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Abstract 

In this paper, a new wavelet zero tree-based image compression 

algorithm that is based on exploitation of smart adaptive context 

models is proposed. The models are derived from wavelet trans-

form properties and are exploited to improve efficiency of arith-

metic coding. They are intuitively clear and do not require any 

preliminary training. To author’s knowledge, the proposed algo-

rithm is comparable to or surpasses all previous zero-tree based 

encoders in terms of R-D performance. At the same time, the 

computational complexity of the algorithm remains low because it 

bypasses bit-plane coding and processes each coefficient in only 

one pass. The near-lossless algorithm extension that is based on 

lossy plus residual coding and provides a guaranteed maximum 

absolute error bound is presented. A new hierarchical compressed 

multiresolution terrain model designed for efficient elevation data 

storage and retrieval that exploits the presented compression tech-

nique is proposed. Special care is taken to guarantee seamless 

stitching of neighboring patches. 

Keywords: Compression, Wavelet Transform, Context Modeling, 

Terrain. 

1. INTRODUCTION 

Rapid evolution of digital data acquisition technologies in the past 

years led to the exponential growth of digital content size. As a 

result, efficient compression techniques that reduce the storage 

requirements with no or minimal information loss have becoming 

more and more important. Image compression applications are 

well known and include digital camera, medical imaging, internet 

browsing, to name a few. 

Compact representation of digital elevation data sets is another 

area where efficient compression techniques are required. This 

problem is especially important for such applications as geograph-

ical information systems, flight simulators, virtual environments, 

computer games etc. Satellite scans of a terrain region can contain 

billions elevation samples potentially requiring storage of up to 

terra bytes. Processing such huge uncompressed data sets is a very 

complex task, especially in the context of real-time terrain visuali-

zation, because the data size can exceed not only the main memo-

ry, but even the disk capacity. 

In this paper, we present a new image compression method that 

improves the compression performance of previous algorithms 

such as SPIHT [SP96] and LTW [OM03] by using smart adaptive 

context modeling for more efficient arithmetic coding. At the 

same time, since algorithm is zero-tree based and bypasses bit-

plane coding, its temporal complexity remains low. We applied 

the presented compression technique to construct hierarchical 

compressed multiresolution terrain representation that can be 

exploited in real-time terrain rendering applications. Special care 

is taken to assure seamless patch connection across borders. 

2. RELATED WORKS 

2.1 Wavelet-based image compression methods 

During last years, wavelet-based image compression techniques 

have becoming more and more popular since they provide better 

compression performance and at the same time do not suffer from 

artifacts typical to the Discrete Cosine Transform – based image 

compression algorithms. All wavelet-based image coders have the 

same workflow. To remove correlation between neighboring pix-

els, at the first stage of the compression process, the image is 

transformed from spatial domain to a combined spatial-frequency 

wavelet domain [ABM92]. After the first step of wavelet decom-

position, the image is transformed into the lower resolution repre-

sentation (LL subband) and three detail subbands called: horizon-

tal (LH), vertical (HL) and diagonal (LL) details (fig. 1). The 

same transform is further applied to the LL subband and so on. 

 

Fig. 1: Subbands of two-stage wavelet decomposition. 
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Wavelet coefficients resulting from full wavelet decomposition 

are quantized at the next stage (here some information is lost) and 

are encoded. Due to hierarchical nature of wavelet transform, 

quantized wavelet coefficients can be organized into three quad 

trees growing through the LH, HL and HH subbands (see fig. 2). 

The fundamentally new method for wavelet coefficient trees en-

coding was presented by J.Shapiro [Sha93] in his EZW algorithm. 

The main contribution of [Sha93] is introduction of a zero tree 

structure. Wavelet coefficients tree is called zero tree with respect 

to threshold   if all its nodes are insignificant with respect to  . 
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Fig. 2: Wavelet coefficients quad trees. 

The main idea behind zero tree coding is the observation that if a 

coefficient is insignificant at a coarse scale in a multiresolution 

representation, then it is likely that its descendants at the finer 

scales are also insignificant. Thus single symbol is enough to 

encode all zero coefficients in a zero tree. One important feature 

of EZW algorithm is that it generates embedded bit stream, in 

which all encodings of the same image at lower bit rates are em-

bedded in the beginning of the bit stream at higher bit rate. 

EZW laid down the foundations for the new class of wavelet-

based image compression techniques – the zero tree coders. The 

next method in this trend is called SPIHT and was presented by A. 

Said and W. Pearlman [SP96]. SPIHT is a highly refined version 

of EZW and due to smart set partitioning rules exploited it 

achieves remarkably higher compression ratios compared to EZW. 

Though code embedding is a very useful feature, it significantly 

complicates the algorithm since each coefficients is reconstructed 

in several passes, one for each bit plane. However many applica-

tions (such as the digital camera or elevation data storage) do not 

require that feature and the data need to have pre-defined quality. 

So a number of algorithms tried to give up quality scalability in 

favor of higher execution speed. 

One of such methods named SWEET was presented by J. Andrew 

[And97]. SWEET is solely based on energy clustering in trans-

formed image in frequency and space and exploits block partition-

ing as an alternative to zero-tree coding to separate significant 

coefficients from large sets of insignificant ones. In contrast to 

SPIHT and EZW, SWEET does not produce embedded code: it 

outputs all bits of the coefficient magnitude up to some minimum 

bit plane number nmin as well as its sign as soon as the coefficient 

is identified as significant. Since SWEET avoids complicated list 

processing, it is much simpler and faster than SPIHT and at the 

same time it demonstrates comparable compression efficiency. 

To improve temporal performance of the wavelet encod-

ers/decoders, J. Oliver and M. Malumbres [OM03] proposed the 

algorithm that is based on a structure called wavelet coefficients 

lower tree (LTW), which is actually the zero-tree of pre-quantized 

wavelet coefficients with respect to threshold 2rplanes (rplanes is 

the number of least significant bit planes to drop). The main speed 

improvement in LTW is achieved by eliminating bit-plane encod-

ing (similar to SWEET). As a result, the compressed bit stream is 

not embedded, but it is resolution scalable, which means that the 

information corresponding to coarser image representation goes 

first. The encoding process consists of two passes. On the first 

pass, wavelet coefficients are labeled using special three labels: 

LOWER, ISOLATED_LOWER and LOWER_COMPONENT. 

The first two labels directly correspond to Zero Tree Root and 

Isolated Zero labels used by Shapiro in EZW [Sha93]. The last 

label indicates that the coefficient belongs to a lower tree. On the 

second pass, the coefficients are scanned from the lowest resolu-

tion to the highest resolution subbands, and for each coefficient its 

label as well as the number of bits required to represent its magni-

tude are arithmetically coded. They are then followed by the least 

significant bits representing the coefficient magnitude (MSB is 

omitted) and its sign. The main advantage of the LTW algorithm 

is its simplicity. LTW does not exploit lists and reconstructs coef-

ficients in one pass which leads to significant speed improvement. 

Previous zero-tree coders do not fully take advantage of adaptive 

context modeling. EZW exploits simple Markov conditioning 

based on significance of previous coefficient in scan and parent 

coefficient significances. SPIHT uses adaptive context modeling 

to jointly encode significance of 4 sibling coefficients. LTW also 

exploits simple arithmetic coding algorithm, however no details 

are presented in [OM03]. It was shown in other works [CO97], 

[Wu97] that exploitation of high-order context modeling can yield 

significant compression performance improvement. However, 

algorithms presented in [CO97], [Wu97] are not zero-tree based. 

Besides ECECOW algorithm [Wu97] requires extensive trainings 

to initialize its coding structures. In this work, we tried to take 

best from both worlds – combine adaptive context modeling with 

zero-tree coding to improve compression performance keeping at 

the same time the algorithmic complexity low. 

2.2 Compressed multiresolution terrain models 

Though large-scale terrain visualization has long history, only a 

few recent works concentrate on efficient elevation data compres-

sion methods. The geometry clipmaps approach [LH04] exploits 

regular grid pyramid data structure that enables applying the lossy 

image compression technique [Mal00] to the terrain height map. 

However, this method cannot provide a guaranteed error bound, 

which becomes especially apparent on high-variation terrains such 

as the Grand Canyon. Another method that utilizes terrain eleva-

tion data compression is presented by E. Gobbetti, et al., 

[GMC+06] and is called C-BDAM. It exploits a wavelet-based 

two stage near-lossless compression technique presented by S. 

Yea and W. Pearlman [YP06]. A problem of seamless stitching 

neighboring patches is not covered by C-BDAM. Another method 

presented by C. Dick, et al. [DSW09], mainly focuses on com-

pressing adaptive triangulation in a way that enables GPU-based 

decompression. The method achieves a moderate compression 

factor of 8-9. Elevation data compression techniques are not con-

sidered by C. Dick, et al. 

The remained of this paper is organized as follows. In section 3, 

our image compression technique is described. In section 4, we 

present compressed multiresolution terrain representation based 

on the proposed image compression algorithm. Section 5 presents 

experimental results. Section 6 concludes the paper. 

3. COMPRESSION ALGORITHM DESCRIPTION 

The compression method we developed belongs to the class of 

zero-tree coders and extends the ideas of EZW [Sha93], SPIHT 

[SP96] and LTW [OM03] algorithms. As in EZW, the quantized 

wavelet coefficients are scanned from the lowest frequency sub-

band to the highest frequency in our algorithm, and in each sub-

band, coefficients are scanned in zigzag order. While EZW and 

SPIHT perform multiple bit-plane passes, our method encodes 
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each coefficient in only one pass. It encodes each coefficient 

magnitude using at most bpn  bits. It thus is similar to SWEET 

[And97] and LTW [OM03] algorithms, which discard a fixed 

number of least significant bits in quantized wavelet coefficients 

and generate non-embedded but resolution scalable bit stream.  

3.1 Quantization 

We use a uniform quantizer with a dead zone (fig. 3). The quanti-

zation step q is determined as b pn
Mq 2/  where 

||max )(

,
,,},,,{

l

ji
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sM


  is the maximum wavelet coefficient magni-

tude of all detail subbands (LH, HL and HH) across all scales and 

bpn  is the maximum number of bits allotted to represent the coef-

ficient magnitudes. The quantizer divides the range of all magni-

tudes [0, M] onto b pn
N 2  uniform quantization bins nB  such 

that })1(||:{ qnsnqsBn  . 

 

Fig. 3: Uniform quantizer with a dead zone. 

We denote  qssnB /||)(   to be the number of the bin which 

coefficient s  falls into (    denotes the integer part). We will 

refer to this number later as quantized magnitude. Binary repre-

sentation of )(snB  can be treated as a sequence of bpn  binary 

decisions where the first bit indicates whether the coefficient 

magnitude falls into the )2/,0[ M  range (0 bit) or into the 

],2/[ MM  range (1 bit). The next bit refines the uncertainty in-

terval to length M / 4 (00: )4/,0[ M , 01: )2/,4/[ MM , 

10: )4/3,2/[ MM , 11: ],4/3[ MM ) and so on. Magnitudes of all 

coefficients )(

,

l

jis  falling into the same quantization bin nB  are 

reconstructed equally as nm̂  and at the decoder, the coefficients 

are restored as follows: 
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jim  is the reconstruction level for the quantization bin which 
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jis  falls into (with the number )( )(

,
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jiB sn ). The question is what 

value to use as a reproduction level nm̂  for the bin nB . If the 

probability distribution function (PDF) )(tf  of the coefficient 

magnitudes was known, the optimal reproduction levels for each 

bin would be placed at the centroid of the distribution for that bin: 
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Exact distribution is unknown; however it is usually assumed that 

wavelet coefficients have Laplacian distribution with zero mean, 

that is the coefficient magnitudes distribution can be well approx-

imated by the following PDF: 

tetf  )(  (2) 

Given that assumption, the reconstruction levels nm̂  can be calcu-

lated as follows: 
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Reducing this formula gives the following equation for nm̂ : 

1

1
ˆ




 qn
e

q
nqm  (3) 

The unknown parameter   in (3) can be estimated based on the 

magnitudes of wavelet coefficients. This could be done using one 

of the methods from mathematical statistics. Since our goal is to 

minimize reconstructed image error, we exploit different ap-

proach. It is difficult to find exact   that minimizes the distortion 

in image space without performing extensive calculations. We 

instead calculate   such that it minimizes the distortion in wave-

let domain. Due to bi-orthogonality of wavelet transform, this 

method also gives close to optimal solution in image space. We 

thus minimize the following error function that gives mean square 

error in wavelet domain: 
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It can be seen from (3) that all reproduction levels nm̂  are equally 

shifted from the quantization bin nB  lower bound nq : 

 nqmn
ˆ  where (4) 
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We thus need to find the optimal shift   that minimizes the fol-

lowing function: 
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The minimum of this function can be derived from the root of the 

following equation: 0
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which gives the following formula for optimal  : 
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Where sN  is the total number of significant coefficients. It fol-

lows from (6) that the optimal shift   for reproduction levels is 

the average magnitude shift from the quantization bins’ lower 

bounds. This is intuitively reasonable result. 

Given  , the distribution parameter   can be calculated by re-

verting equation (5), however in fact, we do not need   since we 

only interested in optimal shift  . Thus 
)(l  parameters are cal-

culated separately for all decomposition levels in our algorithm 

and are encoded as side information. Since   falls in the range 

],0[ q , the following symbol is encoded using nbits  bits: 
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 
nbitsll q 2/

~ )()(  . 

At decoder, the parameter is reconstructed as follows: 

 q
nbitsll   2/)5.0

~
(ˆ )()( . 

We use 7 bits ( 7nbits ) for encoding )(l . 

Wavelet coefficients of the lowest frequency LL subband in our 

algorithm are quantized and are arithmetically encoded using 

separate model for each bit position. Since large values are less 

possible, arithmetic coding reduces the compressed data size. 

The compression performance of different wavelet-based algo-

rithms is primarily determined by how efficiently the quantized 

coefficients are encoded. In the next subsections, we will describe 

our adaptive context models that improve compression efficiency 

of arithmetic coding. To distinguish our method from others, we 

call it ACMZW (Adaptive Context Modeling Zero-tree Wavelet 

coder). 

3.2 Utilizing adaptive context modeling to predict 

the coefficient magnitude 

Similar to LTW, our method encodes number of bits ))(( snnbits B  

required to represent each significant coefficient s quantized mag-

nitude )(snB  using arithmetic coding [WNC87] and then trans-

mits the magnitude bits followed by the sign. To exploit informa-

tion carried by already encoded neighboring coefficients, we util-

ize adaptive context modeling. For this purpose, we first predict 

the reconstructed coefficient magnitude. Wavelet transform local-

ize energy in both frequency and spatial domains: WT coefficients 

of similar magnitudes statistically cluster in frequency subbands 

and in spatial locations. As a result, the reconstructed coefficient 
)(

,
ˆ l

jis  estimated magnitude can be well derived from the magni-

tudes of the coefficients in the context, containing four neighbors 

(one to the left ( )(

,1
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jis  )) and three from above ( )(

1,1
ˆ l

jis  , )(

1,
ˆ l

jis   and 

)(

1,1
ˆ l

jis  )) and one direct ancestor ( )1(

2/,2/
ˆ l

jis ) (see fig. 4). 

 

Fig. 4: 5-coefficients contexts used to estimate the coefficient’s 

magnitude. 

We use the following expression to calculate the expected coeffi-
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In the expression above, the first summand represents the energy 

localization property in space: it is expected that neighboring 

coefficients will have a similar energy. The second summand 

represents the energy localization property in frequency: the an-

cestor’s energy is distributed among its descendants. 

Weights iw  can be optimized for each subband for particular 

image. However, this would require additional computations and 

a lot of side information to be sent, so we use constant weights 

instead, which are optimized for a test set of images. Since LH 

subband exhibits predominantly horizontal structures, we use the 

following coefficients for this subband:  

)125.0,15.0,3.0,15.0,4.0(),,,,( 43210 wwwww . 

HL subband exhibits predominantly vertical structures, so we 

apply the following weights for this subband: 

)125.0,15.0,4.0,15.0,3.0(),,,,( 43210 wwwww . 

HH subband does not exhibit explicit structures, and we exploit 

the following weights: 

)125.0,25.0,25.0,25.0,25.0(),,,,( 43210 wwwww . 

Due to the zig-zag scanning order, all coefficients in the context 

are evaluated first, so )(

,
ˆ̂ l

jim  is always properly calculated. The 

number of bits ))ˆ̂(( )(

,

l

jiB mnnbits  required to represent the quan-

tized predicted magnitude )ˆ̂( )(

,

l

jiB mn  gives the adaptive context 

model number to be used in arithmetic coder. To further improve 

compression performance, we encode the maximum number of 

bits required in each level of wavelet decomposition and use sepa-

rate context sets (consisting of max_bits(level) models) for each 

level. After the number of bits ))(( )(

,

l

jiB snnbits  required to 

represent the exact quantization bin number )( )(

,

l

jiB sn  is encoded 

with the appropriate model (which is given by ))ˆ̂(( )(

,

l

jiB mnnbits  

and decomposition level), all the coefficient magnitude refinement 

bits (which are the bits in binary representation of the )( )(

,

l

jiB sn ) 

excepting the most significant one are transmitted. We determined 

that exploiting arithmetic coding for refinement bits also improves 

compression performance. This is achieved by using a separate 

arithmetic model for each bit position and for each number of bits 

required to represent bin number. 

3.3 Utilizing adaptive context modeling to predict 

insignificant coefficient sets 

While the LTW algorithm exploits the EZW-like coding style to 

encode large sets of insignificant coefficients, with additional 

symbols corresponding to degree-1 zero tree, we adopt the more 

advanced SPIHT-style coding method. Since SPIHT is a degree-

two zero tree coder (see [CP07]), while LTW is a degree-one zero 

tree coder, the exploitation of SPIHT-style coding gives addition-

al benefit [CP07]. In [SP96], the set of coordinates of all 

offsprings (direct descendants) of the node is called set type A. 

The set of all descendants of the node excepting its offsprings is 

called set type B. Set is defined to be significant if it contains at 

least one significant coefficient. SPIHT defines smart set parti-

tioning rules that are used to efficiently separate significant and 

insignificant coefficients (see [SP96] for more details). 

SPIHT jointly encodes the significance of four neighboring sets of 

type A and uses conditioning on the significance of set type A to 

encode the significance of set type B. In our algorithm, we im-

plemented different and more efficient approach. As with magni-

tudes, we predict the significance of sets of type A and B based on 

already encoded information (fig. 5) and taking into account space 

and frequency localization properties of wavelet transform. 
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Fig. 5: 4-coefficients context used to predict set type A and set 

type B significance. 

Due to the space localization property, it can be expected that the 

more significant neighboring sets of type A (B) the coefficient 

has, the more probable its set type A (B) is significant. Due to the 

frequency localization property, it is expected that the more ener-

gy is concentrated in this spatial location, the more probable the 

energy spread to higher frequency and as a result the coefficient’s 

set type A (B) is significant. Combining these two considerations, 

we derive the following expressions to calculate context model 

number to encode the set type A (B) significance: 
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where 1)(

, l

jiA  ( 1)(

, l

jiB ) if set type A (B) is significant and 

0)(

, l

jiA  ( 0)(

, l

jiB ) otherwise. Thresholds q2  and q  were found 

out empirically for test set of images. The presented equations 

have the meaning that the greater context model number, the more 

probable the set is significant. 

3.4 Encoding coefficient signs 

In [BP01], the sign/significance information is encoded using 3m 

symbols for m yet insignificant coefficients in a group of 2x2 

sibling coefficients. We figured out that it is more efficient to 

encode sign separately using one out of 27 context models for 

each subband. The context model number is defined depending on 

the sign and significance of three already encoded neighbors in 

the context shown in fig. 6. There can be 3 possible states for each 

neighbor: positive, negative or insignificant (zero), which gives 

27 possible combinations for three coefficients. Since signs tend 

to produce different patterns in each subband, we use 3 separate 

context model sets for each subband (LH, HL and HH). 

 

Fig. 6: 3-coefficients context used to encode the sign. 

The close approach was implemented in ECECOW algorithm 

[Wu97], however contexts of ECECOW contain much more coef-

ficients and thus they require much more data to provide reliable 

probability estimations. 

3.5 Lossy plus residuals coding that guarantees 

the specified tolerance of the reconstructed data 

In many applications, such as medical imaging, the decompressed 

image must satisfy some pre-defined error tolerance in L  sense. 

For terrain compression, the 2L  error bound is also clearly inap-

propriate. The L  error bound can not be guaranteed in wavelet 

domain, so many methods exploit lossy plus residual coding ap-

proach [AMC98]. In this scheme, the data is first compressed 

using the lossy coder and it is then supplemented by the encoded 

quantized residuals that guarantee a given L  error bound   

(refer to [AMC98, YP06] for more details). For this purpose, the 

residual layer R which is the difference between the decompressed 

image Î  and original image I  is calculated: IIR ˆ . Since 

pixels of 8-bit images can only be integer values, the residual 

layer is quantized using the following rule [AMC98]: 

 )12/()|(|~
,,  jiji rr  (8) 

At decompression, the residuals are reconstructed as follows: 

)12(~)(ˆ
,,,  jijiji rrsignr . Note that before calculating the 

residual layer, the decompressed image Î  must be rounded to 

integer values. The resulting decompressed image is then obtained 

as RI ˆˆ   and differs from original image I by at most  . 

Quantized residuals jir ,
~  as well as their signs )( , jirsign  are 

arithmetically encoded in our method using adaptive context 

modeling. We first estimate average variation in the lossy decom-

pressed image around the residual using the following equation: 




 
1

1,

2

,,, )ˆˆ(
8

1

nm

jinjmiji iiV . After that we exploit the same 

context as that used for encoding set type A/B significance (fig. 5) 

to take into account already encoded neighboring residuals. Final-

ly, the context model number is determined as follows: 

  1,11,1,1,1,
~~~~/

,   jijijijijir rrrrVCM
ji

 . 

Note that [AMC98] exploits much more complex method to de-

termine context model number; however our method being much 

simpler provides comparable compression results as shown in 

section 5. Residual signs are encoded in the same way as de-

scribed in section 3.4. In our current implementation, the optimal 

lossy bitrate is determined iteratively, however it can be estimated 

during the encoding process as described in [YP06]. 

4. COMPRESSED MULTIRESOLUTION TERRAIN 

MODEL 

4.1 Hierarchically encoding height map using 

ACMZW algorithm 

In this section, we describe compressed multiresolution terrain 

representation that exploits the presented compression method. At 

first, the initial height map is prefiltered into a mipmap pyramid 

much like it is done in the geometry clipmaps framework [LH04] 

and our earlier approach [YT08]. Each level of the pyramid has 

two times fewer samples in each direction and a two times longer 

sample spacing interval and thus approximates the original height 

map with diminishing accuracy. For pyramid construction, we use 

normalized Daubechies 9/7 low-pass wavelet filter. 

At the next stage, the patch quad tree data structure is constructed 

by subdividing each level of the pyramid into square blocks hav-

ing an equal number of samples (64x64, 128x128, 256x256 etc.) 

as shown in fig. 7. The resulting hierarchy is compressed in a top-

down order starting from the coarsest resolution (patch at level 0). 

During that process, for each patch, special refinement informa-

tion is encoded that enables reconstructing patch descendant’s 

height maps. For this purpose, the difference layer nn

jidD 22

, }{   

is calculated as the discrepancy between the four child patches’ 

predicted height maps ( nnP

ji

P hH 22

, }{  ) and their exact height 

maps (
nn

jihH 22

, }{  ) as shown in fig. 8: PHHD  . 



 

Fig. 7: Patch quad tree data structure. 

The predicted height maps HP are obtained by applying Daube-

chies 9/7 synthesis low-pass wavelet filter to the parent patch 

height map. For the coarsest resolution patch (level 0), the pre-

dicted height map is defined to be zero. An important aspect here 

is that the parent patch height map is extracted from a compressed 

representation instead of using the exact data from the multireso-

lution representation. This eliminates error propagation from 

coarser to finer levels. 

 

Fig. 8: Calculating the difference layer. 

The difference layer D for each group of four sibling patches is 

compressed using a two-stage lossy plus residuals coding scheme 

described in section 3.5 with another residual quantization rules. 

At first, we attempted to compress levels with exponentially in-

creasing error tolerance such that patches at the finest level are 

compressed with a user-defined world space error threshold  , 

patches at the next-coarser level are compressed with threshold 

2  and so on. However, later we found out that it is more effi-

cient to compress each level of the pyramid using the same toler-

ance  . In the latter case, the prediction turns out to be more 

accurate and as a result, the difference layer is compressed more 

efficiently. Besides, we use another quantization rule when com-

pressing patches at all coarser levels excepting the finest one: 

 /||~
,, jiji rr  . Residual reconstruction is performed as follows: 


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This quantizer has the dead zone of length 2  around zero, but 

the rest quantization intervals are two times shorter. This also 

results in a more precise prediction and leads to more compact 

representation. Besides, since elevation data samples are not in-

teger values, we use more accurate quantizer for the finest level 

than that given by (8): 

 )2/()|(|~
,, prr jiji    (9) 

where p is the height map samples representation precision. 

We found out that exploiting two-stage compression yields better 

results compared to one-stage encoding, where the difference 

layer is directly compressed. 

For each patch in the compressed hierarchy, we store its upper 

approximation error bound. We recursively calculate it as the sum 

of three terms: 1) the maximum distance between patch’s interpo-

lated height map and the vertices at the next finer resolution; 2) 

the maximum reconstruction error of the patch descendants and 3) 

elevation data reconstruction error. This value is used to construct 

adaptive view-dependent block-based terrain approximation. 

4.2 Seamlessly stitching neighboring patches 

None of previous elevation data compression techniques take care 

of seamless elevation data connection and normal map generation. 

In our representation, neighboring patches have common eleva-

tion data samples and each patch is “responsible” for seamlessly 

stitching transition with its right and top neighbors. The two-stage 

compression technique presented in section 3.5 guarantees that 

each elevation data sample’s reconstruction error is within the 

predefined threshold. However, it is not guaranteed, that the 

common samples of neighboring patches both being within the 

tolerance are reconstructed equally. To cope with this problem, 

we introduced special boundary area around four sibling patches’ 

height maps. We call this area “matching boundary” (see fig. 9). 

 

Fig. 9: Matching boundary. 

Matching boundary consists of several rings (3 in example). Note 

that it is sufficient to have one ring to assure seamless geometric 

stitching, however for seamless normal map stitching more rings 

are required. Each ring is compressed separately without wavelet 

transform using the following algorithm. The ring is treated as a 

one dimensional sequence of elevations th , which are quantized 

using (9). For each quantized elevation th
~

 (excepting 0

~
h ), the 

difference 1

~~
 ttt hhd  is encoded using arithmetic coding. We 

use simple context modeling based on previous quantized differ-

ence 1td  to improve compression performance. Signs are also 

arithmetically encoded using conditioning on previous sign. 

Matching boundary consisting of 3 rings assures that the normal 

maps calculated for neighboring patches perfectly connect. 

In terrain rendering systems, sometimes it is required to generate 

elevation data finer than the original data set define. In our test 

system, we implemented procedural height map generation algo-

rithm that exploits local surface elevation and slope. The pre-

sented matching boundary also assures that procedurally generat-

ed height maps for neighboring patches perfectly match. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

5.1 Image compression performance 

In our tests, we used Daubechies 9/7 bi-orthogonal wavelet filters 

[ABM92] with 5 decomposition levels. The compression perfor-

mance gain obtained by applying each modification described in 

sections 3.2-3.4 for Lena image is presented in Table 1. The table 

shows compression ratio of the not optimized algorithm and com-

pressed bit stream size after applying each modification as a frac-

tion (in percents) of the bit stream size generated by the basic 

algorithm. 

# bit 

planes 

PSNR, 

dB 

Basic 

(no opts), 

bpp 

Magn. 

predict. 

(sec. 3.2) 

Set type 

A/B signif. 

prediction 

(sec. 3.3) 

Sign 

coding 

(sec. 3.4) 

All opts 

6 29.936 0.098 96.4% 98.0% 98.9% 93.2% 

7 33.187 0.212 95.6% 97.9% 98.2% 91.7% 

8 36.343 0.436 94.6% 98.0% 97.9% 90.5% 

9 39.652 0.931 92.8% 98.3% 98.2% 89.3% 

10 44.413 1.946 92.3% 99.3% 98.9% 90.5% 

Table 1: Compression ratio improvements resulting from exploit-

ing presented context models for Lena image. 

The results of compressing standard test images, Lena and Barba-

ra in comparison with LTW [OM03] and SPIHT [SP96] methods 

are presented in Tables 2 and 3. To have fair comparison, we also 

implemented LTW and SPIHT-AC methods as it is described in 

original papers. The exact bit rate in our method is achieved by 

tuning the M value and thus by adjusting the quantization step q. 

codec\ 

rate 

LTW 

[OM03] 
LTW (Ours) 

SPIHT-AC 

[SP96] 
ACMZW 

0.125 31.27 31.01 31.10 31.20 

0.25 34.31 33.98 34.11 34.28 

0.5 37.35 37.07 37.21 37.39 

1.0 40.50 40.13 40.41 40.55 

2.0 45.46 44.82 45.07 45.67 

Table 2: PSNR (dB) values at various rates for Lena image. 

codec\ 

rate 

LTW 

[OM03] 
LTW (Ours) 

SPIHT-AC 

[SP96] 
ACMZW 

0.125 25.52 25.17 25.23 25.55 

0.25 28.33 27.89 27.83 28.33 

0.5 31.78 31.34 31.45 31.9 

1.0 35.88 35.41 35.69 35.94 

2.0 40.74 39.97 40.40 40.9 

Table 3: PSNR (dB) values at various rates for Barbara image. 

Our implementation of the LTW encoder based on exact formal 

description of the algorithm presented in [OM03] incorporates all 

improvements mentioned in [OM03] and a few our modifications 

that also improve the compression ratio. In Tables 2 and 3, we 

presented the best results we obtained for our LTW implementa-

tion. However despite all modifications, our implementation of 

the LTW method demonstrated significantly poorer compression 

performance compared to the results reported in [OM03] (up to 

0.77 dB below the reported results (see tables 2 and 3) and 0.43 

dB below in average). This is not an issue of the implementation 

since LTW algorithm is rather simple from one hand, and our 

implementation of the SPIHT encoder demonstrates exactly the 

same compression ratios as stated in [SP96], from the other. The 

lack between real compression performance and reported in 

[OM03] is probably the result of adaptive context modeling im-

plemented in real LTW which is only mentioned in [OM03] but 

no details are presented in the paper. In this work, we thoroughly 

described adaptive context models we used in our algorithm that 

enables us to improve the compression performance and achieve 

the same or higher compression rates compared to LTW. As tables 

2 and 3 show, our method demonstrates better compression per-

formance (up to 0.6 dB) on all bitrates compared to SPIHT-AC 

[SP96]. It also demonstrates comparable or better (up to 0.21 dB) 

performance than reported in [OM03] and significantly better 

performance than our exact implementation of LTW. 

Table 4 shows compression performance for Lena image for dif-

ferent maximum absolute error thresholds compared to other me-

thods (the data is taken from [YP06]). These results are obtained 

using quantizer (8). 

Method\abs err 1 2 4 6 7 

JPEG-LS (bpp) 2.72 2.09 1.54 1.24 1.14 

CALIC (bpp) 2.59 1.95 1.29 0.96 0.85 

[ACM98] (bpp) 2.69 2.02 1.28 0.86 0.73 

ACMZW (bpp) 

lossy + residual 

2.68 

0.47+2.21 

2.02 

0.39+1.63 

1.30 

0.45+0.85 

0.88 

0.39+0.49 

0.75 

0.39+0.36 

Table 4: Comparing compression performance for various maxi-

mum absolute errors with other methods for Lena image. 

As table 4 shows, though we used much simpler context to com-

press residuals, our method demonstrates compression perfor-

mance comparable to [ACM98] and comparable to or superior 

than other methods such as JPEG-LS [WSS00] and CALIC 

[WM97]. Our method also demonstrates 1.39 to 2.9 times higher 

compression ratios compared to FBTR method [Zhe04]. 

5.2 Elevation data compression performance 

To test the performance of our terrain compression algorithm, we 

used two different elevation data sets. The first data set is the Pu-

get Sound being 16384x16384 in size and sampled at 10 m spac-

ing. This data set is used as the common benchmark and is availa-

ble at [PS]. The second one is the Grand Canyon being 8192 x 

8192 in size and sampled at 30 m spacing. The elevation data 

precision is 0.1 m, so we use p=0.1 in (9). The compression re-

sults for patch size 256x256 and 64x64 and matching boundary 

width 3 are presented in Tables 5 and 6. The compression and 

run-time experiments were done on a workstation with the follow-

ing hardware configuration: CPU: Intel Core i7 @2.67 GHz (4 

cores with 2 hyper threads each); 6.0 GB RAM; GeForce 

GTX275 graphics card. 

Tolerance 

(m) 

Puget 256M Grand Canyon 64M 

rms (m) 
Compr. 

rate (bps) 

Compr. 

time (s) 
rms (m) 

Compr. 

rate (bps) 

Compr. 

time (s) 

1 0.449 0.636 294 0.539 1.963 124 

3 1.120 0.287 235 1.445 1.031 80 

10 3.099 0.116 223 3.962 0.414 61 

Table 5: Compressing Puget 256M and Grand Canyon 64M data 

sets with patch size 256x256 and matching boundary size 3. 



Tolerance 

(m) 

Puget 256M Grand Canyon 64M 

rms (m) 
Compr. 

rate (bps) 

Compr. 

time (s) 
rms (m) 

Compr. 

rate (bps) 

Compr. 

time (s) 

1 0.423 0.837 255 0.531 2.282 93 

3 1.077 0.431 229 1.407 1.237 68 

10 2.931 0.21 221 3.898 0.54 56 

Table 6: Compressing Puget 256M and Grand Canyon 64M data 

sets with patch size 64x64 and matching boundary size 3. 

The compression method presented is up to 2.5 times more effi-

cient than our previous algorithm [YT08]. The same Puget Sound 

data set was compressed by C-BDAM with 1 m max error to 0.61 

bps, as reported in [GMC+06]. Without matching boundary and 

using patch size 256x256 our algorithm achieved 0.588 bps, 

which proves high compression potential of the proposed method. 

During an interactive flight over the Grand Canyon and Puget 

Sound data sets with procedural terrain surface texturing and at-

mospheric effects rendered at 1920x1200 resolution, the frame 

rates never dropped below 120 fps. The decompression is per-

formed significantly faster (less than 0.1 s to decompress one 

patch) than compression and in conjunction with the asynchron-

ous rendering algorithm, it provides steady frame rates. These 

results show that our method can be successfully used in real-time 

terrain rendering applications. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we presented a new image compression algorithm 

called ACMZW that combines smart adaptive context modeling 

with zero-tree coding and demonstrates top compression perfor-

mance in the class of zero tree wavelet coders such as EZW, 

SPIHT and LTW. At the same time, the algorithmic complexity of 

the algorithm is comparable to that of LTW since it bypasses mul-

tiple bit-plane coding. 

Our experiments showed that exploiting proposed context models 

reduces the compressed bit stream size by more than 10%. Our 

ACMZW method demonstrates up to 0.6 dB compression perfor-

mance superiority over SPIHT with arithmetic encoding [SP96] 

and up to 0.21 dB superiority over LTW [OM03] on standard test 

images (Lena, Barbara). 

A new hierarchical compressed multiresolution terrain model is 

proposed that is based on presented image compression technique 

and can be exploited in high-quality real-time terrain rendering 

systems. The model introduces special matching boundary region 

that is compressed in a way that guarantees the borders of neigh-

boring patches perfectly match. The algorithm demonstrates com-

pression performance that is on par with the best known methods. 

Our future work will be aimed at exploiting the recent graphics 

hardware for improving temporal performance of the algorithms. 

The most computation-intensive parts of the presented compres-

sion technique can be implemented entirely on GPU using com-

pute shader, the new capability exposed by DX11-class hardware. 
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