary cor-
tex filters: (a) cortexy,1; (b) cortexy, 1.

This pair of phase-complementary cortex filters can be combined
into a single complex-valued quadrature filter:
cep,i (w1, wa) = cortexg,i (w1, w2) + i cortex, (w1, w2) ()

The decomposition of the input image into complex-valued sub-
bands using filters ccy; will be called a Complex Cortex Transform
(CCT).

CCTy (4, ) = F~ ' {ceri(wr,wa) - F{I(1,4)}} ()
3.4 Properties of the Complex Cortex Transform

1. Since both cortexy,; and mk,l are real filters, from
Egs. (2), (8), and (9) we obtain that cortex bands By (¢, )
are equal to the real part of corresponding CCT bands.

Bi(i,j) = Re{CCTy,1(i,5)}
Substituting this into Eq. (4), we obtain
mi’l(i,j) = Re {]—'71 {ccp, - csf- }'{I(i,j)}}}

2. The real and imaginary CCT bands contain phase-
complementary responses, similarly to those described in [5]:

Im {CCTy1(i,5)} = F ' {H; - F{CCTw,(i,5)}}

3. Similarly to the 1D case (Egs. (5) and (6)), instantaneous mag-
nitude and phase within each CCT band can be approximated
as

Ak,l(i,j) = |CCT1€71(’L’J)| )

¢(t) = arg {CCTx,(4,5)} -

Here the separation of magnitude and phase information hap-
pens along the orientation .. of the corresponding cortex filter
CCk,I.

3.5 Summary of the CCT Algorithm

The Complex Cortex Transform defined by Eq. (9) is calculated
similarly to the regular cortex transform (Eq. (2)), except the fact
that the cortex filter is now complex-valued, and the resulting sub-
band images CCTy,; (4, j) are complex-valued too. The algorithm
looks like follows:

1. Complex-valued spectra ccy,;(w1,w2) of CCT filters are pre-
calculated using Eqgs. (1) and (8);

2. A 2D Fourier transform (F {I}) (w1, w2) of the real-valued
input image (3, j) is calculated;

3. The complex-valued spectrum from step 2 is multiplied by the
complex-valued filter ccy,; from step 1, for each frequency
range k and orientation [;

4. Aninverse complex-valued 2D Fourier transform is calculated
for each spectrum obtained at step 3 — this is the resulting
band CCTy, (4, 7) of the Complex Cortex Transform.

In the discrete case, all Fourier transforms can be replaced by Dis-
crete Fourier Transforms (DFT) and computed via FFT. Boundary
effects need to be taken into consideration when using DFT filter-
ing, because multiplication of discrete spectra leads to a circular
convolution in the spatial domain. This is less of an issue with
quickly decaying impulse responses of cortex filters, but may still
require explicit extension of the image data beyond its support area.

4. USING CCT FOR MODELING OF MASKING

4.1 Modeling Threshold Elevation Using CCT
Magnitude

Now since the Complex Cortex Transform is available for efficient
separation of magnitude and phase information in the neural re-
sponse, it can be incorporated into Eq. (4) to yield the new model
of phase-invariant masking:

|]—'71 {cck,1 - csf - f{[(i,j)}}‘
= |CCTr, {Iest}| (10)

' (i,5) =

where I is the input image I(z, j) pre-filtered by the CSF filter.

As illustrated in Fig. 6 and Section 5, this brings the calculated
Threshold Elevation map in agreement with psychophysical data
suggesting that sinusoidal masks produce approximately uniform
masking.



4.2 Modeling the Facilitation Effect

The publication of Daly on VDP [1] discusses the facilitation or the
pedestal effect — lowering of masking thresholds when the signal
and the mask have the same frequency and phase. A more exten-
sive study of the effect is available in [4]. It shows that facilitation
is quickly diminishing when frequency or phase of the signal are
departing from the frequency and phase of the mask. However the
effect is strong enough to be included into the HVS model proposed
here. It lowers masking thresholds by up to 2.5 times in the approx-
imate range of 0.4—1.0 JND units.

To model the facilitation effect, we are proposing an additive term
to the threshold elevation formula in Eq. (3):

S)b>1/b

— sealivg) - f (|7l 9)])

'fek’l(i,j) = (1 + k1 (kz ‘fﬁﬁ’l(i,j)

where si,1(¢,7) € [0, 1] is the strength of facilitation effect at each
point and f(¢) is the negative Gaussian-shaped term added to the
threshold elevation around the mask contrast of 0.7 (Fig. 4). To
comply with psychophysical data from [4] (Fig. 2, 4), it can be
modeled as
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Figure 4: Threshold elevation curve ﬂ“l (3, j) modeling the facili-
tation effect of strength s5,; = 0.5.

According to [4], the strength of the facilitation effect depends on
the proximity of frequency and phase estimates of the signal and
the masker. In order to model this, we suggest using the phase
information provided by CCTs of the mask and the signal:

(8516, 5) — ¢51(3, 5))°
,202 ?

sx,1(4, ) = exp

where ¢};'(i,7) = arg CCTy, {I ¢} (4,5) is the instantaneous
phase angle of the mask CCT band, ¢¥'(i,;) is the similarly
defined instantaneous phase angle of the signal CCT band, and
o = 0.25 provides about 2 times reduction in facilitation when
the phase difference is 7/10.

This model assumes that since both signal and mask are in the same
CCT band, their frequencies are close. This may not always be
true because bands of the cortex transform (and CCT) span one-
octave frequency intervals. A more accurate approach to detec-
tion of same-frequency and same-phase signals may involve spa-
tial averaging of absolute phase angle differences by averaging of

sk, (1, 9):

81,1(6,7) = G (sx,1(4, 7)) ,

where G is the Gaussian filtering operator. The radius of averaging
is subject to additional psychophysical research, but our initial rec-
ommendation is to set it to 2 periods of the central frequency p. of
the cortex filter ccg ;.

4.3 Additional Modifications of the VDP

4.3.1 Luminance Adaptation

In [1] and [3] two luminance adaptation models are presented: the
global model that averages the baseband luminance and the local
model that uses pixel-wise values of luminance. In [3] the local
model is used for adaptation of CSF filtering: different CSF filters
are used depending on the adaptation luminance to model the psy-
chophysical CSF data more accurately.

It can be argued that pixel-wise adaptation cannot produce stable
results as the image resolution increases: the resulting CSF-filtered
image may contain artifacts due to frequent switching of CSF fil-
ters. We suggest using a spatially-smoothed luminance for calcu-
lation of luminance adaptation. The radius of such smoothing is
subject to additional research, but the initial estimate of 1° of the
visual field is suggested.

4.3.2 Luminance Nonlinearity

Several referenced works describe ways for nonlinear transforma-
tion from the color model of the input image to the perceptually uni-
form luminance scale. An interesting observation made during our
experiments may be helpful in the related research. Most images
stored on personal computers do not have embedded color profiles
and assume the SRGB color model. A typical way to display such
images is to directly put their RGB (or luminance) values into the
frame buffer of a video display adapter.

On the other hand, the most popular way of calibrating displays of
personal computers (offered by many photographic web-sites) in-
cludes a black and white gradation chart with equal steps in RGB
luminance, as the one in Fig. 5. The user is suggested to adjust
brightness, contrast and gamma of the display until all the lumi-
nance steps in the chart become discernible and produce approxi-
mately equal subjective brightness increments.

B0 TOX 20X 30X 100%

Figure 5: A typical monitor calibration chart.

It means that the user is suggested to adjust the display until sSRGB
space becomes perceptually uniform with respect to luminance. On
the other hand, such a variant of “brightness” uniformity is different
from uniformity in terms of JND steps, which are arguably more
relevant for modeling of masking than brightness uniformity. This
requires us to reconsider the nonlinear luminance transformation
happening in the front end of VDP algorithms.



5. RESULTS OF MODELING

To evaluate the new model of masking, maps of threshold elevation
have been computed for several test images. The source images
have been generated in a perceptually uniform color space to elim-
inate the need for a nonlinear luminance mapping. Here we present
threshold elevation maps for 2 test images that are important in psy-
chophysical experiments.

The first mask image is a sinusoidal grating across the gradient
background (Fig. 6a). Since the gradient is linear in a perceptually
uniform luminance space, it is expected that the threshold elevation
resulting from the grating will be spatially uniform.

Fig. 6 plots the resulting threshold elevation maps in the cortex band
which contains the strongest response to the frequency of the grat-
ing. The luminance scale of the maps is stretched for easier evalu-
ation.

As can be seen in Fig. 6b, the resulting 7. map generated by the
original VDP by Daly exhibits oscillations due to inability of the
cortex transform to separate phase and magnitude components of
the masking stimulus.

Fig. 6¢c shows the modified 7. map produced by the “phase uncer-
tainty” algorithm described by Mantiuk et. al. [3]. The algorithm
smoothes variations in the threshold elevation map, but lowers the
overall masking level.

Fig. 6d shows the T. map generated by the proposed method. It
shows almost uniform elevation of the thresholds.

(a) (b)

(c) (@

Figure 6: (a) Grating mask; (b) 7% using original VDP [1]; (c) T.
using “phase uncertainty” method from [3]; (d) 7e using the pro-
posed method.

The second mask image is the idealized edge image (Fig. 7a). The
expected pattern of threshold elevation peaks at the edge and drops
off away from the edge [9]. In Fig. 7b,c,d, the resulting 7. maps are
plotted for one of the lower-frequency cortex bands with orientation
corresponding to the edge orientation. Boundary effects resulting
from the use of the Discrete Fourier Transform are visible around

left and right boundaries of the map due to circular extension of the
image.

It can be seen that the original VDP has produced the elevation map
that actually has a notch at the location of the edge, flanked by a few

peaks. The proposed approach for calculation of 7% has shown the

most uniform result again.
(@ (b)
(©) (d)
Figure 7: (a) Edge masker; (b) Te using original VDP [1]; (c) Te

using “phase uncertainty” method from [3]; (d) 7% using the pro-
posed method.

6. CONCLUSION

We have introduced a modification of the cortex transform using
pairs of phase-complementary cortex filters. This new transform,
called a Complex Cortex Transform, allows separation of magni-
tude and phase components of the neural response in visual cortex.

It is proposed to use the CCT for modeling of visual masking in
VDP algorithms. In this work, CCT has been shown to improve
consistency of threshold elevation estimates in the Visual Differ-
ences Predictor by Mantiuk/Daly. The improved VDP is also able
to model the facilitation effect happening when mask and target sig-
nals are of the same frequency and phase.

In this paper, the advantages of the proposed masking model have
been shown on simple, artificially generated test images. More thor-
ough experiments need to be performed on natural images in order
to assess correlation of the improved distortion measure with sub-
jective quality data.
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COMMENTS OF REVIEWERS

1. Reviewer: End of section 2: it’s not clear what do “oscillations

of sinusoidal mask signal” mean. Sinusoidal signal originally
oscillates between zero and magnitude. But this is correct in
space domain. As I remember, elevation formula should be
applied to phase-frequency domain — not directly. So, for
fixed sin(az + n) there will not be any oscillations in 7Te.

Author replies: Eqgs. (4) and (3) for 7. are actually adapted
from [1], and later they are also used in [3]. They are based on
“instantaneous” space-domain values — a shortcoming that is
addressed in this paper.

2. Reviewer: A model of threshold elevation presented originally

by Daly and referred in this paper as [1] is not the only model.
More sophisticated model is presented in Peter G.J. Barten
“Contrast sensitivity of the human eye and its effects on image
quality” (PIE International Society for Optical Eng., 1999).
It reflects masking decreasing in small masking contrast ar-
eas. And mismatch of theoretical and practical data could be
caused by usage of non-optimal model, not by specific issues
with separation of magnitude/phase.

Author replies: This publication of Barten describes a mask-
ing model for simple stimuli: sinusoidal gratings and noise.
However it does not discuss how a complex image should
be decomposed into sinusoidal components for calculation of
masking at every spatial frequency. A Fourier analysis is men-
tioned in that publication, but it is not an acceptable means of
such separation because of loss of space locality. The sub-
ject of this paper is improvement of the cortex transform —
a means of separating the image into frequency subbands.
Barten’s masking model can be applied to the subbands pro-
duced by the proposed method.

. Reviewer: A modified formula for 7. is another way for rep-

resenting the facilitation effect at low masking contrasts. It
seems that this is rather important to compare it with the
model presented by Barten.

Author replies: The model of Barten calculates the facilitation
effect for simple stimuli. The attempt of this paper is to ex-
tend the model to complex stimuli. I agree that the developed
model lacks experimental validation.

. Reviewer: Section 4.2: Facilitation is accounted for in newer

masking models, e.g. A.B. Watson and J.A. Solomon “Model
of visual contrast gain control and pattern masking” (Jour-
nal of the Optical Society of America, 1997). Facilitation is
present only for stimuli of very similar spatial frequency and
orientation. This rarely happens in complex images and it was
the reason why Daly did not want to have it in the VDP.

. Reviewer: Subsection 4.3.1: I would not agree with blurring

by 1° Gaussian. The spatial adaptation mechanism proba-
bly cannot be explained by a linear filter because it origi-
nates from several mechanisms with different spatial extent
and time constants. A huge part of adaptation happens in
cones, so it is restricted to very small spots, definitely smaller
than 1°. But I agree that the linear interpolation of several
CSF-filtered images, as done in [3], is not very good either.
These filters do not interpolate very well linearly.

Author replies: 1 agree that mechanisms of luminance adapta-
tion for masking are more complex than Gaussian smoothing.
However Gaussian blur with a certain radius is probably better
than adaptation to a single pixel of unknown size.

. Reviewer: Subsection 4.3.2: Usually Gamma correction

means that we estimate non-linearity of a monitor and try to
compensate for it. As a result, the monitor will have approx-
imately linear transfer function. However human perception
has a non-linear feeling of physical luminance — it is pro-
portional to the cubic root of the input value. Soww, this is
actually a good question: what we should take into account
and how we should do it.
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