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Abstract 
We consider the problem of extracting various moving objects on 
an image by analyzing the topological relations induced by the 
positions of a sparse set of putative matching points on two 
images of one scene. Topological relations among triples of 
matched point pairs are found, and we formulate the task as a 
hypergraph clustering problem which is then performed by the 
medoid shift, a non-parametric mode-seeking algorithm similar to 
mean shift. The method finds the number of clusters automatically 
and filters out outliers. We report the performance of our method 
on a synthetic dataset. 
Keywords: topology, medoid shift, clustering, hypergraph, motion 
segmentation, image matching. 

1. INTRODUCTION 

This work addresses the problem of analysis of visual motion. 
This problem arises in video surveillance as well in other cases 
when one needs to detect the image changes in order to establish 
correspondences between pixels across several frames. The image 
changes can then be interpreted and the 3D structure of the scene 
can be analyzed. In video tracking the optical flow field is usually 
available from the analysis of several consecutive frames. The 
situation is different when the observer moves as well, and when 
the period of time that elapses between two images is longer.  
A common way of finding several independently moving regions 
of an image is to detect motions by fitting a motion model, such 
as a homography or fundamental matrix, to the sets of matching 
points [7]. The sets of points which are explained by the motion 
model are then removed from consideration and the process is 
repeated until all the motions are found [2]. In case of a large 
number of mismatches this approach is not feasible. Whenever a 
subset of points is removed from consideration, the ratio of noisy 
matches relative to all the remaining matches increases, and 
robust filtering methods such as RANSAC [6] become less and 
less efficient.  
The formulation of the problem that is being solved in this work is 
the following. Given two images and a sparse set of possibly 
corresponding points cluster the points into groups that belong to 
separately moving regions of an image. We do so by finding 
topological relations among pairs of points. By analyzing the 
topological relations among points one can detect parallax effects 
which are important depth cues. The topological relations are 
written down as an affinity matrix of the point pairs, and this 
matrix is clustered using the medoid shift algorithm. Several 
independent motions can be recovered simultaneously and the 
method is robust to outliers.  
In Section 2 we formulate the topological relations among pairs of 
possible point matches, many of which may be outliers. We show 

that triples of point pairs may be thought of as vertices of a 
hypergraph. The penalties assigned to a triple whenever at least 
one point pair within it violates the sidedness constraint are the 
weights of the hypergraph edges. In Section 3 we describe how 
the medoid shift [8], a feature space analysis method similar to the 
mean shift [4], may be used to cluster the affinity matrix derived 
from the hypergraph using distance values only. The application 
of medoid shift to hypergraph clustering is given in Section 4.  
Results on synthetic data are shown in Section 5. 

2. TOPOLOGICAL RELATIONS 

Topological relations are one of the most stable relations among 
points of an image. These relations do not change under a wide 
range of affine transformations that may be applied to an image, 
such as scaling, translation or rotation. That is why it has been 
suggested in [5], in the context of image matching, to check 
whether topological constraints are satisfied among pairs of points 
and detect outliers. Suppose that we are given two images to be 
compared and matched, and a set of N corresponding 
points Ni
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in three-dimensional space onto two image planes. For each triple 
of points ),,( 321

mmm xxx  belonging to the same m-th image a 
sidedness function may be computed: 
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where ),( i
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i
m yx=x  and the subscript denotes the number of the 

image (1 or 2), while the superscript denotes the number of the 
point. This function assumes the value of +1 if the point i

mx  is 
located to the right side with respect to the vector pointing from 

j
mx  to k

mx ; otherwise the function takes the value of -1. If, for a 

triple of points ),,( 111
kji xxx  belonging to the first image and for 

the triple of corresponding points ),,( 222
kji xxx located in another 

image, ),,(),,( 222111
kjikji sideside xxxxxx ≠ , we say that the 

sidedness constraint is violated. In this way, it is possible to 
derive a penalty function for each point pair: 

∑
<Φ∈

−=
kjikj

kjikji sidesideip
;\,

222111 ),,(),,()( xxxxxx .  (2) 

By denoting  
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the formula (2) may be rewritten as  
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The penalty function can be normalized by the maximal number 
of possible sidedness constraints that each point pair can 
violate: )]2)(1/[()()( −−= NNipipN . As a result, the penalty of 
each pair will belong to [0,1]. An iterative topological filtering 
procedure has been proposed in [5], in which point pairs (putative 
matches) having the largest penalty are marked as outliers and 
removed from consideration. The penalty of the remaining point 
pairs is then recomputed and the process is repeated until all the 
pairs' penalties are below a user-specified threshold. Topological 
filtering has been successfully applied for solving various image 
matching problems ([5], [3]). 
In this work we propose to use topological constraints for 
segmenting objects that have moved between the moments when 
two images of one scene have been taken. We assume that the 
motions which are present on the image may be considered as 
piecewise-rigid, and so, when one considers pairs of points 
belonging the surfaces that are moving in a similar way 
(automobiles, buildings), there are few cases of sidedness 
violations among such pairs of points. On the contrary, if for a 
triple of points some points belong to a moving object while other 
points are part of a structure undergoing a separate movement, 
then the sidedness constraint has a high likelihood of being 
violated. Therefore, it seems reasonable to introduce a measure of 
distance based on topological relations. Point pairs belonging to 
two views of the same moving will exhibit good topological intra-
class affinity, while points belonging to differently moving 
segments of an image will show a high inter-class dissimilarity.  
As can be seen from (3), the topological relations involve triples 
of points. Since one is able to compute the sidedness violations 
for all the sets of point triples, the information about the relations 
that exist among triples can be represented as a hypergraph. A 
hypergraph is a generalization of a graph, where edges can 
connect any number of vertices instead of just two as in an 
ordinary graph. Formally, a weighted undirected hypergraph is a 
pair ),( hXH =  where X is a set of vertices, and subsets of 
X containing k vertices are called hyperedges. The function 

+→R: kXh  associates non-negative weights to each hyperedge 
consisting of k vertices. Since the hypergraph is undirected the 
function h  does not depend on the order of its arguments. While 
there are numerous ways of finding sub-structures within a 
hypergraph, a common practice is to find a way to reduce the 
hypergraph to an ordinary weighted undirected graph ),( gXG =  
over the same set of vertices, with edge weights given by a 
function +→ R: 2Xg of two variables.  One of the methods used 
to approximate a hypergraph with a graph is called clique 
expansion [1]. For each hyperedge z  consisting of k vertices, a k-
clique (a completely connected graph on k vertices; 3=k  in the 
case of triadic topological relations) is considered. The task of 
approximating )(zh  is reduced to the task of assigning weights to 
each edge within the k-clique associated with hyperedge z . 
According to [1], the weights of the ordinary graph G are given 
by the formula 
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that contain a particular pair of vertices. In our case 3=k , and 
therefore 2),( −= NkNμ . The information about the edge 

weights can be written as a NN ×  symmetric matrix G . Having 
the distance matrix G on hand, the affinity matrix is defined by  

)2/),(exp(),( 22 σjiji GW −=   (6) 

with σ  a free parameter.  

In the next section a novel algorithm is demonstrated, which 
allows to cluster data based on its topology-based affinity and 
remove outliers using the medoid shift. 

3. GRAPH CLUSTERING USING MEDOID SHIFT 

In this work the task of motion segmentation from two images of 
a scene is solved by clustering putative matching points into 
separate sets using an affinity measure computed by using 
topological relations among triples of matched point pairs. The 
points in the images can be thought of as vertices of a weighted 
undirected graph, and the affinity matrix consists of weights 
associated with the edges of this graph. The graph clustering 
problem involves data clustering based on the affinity matrix. 
There are many efficient methods for data segmentation that make 
use of eigendecompositions of the affinity matrix (see [9] for a 
review and analysis). Many of them require specifying the 
number of clusters explicitly, while in typical computer vision 
tasks the number of clusters is not known a priori. Although it is 
possible to infer the number of clusters by analyzing the structure 
of eigenvectors of the affinity matrix, it involves a complicated 
numerical method Error! Reference source not found.. That is 
why we turned to a non-parametric mode-seeking technique, the 
medoid shift, which does not require the number of clusters to be 
known. Instead, it automatically finds the number of clusters 
during execution. 
The medoid shift [8] is similar to the mean shift, an algorithm 
which is widely used for data clustering in computer vision 
problems [4]. We will briefly review both methods. Given N  
samples denoted by the set { } di R∈x , Ni ,...,1= , Parzen kernel 
density estimation is used to evaluate the underlying distribution 
function at a point by  
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where )(⋅Φ is a radially symmetric kernel function [4], 0c is a 
positive scalar, and 0>σ  is the bandwidth. In addition, )(xΦ  is 
the shadow of the kernel )(xϕ , i.e. )()( xx Φ′−=ϕ .  

Mode-seeking is the process of finding local maxima of the 
density of the data. It is assumed that modes are good candidates 
for being centers of clusters. During mode-seeking, each point is 
initially denoted by 0y , and the set of intermediate points 
traversed on the way to the mode is denoted by { } dk R∈y , 

Kk ,...,1= . Each step of mean shift moves along the direction of 
highest gradient from the current point. Given the current point 

ky , its position on the next iteration of the method is denoted by 
1+ky  and found according to  
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By differentiating the above equation and setting the first 
derivative to zero, one can obtain the formula for the position 
update of a point: 
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In this way, the updated position of a point is the weighted mean 
of the sample points. The mean shift method converges when the 
position 1+k

meany  does not change over the course of several 
iterations. By applying the mean shift procedure to each of the 
sample points, one can obtain modes of the data. Points that 
converged to the same modes are said to be part of the same 
clusters. The data on which the mean shift (and medoid shift) 
operate do not have to be linearly separable or form clusters of 
spherical shape with sharp boundaries. This allows the mean shift 
to work well in various tasks of computer vision, such as image 
segmentation, discontinuity preserving smoothing [4], and object 
tracking.  
The medoid shift [8] is the extension of mean shift. An advantage 
of the medoid shift over the mean shift is that it can be applied to 
cases when the notion of mean is not defined and/or the mean of 
data points cannot be readily computed. Medoid shift finds modes 
of the data even when only a distance measure between samples is 
defined. This is precisely the case in the current work. The 
medoid, which is an extension of the median in the one-
dimensional case (it is defined as the most centrally located point 
in a set of samples), is always part of the initial dataset. The 
update rule (8) is transformed and becomes 
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The difference between (8) and (10) is that in the former case the 
updated position is a data point taken from the d-dimensional 
search space, while in the latter case 1+k

medoidy  is the data sample 
that minimizes the function. In other respects, the mode-seeking 
procedure is the same as in the mean shift algorithm. The medoid 
shift provides a straightforward way of handling the outliers. 
Typically, outliers are located ‘far’ (in terms of topology-based 
affinity) from other data, and they do not merge with any clusters 
other than the ones they are centers of. A simple threshold T on 
the cardinality of a cluster allows differentiating between good 
clusters, consisting of many elements, and small clusters 
(containing only one data point in the extreme case) which are 
deemed as outliers.  In this work we used the value 10=T . 
Numerically, the medoid shift is much faster than the mean shift 
because the search space is greatly reduced. The numerical 
implementation of the medoid shift is straightforward (see [8] for 
details). We use (6) with 2.0=σ for computing the matrix W . 

4. PROPOSED METHOD 

Before proceeding to the outline of the proposed algorithm, it 
should be made clear that formula (4) is not optimal for 
computing the topology-based distances between pairs of putative 
matches because it is highly affected by contributions from point 
pairs that are located far away from the point pair under 
consideration. Suppose that one needs to compute the distance 

),( jig  between pairs ix and jx . Suppose that these pairs belong 
to the same moving object or to the image background and are 
close to each other. A third point k

1x  and its probable match k
2x  

may be outliers (mismatches) or pseudo-outliers (true matches 
that belong to another moving object) and this may lead to 
sidedness violation and affect the affinity between ix and jx . 

Assuming that moving surfaces that are to be segmented from the 
images are local, we propose to weigh points’ contribution to the 
affinity measure according to their geometrical distance from the 
pair under consideration. Precisely, the modified formula for 

),( jig  is the following: 
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In other words, the sidedness violations arising from the points 
which are far away from the pair for which the topological 
distance is computed are ignored. The modification given by (11) 
and (12) enhances the structure of the affinity matrix, leading to 
better intra-class similarity and larger inter-class dissimilarity. In 
this work we have used the value 2=t . The distance matrix for 
various values of t is shown in Figure 2 for a test problem 
described in the next section. 
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Figure 1: A synthetic example involving a square and a circle 

undergoing translation and rotation. 
 

The outline of our algorithm is the following. Given σ , T , t , 
and N putative point matches of two images of the same scene : 

1. Compute sidedness violations (3) for each triple of 
corresponding point pairs. 

2. Compute the distance matrix using the sidedness 
violations and formulas (11) and (12). Compute the 
affinity matrix using (6).  

3. Find modes of the data by running the medoid shift 
algorithm on the affinity matrix W . Data points that 
converged to the same mode are part of a common 
cluster. Prune the clusters that contain fewer than 
T elements. They are considered as outliers. Clusters 
that contain more than T elements will correspond to 
surfaces of objects that undergo various movements.  

5. RESULTS 

We created a synthetic example consisting of two moving objects 
shown in Figure 1. The first object consists of 75 points randomly 
placed within a square of size 2. The second object is consists of 
75 points randomly placed inside a circle of radius 1 centered at 
coordinates (3,4). In a second image, the square is moved by 0.2 
in the y-direction, while the circle is rotated by 45° clockwise 
about its center. Our goal was to segment these two motions in the 
presence of 75 noisy points, a noise level of 33%.  
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Figure 2: Distance matrix for the model from Figure 1 with 

various values of t : 2=t (center) and 1=t (right). The threshold 
t was not used in the left image. Lighter color indicates higher 

similarity among points. 
 
In Figure 2 we illustrate the impact of the parameter t  on the 
structure of the distance matrix. For illustration purposes, the 
points are numbered according to the number of object they are 
part of. When t  is not used (Figure 2, left), the points exhibit a 
high similarity in-between clusters which makes it hard to 
differentiate between objects. When t  is very small (Figure 2, 
right), the inter-cluster similarity is low, but the intra-cluster 
similarity becomes lower as well, since sidedness violations for 
even nearby points are ignored. We demonstrate in Figure 3 the 
two segmented objects (only the right frame is shown). Notice 
that while some points were incorrectly segmented, their number 
is low, and the number of correct points that were not thrown out 
is quite high. For comparison, we also show the results produced 
by the mean shift. For the mean shift, each data sample consisted 
of four parameters: the coordinates of each point in the first 
frame, and the two velocity components (difference of coordinates 
between the putative matches). The search domain for each 
parameter was normalized to lie between 0 and 1, and 1.0=σ  
was used. A total of seven clusters were found, but much more 
outliers remain. This happens because both translation and 
rotation are present in the image, but the mean shift fails to take it 
into account.  

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2.5

3

3.5

4

4.5

5

5.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2.5

3

3.5

4

4.5

5

5.5

 
Figure 3: Two structures segmented by our algorithm (left) and 

seven clusters found by the mean shift (right). 

6. CONCLUSION 

In this work we have presented a method to extract various 
moving regions from topological relations among pairs of putative 
matches found using two images of a scene. The main 
contribution of our work is that we have formulated the 
topological relations in the contest of a hypergraph. The affinity 
matrix of the corresponding ordinary graph is then clustered using 
medoid shift. Clusters correspond to areas of the image that 
undergo independent motions, which is indicative of 
independently moving objects. Outliers (wrong matches) are 
detected as well. Compared to [5], the topological clustering 
introduced in this work leads to a smaller number of pairs that are 
wrongly marked as outliers, since it does not assume global scene 
rigidity. 

The method was compared to a mean shift implementation that 
took into account only the shift vectors (velocities) of the matched 
points, without using the topological relations. Our method 
outperformed the mean shift implementation on synthetic data.  
In the future we plan to validate our method on real datasets, as 
well as investigate the role of parameters σ  and t which should 
be chosen dynamically based on local dataset density. 
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