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Abstract

Realistic rendering of underwater scenes has been a sutbjgct
creasing importance in modern real-time 3D applicationshsas
open-world 3D games, which constantly present the user ayth
portunities to submerge oneself in an underwater enviromngru-
cial to the accurate recreation of these environments arefthcts
of caustics and godrays. In this paper, we shall present el mbv
gorithm, for physically inspired real-time simulation dfelse phe-
nomena, on commodity 3D graphics hardware, which can ebasily
integrated in a modern 3D engine.
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Figure 1: A screenshot of our caustic and godray creation algo-
rithm, running at an excess of 100 fps, at a resolution of 800x

1. INTRODUCTION

Causticsare a result of the convergence of light at a single point.
The phenomenon occurs when light interacts with a re ective
refractive surface, where rays deviate from their initisedtions
and focus on certain regionsCrepuscular raysor godraysare a
result of photons outscattering from their path due to tlesg@nce

of particles in a participating medium. In this paper we bhdsent

a novel method for a physically inspired simulation of thése
phenomena in real time (Figure 1).

2. PREVIOUS WORK

Even though the underwater illumination has been the stbjec
extensive research (mostly in the domain of particle andtnag-
ing algorithms), real-time solutions to the matter of retédi caustic
formation are limited. Methods for the simulation of crepuigar
rays (or godrays) are even sparser. In this section, a breview
of some of the existing work in the area will be presented,ciwhi
is mainly focused on of ine rendering or interactive illunation
simulation, but also includes real-time techniques for efiog) and
displaying caustics and godrays.

Of ine solutions can create extremely realistic underwatgustics
and godrays, at a signi cant computational cost. One of trst
methods that allowed for caustic creation is forward ragitrg[1],
which differs from conventional ray tracing in the senset tags
are cast from the light towards the scene. Rays that intetBec
camera clipping plane contribute to the intensity of thepeetive
pixel. An alternative (and faster) method is bidirectiorsl tracing
[2],[3], that traces rays both from the camera and the lighirce
and 'connects’ the ray paths to nd the radiance contributio the
corresponding pixel. Photon mapping, a global illuminatsmlu-
tion presented in [4], utilizes forward ray tracing alongiwproba-
bilistic techniques, importance sampling and an illunoragath-
ering step to achieve relatively high performance and higgiity
caustics. It also permits the creation of godrays in paudithg me-
dia (via ray marching). However, despite the improvemertierw
compared to conventional forward ray tracing, photon magpjé
also limited to off-line applications.

One of the rst proposals for real-time caustic creation wgg5]
and involved the projection of a precomputed texture ongcstiene
geometry using additive blending. Animation was achieve v
texture coordinate perturbation. Obviously, while beiagtf this
method did not produce physically correct caustics thatated

in tandem with the water surface. Another approach, by [6] as
sumes that caustics are formed by rays emanating from ther wat
surface directly above the point of interest and uses Snall to
produce refracted rays. It modulates intensity based odithetion

of these rays and alternatively uses the vectors to indegharap.
Obviously the caustics produced by this method are not palgi
correct, as a result of the above assumption.

Shah et al. [7] presented a novel method for creating refeact
caustics in image-space. This method involves creatingri@xe
grid out of the refractive geometry and then splatting theises
onto the scene using an image-space ray-scene intersedgon
rithm. However caustic quality is directly related to thegellation
of this vertex grid. Furthermore, this method does not fteve
solution to the issue of godrays that is part of the same ilhation
problem.

Research concerning godray creation falls into two maiegmies,
the rst being the modeling of the rays as light shafts. [8gented
a method that modeled lightshafts as the front-facing sedeof
"illumination volumes'. However, the computational cost fthis
method was very high and, at its time, it did not provide a real
time solution. Lanza [9] proposed a similar method that ysad
allelepipeds, which are transformed via a vertex shadegrpm



SO as to animate in tandem with the water surface. This method tain area and reduces aliasing. Our technique achieveshiginy

while producing very 'dramatic’ results, requires a higimsigy par-
allelepiped grid in order for the effect to be realistic, ahin turn
results in a very high Il rate cost. Furthermore, the natémsity
computation for the godrays does not account for individagl
attenuation, as it is done in a post-processing pass, dwidmich,
information for each individual ray is not available.

The second category of godray creation algorithms focusemd
the sampling of the visible distance in front of the viewerrag-
terizing planar surfaces parallel to the near clipping eldbobashi
et al. [10] uses precomputed integral values (saved in 2ites)
in order to compute the intensity value at each plane, whieh a
then accumulated in the frame buffer. Jensen [11] perforpera
fragment projective texture read from a caustics map, foh éag-

ment on a sampling plane. Both of these methods present oine ma

drawback, since a large number of sampling planes is redjirirer-

der to avoid artifacting. As these planes are representediaen-
space quads, there is a signi cant ll-rate premium to paytfeeir
rasterization. Furthermore, in the case of Dobashi etladretis
no direct way for the algorithm to control animation of thght
shafts (since it would require recomputation of the 2D |qokex-
tures), while as far as Jensen's method is concerned, thit iesot
physically accurate. In addition, the non-linear naturéheke pro-
jection transformations on the view-oriented planes pcedunon-
uniformly spaced samples and may result in curved godrays.

Another type of method that can handle caustics and saateri
due to complex refractive objects involves ray-marchingtigh

a voxel grid of the refractive geometry. 'Eikonal rendetifi®] is
such a technique, and while it allows for real-time framesadur-
ing viewport changes, if the refractive object or the ligbsjtion
are altered, the lighting distribution has to be recal@ddt process
that can take several seconds) making it unsuitable forlaimg
underwater effects due to their constantly shifting natémother
technique in this area is presented by Sun et al.[13] who ose a
oct-tree data structure to store voxel data along with aptada
photon-tracing step to recompute the radiance volumegextaic
tive frame rates (approximately 8 fps). However, while ssstully
dealing with arbitrary and non-uniform refractive georiety this
method also is too computationaly intensive to be used irak re
time generic 3D application.

Finally, Kriiger et al. [14] proposed a method for generiostic
simulation that utilizes the rasterization of lines contpdcas tex-
ture rows to compute the intersection points of photon raifh w
scene geometry. While this method can be quite accurate alhen
occluders lie inside the camera frustum and can also handlé m
ple bounces via depth peeling, it fails to calculate intetise points
for off-frustum occluders, which is frequently the case muarwa-
ter scenes. Furthermore, the brute-force texture-spaees@ction
algorithm imposes a high llI-rate cost and requires muktipasses
to calculate an adequate number of particle collisionshaglata
for each particle intersection estimation effectively @gies one
texture row (texture space scan-line).

Our method is a real-time approximation of the photon magppin
algorithm for underwater caustics (and volumetric cas}tigen-
eration. It utilizes the image-space ray-scene interseatiethod
by Shah et al. [7], but in contrast to the original techniquele-
couples the effect accuracy from the refractive geometryrag-
ing uniformly distributed photons from the light source s the
scene. Caustics are modeled as point primitives of varisizie
created on the intersection points, while scattering dufeqar-
ticipating medium is simulated using line rasterizatiotwsen the
water surface and these points. Intensity calculationswage on a
per-photon basis (allowing for realistic attenuation antsoatter-
ing). Finally the equivalent of the photon mapping gathgstep
is a Itering pass that spreads the particle contributioeroa cer-

framerates on commodity graphics accelerators and candiy ea
integrated within any modern 3D engine.

3. METHOD OVERVIEW

Our method realistically approximates caustic creatign¢asting
photons from the light source evenly distributed over a.gfidese
photons are intersected against the scene geometry, amtcppiai-
itives of variable size are created at the intersection tpoirfor
godrays, the intersection points are discovered in a simig, but
line primitives are spawned instead. Our method utilizesfarded
rendering approach and makes extensive use of rendexitode
and programmable shader capabilities of modern graphidsvaae
(vertex/fragment and geometry shaders). Following is a-hegel
overview of the rendering pipeline:

1. Frame preparation

a. Calculate the new position and look-at vector for the
rendering pass from the light's perspective.

2. Shadow map creation

a. (In light-space)Render the shadowmap.

b. (In light-space)Optionally, render a mask representing
the water surface into the shadowmap's color attach-
ment, allowing for the algorithm to test photons against
the water's surface only and therefore eliminate those
that do not enter the water mass.

3. Render scene geometry

a. (In camera-spaceRender the scene geometry into a
render target, from the camera's point of view.

4. Optional re ection/refraction rendering passes
5. Caustics Rendering
a. (In light-space)Calculate intersection points of rays

with the scene geometry.

b. (In camera-spacefEmit point primitives and rasterize
them with additive blend.

c. (In camera-spacefilter caustics.
6. Godray Rendering

a. (In light-space)Calculate intersection points of rays
with the scene geometry.

b. (In camera-spaceEmit line primitives and rasterize
them with additive blend.

c. (In camera-spacefilter godrays.
7. Compose nal image

a. (In camera-spacelJse additive blending to compose
the nal image using input from steps 3,4,5 and 6.

b. (In camera-spacePptionally apply other screen-space
post processing effects like ambient occlusion and mo-
tion blurring.

Since our goal was to focus around underwater caustics and go
drays, the algorithm supports the tracing of a single réifsac It

can however be extended to support multiple refractiverfates

via depth peeling ([7], [14]). A visual representation o€ thl-
gorithm process that demonstrates how results from eaphasee
combined, is presented in Figure 2.
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Figure 2: Overview of the godray and caustic creation algorithm.

3.1 Frame Preparation

Since we cast a concentrated but small number of photonsioaito
geometry, we must ensure that most of them intersect thbleisi
portion of the scene. Therefore, the light frustum (and thet@n
grid) is bound to follow the camera frustum.

For directional (in nite) light sources, their positigmign: tracks
the camera frustum, whereas for point lights, the positemains

xed. In both cases though, the look-at vectquoints at the middle
of the camera view frustummiq -

T= Pmid  Plight

— Znear * Zfar
pmid - pviewer + T E—

whereznear ;Ztar are the camera's near and far clipping distances

Tviewer

andTyiewer IS its look-at vector.

3.2 Render Scene Geometry

In this step we render the scene geometry into an off-screfferb
If necessary, fog calculations can also be applied hereh&umore,
the Z-buffer information from this pass is captured, asieguired
in the following steps to depth-test the caustics and gadray

3.3 Caustics Rendering

We have mentioned that our process involved casting a plgridn
onto the scene. In this way, the emission of photons fromitfhe |
source towards the scene is simulated. The grid is modeldtkin
light's canonical screen space as an array of points, wighréh
quired tessellation. During this step of the algorithm, & tesolu-
tion grid is sent to the GPU for rendering. Then, using a gegpme
program, each grid cell is subdivided to produce the desited-
ber of points, ensuring a dense photon distribution. Arriadtéve
adaptive subdivision scheme has been proposed by Wymaniet al
[15]. However, usage of this scheme is not justi ed in our noet,
since it requires feedback during each subdivision stepigbédt-
ter suited for generic caustics simulations in which theaetbr
has limited screen-space coverage and possesses arradiiaipe.
The geometry shader also performs the refraction, poirattipd
and godray modeling operations. The grid point currentlindpe
calculated is unprojected from light canonical screen sgaordi-
nates into world coordinates and modeled as a ray (vhich is
then intersected against the water surface. With the suifger-
section pointps and normalrs of the water surface knowm; is
refracted to produce the refraction directisn Both rr andps
are passed to the image space intersection algorithm by &fsh
[7], along with the shadow map texture. The algorithm uses th
Newton-Rhapson (NR) derived iterative method to approxéntize
solution to a functiori (d) with d being the distance to intersection
point p; from ps alongry. In order to do so, an estimated inter-
section pointpe = Ps + destimate Ft is assumed, along with
its projection into light-spacgpr; ,, and the algorithm approxi-
mates the solution to(d) = pe  Pproj ,.- IN [7], it is shown
that this NR-derived estimator tends to converge to a valukso
thatps + d r is the surface intersection poipt. At p; we then
emit a point primitive. A schematic overview of the photostiag
process can be seen in Figure 3.

These primitives are transformed to camera space and ezhdsr
ing additive blending with their size corresponding to ttsgireen-
space coverage. Consiquently, point size is actually a san
factor in computation of the nal caustics intensity. If gbints
emitted have a constant size then the projection of therdiptaint
primitives would overlap on the view plane, resulting in rhuc
brighter caustics than the ones close to the camera. On liee ot
hand, if the point size is not large enough, photons ragtéritose
to the viewer do not superimpose each other, leading to queate
splatting that cannot simulate the gathering stage ofgartiacing
and produces noise artifacts. The solution to this issuerisgulate
the size of the points based on their distance from the ca(sesm
Figure 4). The nal point size is calculated as follows:

Sna = a+ b=dpointFromviewer

(Smax_ Smin )

Ztar

with a = Spmax 2=

Znear

andb = Znear  Zfar (Smax__ Smin )

Zfar  Znear

Smax andSmin are minimum and maximum point sizes.

The emitted point primitives are then rasterized (with Hdeli
blending) in a high-accuracy render target and Z-testethagthe
camera's depth buffer (already available from step 3). Thal



Figure 3: The photon casting process.

Figure 4: Distance-regulated point size to account for the non-
projective hardware-based drawing of point primitives.

intensity value is produced from this formula:

= d
ltinal = lphoton €  Cfromsurface

where is the medium attenuation parameter ah@msurface

is the distance of the photon from the water surface. Thindia
only takesdiromsurface  iNtO @ccount, since the attenuation based
on the distance from the viewer is intrinsically handledthi@point
size regulation described above.

3.4 Godray Rendering

In this step, a grid of rays is cast and intersected with teas¢sim-
ilar to step 5). The main difference lies in that, insteadrofténg
a single point primitive at the ray-scene intersection ppina line
primitive that starts at water surfape and ends ap; is emitted.
The line primitives are transformed to camera-space, theterized
with additive blending in a high-accuracy render targetandsted
against the camera's depth buffer. The formula that prositioe -
nal intensity value per godray fragment is the following:

Mle( ) e diromV iewer e dfromsurface

I'tinal = | photon

Mie () is a Mie scattering phase function withbeing the angle
between the ray direction and the vector from the viewer & th
fragment. diromsurtace 1S the distance of the fragment from the
water surface.

3.5 Filtering and Composition

In both of the above steps, the result can display some radjasi
the low intensity areas. To counter this issue, after catmg the
effects, we apply a multi-tap low pass lIter with a rotatingns-
pling kernel that reduces noise. Comparison between tlezett
and un ltered results can be see in Figure 5.

Finally, the intermediate images (color/re ection/refra
tion/ Itered godray/ ltered caustics buffers) from the aie
steps are combined into the end result. At this point, theemwat
surface geometry is rendered as well. The nal product of our
algorithm can be seen in Figures 6,7,8.

Figure 5: Detail demonstrating the differences between un ltered
(left) and Itered caustics (right).

Figure 6: Our algorithm, rendering a small port, running at a reso-
lution of 1440 850, with a framerate of 60+ fps.



tion startup and rendered during each frame. The volumediticre

of the godray effect requires a smaller amount of cast plsotdren
compared to the caustic effect in order to achieve satisfaate-
tail. Thus, two separate photon grids are created, with theone
being200 200 points large, and the second one bell®d® 100
points. Inside the geometry shader, these points can beefues-
sellated in order to improve detail. Dynamic tesselatiopassible
but greatly impacts peformance (by as much as 50%) as thesshad
compiler is unable to optimize the shader code by unwindigg t
primitive generation loop.

For our test cases (and the respective demo application)awe h
created a single light positioned at a very large heigth alibe
scene in order to simulate a directional light source withiran
tensity of 9:23-. The exponential attenuation factor used is
0:13m !. Also, we have utilized a simpli ed version of the
Henyey-Greenstein phase function [16] in order to comphee t
Mie () term.

We mentioned in the previous section that a crucial part oftia
production is the regulation of the size of the generatedtpoiln

our implementation we have set a minimum point size of 5 and a
maximum of 20. These numbers can be adjusted according to the
resolution of the cast photon grid (with lower resolutioaguiring
larger point sizes in order to compensate). Similarly, thétkvof

the lines spawned in the godray portion of the algorithm baset

Figure 7: A water tank scene rendered with our algorithm. The modi ed to compensate for a reduction in grid resolution.

scene runs at more than 120 fps in a windov8@® 800 pixels.

In our tests, we provide two different models for the procatiu
generation of water surface elevation and normals. Theomstis a
simple circular cosine function with a small noise conttiba that

is read off a Perlin Noise [17] texture, that provides a féamiand
easily comparable effect. The second model consists of iaeos
value along one of the world axes with a signi cant Perlin dioi
contribution, approximating the turbulent waves of a wateface.
In both models, the amplitude of the water surface can bdatsgli
by the user during run time.

4.2 Results / Tests

We conducted our tests on a system with an Intel Core 2 Duo
E4500 processor running at 2.2 Ghz, with 2 gigabytes of rath an
an NVidia GTX260 GPU with 216 stream processors. With a view-
port resolution o0BOO 800 for the main window, with 12 512
caustics buffer, 428 128godray buffer and grids for the caustics
and godrays 0200 200 4and100 100 4 photons respec-

Figure 8: A ooded storage area scene rendered with our algorithm tively, the frame rate exceeds 110 fps. At a viewport resmiuof

inal440 850resolution. The scene runs at more than 60 fps.

4. IMPLEMENTATION AND RESULTS

4.1 Implementation Details

We have implemented the caustic and godray formation dkgori
using OpenGL and GLSL. The render targets are implemented as

OpenGL Frame Buffer Objects with textures of various sizasiol
to the respective attachment points.

In order to improve performance, we regulate the sizes afghder

targets to a fraction of the nal frame buffer resolution.e8pcally,
in our demo application the caustic render target resaiiis12

512 (compared to th&00 800 default resolution for the main

viewport), whereas the godray render target28 128 pixels.
This results in a signi cant performance boost (since thergg
rendering process is ll-rate intensive) with only a smatist in
accuracy. If the application viewport is resized, the bbhaKers
are also resized to preserve this scale factor.

In our implementation, the photon grids are initialized @pléca-

1440 850, while maintaining the same grid resolutions, the frame
rate still remains highly interactive, exceeding 60 fps.

If the grid resolutions are increased360 500 4 (for a total
of 1000000 photons) for the caustics portion an8@6 300 4
(for a total of 360000 photons) for the godrays portion, tiagrfer-
ate still remains interactive on our test system (rangiognf20 to
30 fps). At these resolutions, aliasing effects are no lomgéice-
able, making the ltering passes unnecessary (as can befaete
godray portion of the algorithm in Figure 9).

In order to test how the algorithm scales with respect to Hadfer
resolution, we performed measurements with a viewportuésa
of 1440 850, while increasing the godray back-buffera60 272
(a 4-fold increase in resolution compared to the defaulirggt
To compensate, we also increased the screen-coverage lafighe
primitives to12 pixels. Finally, we augmented the grid resolutions
to 400 400 4 for caustics generation argD0 200 4 for
godrays and regulated the point primitive size (smallesbxlgp,
largest 10 pixels) to sharpen the caustics. Despite theaserin
back buffer resolution and ll-rate cost, the frame-raté stmains
highly interactive ( 20 frames per second). Again, with thigsease
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Figure 10: Final results of our algorithm with high grid resolutiors) increased godray back-buffer resolution, regulatedipvie sizes and
screen-space ambient occlusion approximation. For adkthest cases, the method still allows for interactive fraates.
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