Построение трехмерной модели порового пространства горных пород

Александр Чигорин, Антон Конушин

Лаборатория Компьютерной Графики и Мультимедиа, МГУ им. М.В. Ломоносова, Москва, Россия aachigorin@gmail.com, ktoh@graphics.cs.msu.ru

Аннотация

В данной работе рассматривается задача построения сетевой модели порового пространства горной породы по серии послойных томографических снимков. Предложен новый алгоритм, состоящий из трех этапов. На первом этапе происходит объединение послойных снимков в трехмерное изображение. На втором - сегментация на материалы с использованием идей гистерезиса и сдвига среднего. На третьем этапе происходит извлечение скелета порового пространства и строится сеть из пор и горлышек, гомотопная скелету.

Ключевые слова: сегментация изображений, скелетонизация, анализ горных пород.

1. ВВЕДЕНИЕ

Современное развитие томографических сканеров позволяет получать послойные снимки образцов горных пород высокого разрешения (рис. 1(а), интенсивностью показана плотность материала). По этим снимкам можно восстановить трехмерную структуру образца и определить его свойства. Такой подход, в отличии от экспериментальной оценки в лаборатории, не разрушает образец и не требует дорогостоящего оборудования. Особый интерес представляет моделирование порового пространства горной породы. В последнее время удалось добиться значительных успехов в определении морфологических, петрофизических и гидродинамических свойств порового пространства, аппроксимированного моделью, состоящей из сети пор и горлышек. Большинство алгоритмов построения сетевой модели состоит из трех этапов. На первом этапе происходит объединение послойных снимков в трехмерное изображение. На втором - сегментация на материалы. На третьем строится сеть из пор и горлышек (с информацией о прилегающих материалах). Недостатком существующих алгоритмов является то, что они работают на образцах простой структуры, в которых можно выделить четкие границы между материалами. В данной статье мы предлагаем новый алгоритм построения сетевой модели порового пространства, призванный устранить указанные недостатки.

2. ОБЗОР СУЩЕСТВУЮЩИХ МЕТОДОВ

Рассмотрим существующие методы по каждому из этапов.

Построение трехмерного изображения. В работе [1] приведен обзор методов построения трехмерного изображения. Данные методы можно разделить на три категории. В первой моделируется процесс образования горных пород, контролируемый данными, извлеченными из снимка одного из слоев. Во второй для получения трехмерного изображения предлагается использовать статистические свойства слоя. В третьей категории трехмерное изображение восстанавливается по послойным снимкам образца. Эта категория методов гарантирует реалистичное представление всех структур образца, размер которых превышает разрешающую способность томографа.

Сегментация. В одном из методов используется анизотропная диффузия для сглаживания и нерезкое маскирование для усиления переходов. В случае простых изображений сегментация осуществляется при помощи пороговой фильтрации, а в случае сложных - при помощи активных контуров. Другой подход к сегментации - это использование индикатора кригинга.

Построение сетевой модели. Методы данного этапа можно разбить на две категории [1] - использующие и не использующие срединную линию (скелет). Если известен скелет, то происходит классификация его вокселей на участки пор и горлышек. Затем происходит

(а) Снимок слоя породы

(с) Поровое пространство
и его скелет (красные вершины - горлышки, зеленые
поры)

(е) Визуализация сетевой модели

(b) Результат сегментации слоя

(d) Аппроксимация порового пространства набором многогранников

(f) Связанность сфер в сетевой модели

Рисунок 1: Шаги алгоритма построения сетевой модели

построение сети, гомотопной скелету. Если скелет неизвестен, то используется понятие максимального вписанного шара . С каждым вокселем ассоциируется шар с центром в данном вокселе, касающийся стенок порового пространства. Далее происходит объединение шаров в группы и классификация групп на лежащие внутри пор или внутри горлышек.

3. ОПИСАНИЕ ПРЕДЛОЖЕННОГО МЕТОДА

Мы реконструируем трехмерное изображение по набору послойных снимков образца.

Сегментация. Вследствие особенностей работы томографа изображения получаются зашумленными, а границы между материалами размытыми. Это приводит к нежелательному «затиранию» маленьких горлышек соседними материалами. С другой стороны, замечено, что в области пор и глины практически нет шума - поры всегда черные, а глина немного светлее. Поэтому поры и глину можно выделить отдельно при помощи простого метода сегментации, а остальные материалы отсегментировать более устойчивым методом. Для выделения пор и глины воспользуемся идеей гистерезиса. Пусть $V \in \mathbb{R}^{N \times M \times K}$ - трехмерное изображение образца. Далее описан алгоритм выделения пор и глины:

1. Отсегментируем V с маленьким порогом на поры. Получим

матрицу $C_1 \in \mathbb{R}^{N \times M \times K}$,

$$[C_1]_{ijk} = \begin{cases} 1, & T_{\text{pore}_1} \leq [V]_{ijk} < T_{\text{clay}} \\ 2, & [V]_{ijk} < T_{\text{pore}_1} \\ 0, & \text{иначе} \end{cases},$$

где T_{pore_1} - маленький порог на поры, T_{clay} - порог на глину. 1 соответствует *порам*, 2 - *глине*, 0 - *другим материалам*.

- 2. Выделим в C_1 связанные компоненты, среди точек, отличных от нуля. Пусть матрица $M_1 \in \mathbb{R}^{N \times M \times K}$ задает маску, элементы которой равны 1 в точках, принадлежащих связанным компонентам, в которых есть хотя бы одна точка класса *пора*.
- Необходимо выделить «затертые» маленькие горлышки отдельным способом. Ясно, что интенсивность точек горлышка меньше средней интенсивности по окрестности. Вычислим

свертку $S=V\star f(a,b),$ где $f(a,b)=a\exp^{\frac{-x^2}{2b^2}}$ - функция Гаусса. Маска $M_2\in\mathbb{R}^{N\times M\times K},$

$$M_2]_{ijk} = \begin{cases} 1, & [S_1]_{ijk} - [S_2]_{ijk} > T_{throat} \\ 0, &$$
иначе , где T_{throat} - по-

рог на горлышко, указывает на принадлежность точки (i, j, k) классу *пора*.

4. Теперь проведем повторную сегментацию с более высоким порогом на поры, с учетом маски пор M_2 . Получим матрицу $C_2 \in \mathbb{R}^{N \times M \times K}$,

$$C_2]_{ijk} = \begin{cases} 1, & T_{\text{pore}_2} \leq [V]_{ijk} < T_{\text{clay}} \text{ или } [M_2]_{ijk} = 1 \\ 2, & [V]_{ijk} < T_{\text{pore}_2} \text{ и } [M_2]_{ijk} \neq 1 \\ 0, & \text{иначе} \end{cases}$$

 Из-за нечеткости границ между материалами возникают плавные переходы интенсивности шириной в 2-3 вокселя. Они классифицируются как глина, что неверно. Составим маску глины M₃ ∈ ℝ^{N×M×K}

$$[M_3]_{ijk} = \begin{cases} 1, & [C_2]_{ijk} = 2\\ 0, & \text{иначе} \end{cases}$$

и осуществим над ней морфологическую операцию открытия $M_4 = M_3 \circ S, S \in \mathbb{R}^{3 \times 3 \times 3}, [S]_{ijk} = 1$, где \circ - поэлементное произведение матриц (произведение Адамара)

6. Учтем полученные маски для получения итоговой сегментации. $C = C_2 \circ (M_1 \circ M_4).$

Далее необходимо детализировать классификацию точек с меткой *другие материалы*. Из-за наличия шума необходимо учитывать окрестность каждой точки, причем требуется, чтобы граница окрестности совпадала с границей между материалами. Для этого пересегментируем изображение при помощи сдвига среднего [2] с маленькой шириной окна по интенсивности. Далее классифицируем полученные сегменты при помощи метода ближайшего соседа на основе квадра-деревьев. В качестве признаков для классификации выступают математическое ожидание и дисперсия интенсивности по сегменту. Оказалось, что для обучения классификатора, пользователю нужно указать два-три сегмента для каждого класса. Результаты сегментации приведены на рис. 1(b).

Построение сетевой модели. Следующим шагом алгоритма является построение графа P порового пространства, аппроксимируещего его структуру. Вершины графа соответствуют порам, а ребра - горлышкам (рис. 1(f)). Каждой вершине и ребру приписываются атрибуты - общий объем, радиус, длина, объем глины, shape factor [4]. На первом этапе мы извлекаем скелет порового пространства при помощи метода, описанного в [3]. Для полученного скелета строим граф S, вершинам которого соответствуют воксели скелета. Две вершины графа S соединены ребром, если соответствующие им воксели 26-связаны. Затем классифицируем воксели скелета на

воксели, лежащие внутри пор или внутри горлышек. Каждой вершине графа S сопоставляется радиус поперечного сечения порового пространства, вокруг соответствующего данной вершине вокселя. Если радиус больше определенного порога, то эта вершина соответствует поре, иначе - горлышку. Пример порового пространства с классифицированным скелетом приведен на рис. 1(с). Далее, следуя по скелету, разбиваем поровое пространство на набор многогранников, как показано на рис. 1(d). Каждый многогранник является единицей декомпозиции порового пространства и в графе порового пространства P ему соответствует вершина. Связанность многогранников (и вершин графа P) задается скелетом. При этом мы уже можем вычислить все атрибуты вершин и ребер P. Если заменить многогранники сферами, а горлышки цилиндрами, то сетевую модель можно визуализировать (рис. 1(с)). Чтобы показать связанность, удобно изображать сферы меньшего радиуса (рис. 1(f)).

4. ЭКСПЕРИМЕНТЫ

Для проверки корректности работы алгоритма сегментации вручную были размечены снимки слоев нескольких образцов. Вероятности ошибок первого и второго рода при классификации пор получились равными 6% и 7% соответственно. В случае глины -7% и 30%. Ошибки классификации возникают на краях, где даже человеку сложно выделить четкую границу.

Сетевая модели, полученная для песчаника Berea, сравнивалась с моделью из работы [4]. В качестве характеристик модели выступали пористость, степень вершины, радиус горлышка и радиус поры. Пористость нашего образца составила 21%, а пористость образца из работы [4] - 23%. Поэтому можно было предположить, что образцы имеют схожую структуру. Для остальных характеристик были построены гистограммы распределения принимаемых ими значений. Средняя степень вершины в случае нашей модели и модели из [4] составила 2 и 3.9 соответственно, средний радиус горлышка - 7.7μ и 12.2µ, а средний радиус поры - 38µ и 25µ. Полученные различия легко объяснить различными подходами к построению модели. Среднее значение радиуса горлышка в [4] получается больше, потому что в нашем случае радиус горлышка ограничен пороговым значением, а в [4] радиус горлышка может быть произвольным и часто получается больше порогового значения в нашей модели. Средний радиус поры уменьшается при увеличении среднего радиуса горлышка, так как большие поры чаще делятся на части. А средняя степень вершины зависит от количества горлышек, которых больше в модели, предложенной в [4], так как их максимальный радиус не ограничен.

5. ЗАКЛЮЧЕНИЕ

В данной работе предложен метод построения сетевой модели образца горной породы. Проведено сравнение с одним из существующих методов на примере вычисления модели для песчаника Berea. В дальнейшем планируется подготовить набор тестовых образцов с известными характеристиками и провести сравнение реальных и получаемых при помощи моделирования характеристик.

6. ЛИТЕРАТУРА

- A. S. Al-Kharusi and M. J. Blunt, "Network extraction from sandstone and carbonate pore space images", *Journal of Petroleum Science and Engineering*, vol. 56, pp. 219–231, 2007.
- [2] P. Meer D. Comaniciu, "Mean shift, mode seeking, and clustering", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 24, no. 5, pp. 603–619, 2002.
- [3] R. Kashyap T. Lee and C. Chu, "Building skeleton models via 3-d medial surface/axis thinning algorithms", *Computer Vision*, *Graphics, and Image Processing*, vol. 56, no. 6, pp. 562–478, 1994.
- [4] S. Bakke P. Oren, "Reconstruction of berea sandstone and pore-scale modelling of wettability effects", *Journal of Petroleum Science*, vol. 39, pp. 177–199, 2003.