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Abstract 
The current state of computer technology allows formulate of 

new problems and develop effective solutions for them. This 
requires developing of complex computer models and ways of 
their formation.Thus, when designing and building a visual model 
of thermal processes at welding turbine blades of aircraft engines, 
must be extremely accurate model the welding bath, the welding 
seam and region adjacent to them. Getting the exact solution of 
this problem requires simultaneous solution the whole complex of 
heat physical and geometrical problems which demand significant 
computing resources. This paper’s main result is presenting a 
generalized effective parallel-and-recursive algorithm with the 
optimal bound of time complexity O(log2N) which solves in 
unified manner the variety of interrelated geometrical problems 
for the construction of visual models of complex phenomena and 
processes. This algorithm belongs to the class of the solvability 
NC2. 
Keywords:  parallel-and-recursive algorithm, visual model, 
interrelated geometrical problems. 

1. INTRODUCTION 

The paper’s main result is presenting the generalized effective 
parallel algorithm which solves in unified manner the variety of 
interrelated geometrical problems for the construction of visual 
models of complex phenomena and processes. Such an algorithm 
is based on well-known technique ”divide-and-conquer”. An 
algorithm consists of two basic stages: recursive dividing, which 
is general for the whole set of problems, and recursive merging. 
Steps of the merge stage could be executed simultaneously for 
each problem. The parallel computing model is asynchronous, so 
merge stage is executed independently for each problem. An 
application of this algorithm can be, for example, the modeling of 
thermo-physical and thermo-mechanical processes which arise up 
at welding. In this case it is necessary to build the exact visual 
model of the welding bath, the welding seam and region adjacent 
to them. To have an exact model of welding bath at every moment 
of time there is the need to simultaneously solve the following 
geometrical problems: constructing convex hull, triangulation, 
Voronoi diagram, searching for all nearest neighbors, nearest 
pairs, geometrical search, spline approximation and so on. Figure 
1 shows a fragment modelling welding bath. 

In this paper a paradigm is offered - an effective algorithm of 
parallel solution the set of interrelated geometrical problems for 
multitask modeling of complex dynamic processes. This paradigm 
is illustrated on the examples of Voronoi diagram and ”all nearest 
neighbors” problem. It is important to note that main idea of this 
paper is not to describe the well-known paradigm ”divide-and-
conquer”. In works [1-4] there have been described efficient 
parallel algorithms for solving some problems of computational 
geometry, including the mentioned above technique. 

 
Figure 1: Fragment modeling welding baths: convex hull and 

triangulation. 
 

For accurate modelling it is necessary to solve simultaneously 
a set of interrelated problems. The best strategy in this case would 
be one that uses a common tool for implementing the tasks: data 
structures, steps of procedures and presentation of results. The 
most suitable in this case, in our opinion, may be technique 
”divide-and-conquer”. In this technique, the stage of dividing is a 
common and unified for all tasks, and at the merge stage is 
proposed to use a common and unified data structure (weighted 
concatenable queue) at which the procedures are performed 
quickly. Moreover, the results of the individual steps of some 
procedures used by other procedures, that ensures high efficiency. 

Problem. Let S be the given set of N points in space Ed. It is 
necessary to develop the generalized effective parallel-and-
recursive algorithm for simultaneous solving problems of 
computational geometry, which are defined on single set of data 
S, for which the low bound of complexity is  Ω(NlogN) (for one 
processor machines). 

2. THE GENERALIZED ALGORITHM 

 
One of main application problems of the ”divide-and-conquer” 

technique for solving problems of computational geometry is 
nonlinearity of the merge stage and linear inseparability of the set 
of points. In the considered approach for problems, due to the 
composition of successful data structures at the stage of 
preliminary processing and the use of parallel processing at stages 
of dividing and merge it is possible to construct the effective 
parallel-and-recursive algorithm which removes the restrictions 
specified above. We will consider the technique of the algorithm 
for the two dimensions case. 
 

2.1 Mathematical model of the algorithm 
 

The mathematical model of the offered parallel algorithm 
consists of such basic stages: preliminary processing, dividing set 



of points (recursive descent)and recursive merge of results for 
subsets (recursive ascent) 

 
Stage 1. Preliminary processing. Let S be the given set of N 

points in the plane S = {P1, P2, …, PN } and there are O(N) 
processors. The ordered array of points U = {Pij ;  i, j = 1,…, N} is 
formed at the stage of preliminary processing. Here, i is an index, 
which specifies the number of points in the list sorted by the x 
coordinate, and j is an index, which specifies the number of points 
in the list sorted by the y coordinate. Constructing the sorted lists 
for O(N) processors can be carried out by means of one of the 
algorithms described in details in articles [5-7]. An array formed 
by such a method is given to the input of the algorithm. The graph 
of this algorithm it is binary tree, Figure2. In this graph, every 
node is marked by an integer number k. Number k divides the list 
of points in nodes into two lists of equal power, on the median, 
after comparison of the first indexes of points in the array U. And 
every number of node k is determined by the single iteration on a 
tree, if the quantity of points of the set is known.  

 

 
 

Figure 2: Graph of algorithm.  NN(S), Vor(S), CH(S) – merge 
procedures;  l  - median. 

 
Stage 2. Dividing the set of points (recursive descent). This 

stage of an algorithm consists of dividing the set of points in the 
form of list U into equipollent subsets U1, U2, searching for a 
median l and transferring U1, U2 at the next step of recursion. The 
search median in sorted by x indexed array U is performed in 
constant O(1) time. Time necessary for recursive descent in the 
parallel algorithm is defined by a following lemma. 

 Lemma 1. Using O(N) processors it is possible to execute in 
time O(logN): a stage of recursive separating the set S from N 
points on equal capacity of subsets S1 and S2 in the plane, search of 
a median l and transfer of subsets S1 and S2. 

Proof.  Let the given set of points to be presented in the form 
of an indexed two-dimensional ordered array U ={Pij ; i, j = 1,…, 
N}. For constructing of such a structure of data it is possible to 
take advantage of parallel algorithm of sorting with complexity 

O(logN), offered Colle [7]. Such a representation of points set 
allows constructing a tree of dividing, if the quantity of points N 
in the list U is known. According to the algorithm, first index i of 
each point Pij is associated with processor number, and second 
index j is associated with the number of a memory cell in which a 
point is stored according to orderliness on y coordinate. On each 
step of dividing corresponding processors synchronously compare 
the first indexes from the list of points and dispatch points in 
corresponding nodes of algorithm, keeping thus the order of an 
arrangement of points which is defined by their order in memory 
cells. Considering precise orderliness of points Pij in array U by 
both indexes and interrelation between processors and the 
memory elements, time of performance of merge process in each 
node of a tree will not exceed constant O(1). Thus, general time 
of dividing will not exceed O(logN) for the worst data input. As it 
was necessary to prove. 

 Stage 3. Recursive merge of results for subsets (recursive 
ascent). At this stage, the merge procedures of related problems 
are running in each node of the algorithm graph. These 
procedures are building a general solution of problems. Process 
comes to the end with result of merge in root node. In the 
presented paper, due to the limits on the pages number, and that 
the step of division is common to all the problems we will 
consider example of merger procedures construction for ”Voronoi 
diagram” and ”all nearest neighbors”. The main feature of the 
proposed procedures - is to use a common data structure 
”weighted concatenable queue”. This data structure allows to 
perform all actions within the logarithmic time. 

 

2.2 Constructing merge procedures 
 

The merge stage of algorithm for constructing Voronoi 
diagram differs from the merge stage in the convex hull only on a 
finishing step. In the first case dividing chain is built, which 
connects the Voronoi diagrams of sons, and in the second case - it 
is finding of bridges (common tangent segments) to the convex 
hulls of sons. Thus the results of convex hulls constructing and 
bridges got for a problem ”convex hull”, is used for next steps of 
building Voronoi diagram. In addition, construction of dividing 
chain for the Voronoi diagram in parallel allows to solve the 
problem of finding all nearest neighbors. 

 
2.2.1. Constructing merge procedure for ”Voronoi 

diagram” problem. At every step of recursive ascent starting 
from the second, Voronoi diagrams vor(SL) and vor(SR) for 
subsets of points from the left and right sons, accordingly, are fed 
to the input of parent node v of the tree. It is necessary to build 
Voronoi diagram for the node v. Since the basic step of the 
constructing merger procedures for the Voronoi diagram and all 
nearest neighbor, in this algorithm, is building a monotone 
dividing chain, we offer one of the possible algorithms for its 
construction. 

Constructing the dividing chain. The dividing chain 
constructing process is executed using O(N) processors for the 
subsets of points, which are contained in a zone near dividing 
vertical line l (Figure 3). These subsets are located to the left and 
to the right from l, and belong to the mutually convex chains of 
convex hulls of sons and points determined by the edges of 
diagrams vor(SL ), vor(SR), which cross the edges of these chains. 



The time required for the construction of the dividing chain is 
determined by the following lemma. 

Lemma 2. Constructing the dividing chain σ(S1, S2), which 
“sews” together the Voronoi diagrams vor(SL), vor(SR) at every 
step of the merge stage can be completed in O(logN) time using 
O(N) processors.  

 

 
 

Figure 3. The merge step of two dividing chains (upper σA = 

{ a1, a2, a3, a4, a5, a6, a7, a8 } and lower σ B={ b1, b2, b3, b4, b5 
}chains) for the pairs of monotonous chains (CL1, CR1), (CL2, CR2), 

accordingly. 
 
Proof. Between the upper and lower supporting edges of two 

convex hulls of Voronoi diagrams for sons vor(SL), vor(SR) of 
some node v of algorithm graph we have two mutually convex 
chains. They are determine the region of constructing the dividing 
chain, D.  Each of these chains determines the ordered set of the 
Voronoi diagram edges, which are directed in into the region D, 
and they cross the edges of mutually convex chains CHL, CHR. 
Each edge of chains CHL, CHR can cross with one or a few edges 
of the Voronoi diagram and consequently, determines the set of 
points parted by these edges. We will note the set of vertexes as 
BL(S1) (BR(S2)). It is consists of vertexes the convex chain 
CHL(CHR) and the points, which are determined by edges Voronoi 
diagram that are crossing the chain. We will name this set as left-
maximum (right-maximum) ordered set of points (or a list). If we 
connect the points in the lists BL(S1) and  R(S2) consistently, we 
get lists of edges EL(S1) and ER(S2), which form chains SL and SR, 
respectively. 

Lemma 3. Chains SL and SR are monotone in relation to direct 
l. 

 Proof. We will prove from opposite. It is known, that dividing 
chain σ(S1, S2) is necessarily monotone in relation to direct l. Lets 
at least one of chains SL and SR will be not monotone in relation to 
l. Then there are edge this chain which will have the angle of 
rotation in relation to an OX axis with beginning at the end of this 
edge greater than π. It follows that the corresponding edge 

Voronoi diagram will not get into the domain D, and the dividing 
chain will not be monotone, which contradicts the condition. 

It is important to mark that merge procedure in every node of 
algorithm tree can be executed on several processors 
independently and parallel. In order to execute such actions it is 
necessary: to determine a data structure which would support a 
convex hull and Voronoi diagram in every node, would allow to 
find supporting points, uncouple and couple parts of convex hulls, 
to conduct supporting segments and to build a dividing chain. As 
a data structure which would execute the operations mentioned 
above for logarithmic time, we have chosen the concatenable 
queue, the same data structure as in problem “Convex hull”, with 
defined procedure MERGE (UL, UR), which allows to find 
supporting points and supporting segments, to build convex hull 
in O(logN) time and with procedure which would allow to build a 
dividing chain. For organizing the process constructing the 
dividing chain, on the basis of lists BL(S1) and BR(S2) we will 
create the proper data structures (Figure 4), loading them with 
needed data.  

 
Figure 4. Data structures: the concatenable queues for left CL and 
right the CR chains of merge region D of the Voronoi diagrams: 

Vor(S1), Vor(S2) of figure 3, accordingly. 
 
The concatenable queues of both monotone chains are binary 

trees with a root, in which nodes we have the coordinates of 
vertexes, and the arcs of which are the proper edges ek (k = 1,…, 
N) from the lists of chains EL(S1) and ER(S2). In addition, nodes are 
loaded by pointers on the proper edges Voronoi diagram (we will 
note them through dij ; i, j ∈ N). Such data structures allow to 
build a dividing chain σ (S1, S2) using O(N) processors in O(logN) 
time. Graph algorithm for constructing a dividing chain can be 
represented as binary tree. In the leaves tree, each with O(N) 
processors builds dividing chain for the corresponding pairs of 
edges (ek, el) (ek ∈ EL(S1); el ∈ ER(S2)). The results are given to the 
next level of the tree where the step of merge is carried out. As a 
result, a dividing chain is built as connection the dividing chains 
of sons. The merge process of dividing chains sons requires in 
O(1) time in every node tree. As we see all transactions for the 



constructing of dividing chains require no more than O(logN) 
time using O(N) processors.  

After determining the supporting points and uncoupling 
convex hulls of node v sons by them, the left and right parts of 
trees that support the convex hulls UL and UR between the 
supporting points are deleted respectively. The balanced trees, 
which will support the upper and the lower convex hull of node v 
are formed by merge parts of trees which remained. All 
operations are performed in O(logN) time. The obtained trees 
support a convex hull and allow to execute the constructing 
procedures of dividing chain in O(logN) time. 

 
2.2.2. Constructing of merge procedure for ”all nearest 

neighbors” problem. At each stage of recursive ascent, starting 
from the second, at the input of parent node v of the algorithm 
graph there are Voronoi diagrams (VD) from the left and right 
sons vor(SL), vor(SR), and the nearest neighbor for each point from 
subsets SL and SR. Voronoi diagram is built for the node v, and the 
new neighbors at the border of subsets of SL and SR are being 
determined simultaneously, relatively to median l. At the merging 
stage the algorithm, during the constructing the dividing chain of 
Voronoi diagram, we find simultaneously nearest neighbors 
among the points from sets SL and SR, which form the current pair 
of a chain edge σ(SL, SR) , Figure 5. 

 

 
Figure 5. Search nearest-neighbors to pairs of points (P3, qBOR), 

(P3,P8), (P6,P8), (P6,P7), (P5,P7). For P8 ∈ SR is found a new 
nearest neighbor P6 ∈ SL. 

 
 Thus, the edge of the dividing chain determines the next pair 

of points, which is being checked for the presence of the new 
nearest neighbors. Let NN(S) be set of pairs the nearest neighbors 
for set S and NN(SL), NN(SR) - for sets SL and SR, respectively. The 
algorithm graph in this case is a binary tree, with the only 
difference that every node of a tree loaded except for the orderly 
array of points, median l; Voronoi diagrams vor(SL) and vor(SR) 
children, sets of the pairs points sons of nearest neighbors NN(SL) 
and NN(SR), respectively. 

Lemma 4. The stage recursive merging of search results the 
nearest neighbor to each point of the set S of N points on the 
plane, using O(N) processors, can be executed in O(log2N) time.  

So as for constructing dividing chain in step merger it is 
enough O(logN) time, then total complexity of step merger will be 
the same. This is because at each step constructing edge of 

dividing chain we must find the nearest neighbors for pair of 
points which he separates. For it we should compare only two 
distances. 

3.  IMPLEMENTATION OF THE ALGORITHM 

 
For implementation of the algorithm is applied MPI and 

PAROS (Parallel Asynchronous Recursively Operated Systems) 
technologies (for PRAM model). Those technologies allow to 
simply and effectively implementing parallel-and-recursive 
algorithms for the solution of complex problems both on 
multiprocessing machines, and in a computer network. 
 

4. CONCLUSION 

In the given article is proposed approach which allows to 
develop effective and convenient means of automation the 
geometric modelling of complex phenomena and processes. The 
main feature of the implementation approach is that the parallel 
algorithm simultaneously executes both different steps of one 
procedure on many processors, and different procedures in one 
node. It allows develop the generalized algorithm of solution for 
number geometric problems by single technology. 
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