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Abstract

In this paper we formulate the task of semantic image segmenta-
tion as a manifold embedding problem and solve it using graph
Laplacian approximation. This allows for unsupervised learn-
ing of graph Laplacian parameters individually for each image
without using any prior information. We perform experiments
on GrabCut, Graz and Pascal datasets. At a low computational
cost proposed learning method shows comparable performance
to choosing the parameters on the test set. Our framework for
semantic image segmentation shows better performance than the
standard discrete CRF with graph-cut inference.

Keywords: semantic image segmentation, unsupervised learn-
ing, manifold embedding .

1. INTRODUCTION

We consider the task of semantic image segmentation that implies
assigning a label from a given set to each image pixel. Various
discrete CRF models have been proposed for this task [1] [2],
[3]. It was shown that learning the parameters of CRF improves
its performance [4], [5]. In this work we propose an alternative
view on semantic image segmentation.

Methods based on graph Laplacians show state-of-the-art results
for interactive image segmentation [6] and image matting [7].
They require just a few local computations and solving one sparse
linear system, which can be done very efficiently. In this work
we propose a formulation of image segmentation task in terms
of manifold embedding and discretize the problem using graph
Laplacian approximation.

Graph Laplacian methods have the parameters very similar to
those of discrete CRFs. While a remarkable progress has been
done in the direction of learning the parameters of discrete CRFs
(see e.g. [4], [5]). However the methods for learning parame-
ters of discrete CRF are not applicable to graph Laplacian. Thus
the parameters of graph Laplacian are usually chosen by valida-
tion on hold-out dataset. The use of validation limits the poten-
tial number of parameters used. Moreover, the optimal values
of parameters can vary significantly from one image to another,
therefore choosing the parameters individually for each image is
desirable.

Our formulation of image segmentation problem leads to a novel
method for unsupervised learning of graph Laplacian parameters,
which is the main contribution of this paper. Our method is de-
signed specifically for the task of semantic image segmentation
and provides the values of parameters individually for each test
image without using any kind of supervision. Proposed method is
computationally efficient and achieves performance comparable
to choosing the parameters on the test set, which eliminates the
need of using hold-out set or cross-validation. In experimental
comparison on Graz and Pascal datasets shows proposed method
shows better performance than the standard discrete CRF with
graph-cut inference.

The remainder of the paper if organized as follows. We start
by discussing related work. In section 3 we describe the image
segmentation framework proposed in this paper. In section 4 we
present our method for unsupervised learning of graph Laplacian
parameters. We proceed to the experimental evaluation of the
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Figure 1: We formulate semantic image segmentation task as
one-dimensional manifold embedding problem. This allows for
unsupervised learning of graph Laplacian parameters individu-
ally for each image.

proposed method.

2. RELATED WORK

The task of semantic image segmentation implies assigning a la-
bel from a given set to each image pixel. Various discrete CRF
models have been proposed for this task [1] [2], [3]. Learning the
parameters of CRF can improve performance of semantic image
segmentation [4], [5]. In this work we use an alternative formula-
tion of semantic image segmentation problem that leads to using
graph Laplacian instead of discrete CRF.

Methods based on graph Laplacians have emerged recently and
proved very efficient for interactive image segmentation [6] and
image matting [7]. Graph Laplacian methods allow interpretation
in terms of MAP estimation in real-valued CRF [8]. A few other
interpretations of graph Laplacian methods have been suggested
in the literature.

In [6] Grady suggested explanation of using Laplacians for in-
teractive segmentation in terms of random walks. In [9] the
use of graph Laplacian for interactive image segmentation was
explained in terms of transductive inference. Hein et al. [10]
showed that graph Laplacian provides a good approximation for
s-weighted Laplace operator. Therefore, graph Laplacians pro-
pose a discrete alternative to the problem of finding a smooth
function such that it’s values in seed pixels are close to the asso-
ciated labels and it is allowed to vary only on low-density regions
of the input space.

In contrast to these works we derive the graph Laplacian by view-
ing image segmentation as a manifold embedding task. In con-
trast to [11] we use manifold embedding for semantic image seg-
mentation and not the unsupervised image segmentation. This
formulation of semantic image segmentation allows for unsuper-
vised learning of graph Laplacian parameters.
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The idea of our learning method is based on the properties
of graph Laplacian approximation of Laplace-Beltrami operator
studied in [12]. Coifman at al. in [13] proposed a method for
automatic selection the kernel bandwidth of graph Laplacian for
the problem of optimal manifold embedding. In contrast to [13]
we design the method specifically for the task of semantic image
segmentation. While the method proposed in [13] aims at choos-
ing one parameter (kernel bandwidth), our method can handle
multiple parameters.

3. ONE-DIMENSIONAL MANIFOLD EMBEDDING
FOR SEMANTIC IMAGE SEGMENTATION

First we discuss the task of manifold embedding and then explain
our formulation of image segmentation problem.

3.1 Manifold embedding.

Suppose we have a set of input points xi,...,xxy € R'. Let
d: R' x R' — R be a symmetrical function giving the distance
in R'. The optimal manifold embedding task is to find a smooth
differentiable function f that maps the input space R! on the em-
bedded Riemanian manifold M of dimensionality m (m < [)
(see Figure 1, left column). The function f should preserve dis-
tances between the points, such that if d(x;,x;) is small, then
| f(x:) — f(x;)|| should be small.

Let us focus on the case when the dimension of manifold M
equals one (M = R). Consider two points x,y € R'. They
are mapped to f(x), f(y) € R respectively. It can be shown
[12] that

1f(x) = F()| < dx )V f (@)]] + old(x,y)), (D)

where V f(z) is the gradient of function f(x). Thus we see that
V f(x) provides us with the measure of how far apart f maps
nearby points.

We consider the problem of initialized one-dimensional manifold
embedding when 1) M = R and 2) initial estimates y1, ..., yn
of f(x1),..., f(x~) in R are given. Suppose we know confi-
dences ¢; > 0,7 = 1,..., N that reflect our belief in initial esti-
mates of f(xi),4 =1, ..., N. Using (1) the problem of initialized
one-dimensional manifold embedding can be formulated as min-
imization the following energy with respect to f

E(f) =) ei(yi— f(xi)* + . IVFIZav, @)

K3
where the integral is taken with respect to a standard measure
on a Riemanian manifold. The first term in (2) guarantees that
corresponding one-dimensional vectors f(x;) are close to their
initial estimates y;. The second term guarantees that if the points
X3, X; are close in the input space then their images f(x;) and
f(x;) are close in M.

It follows from the Stokes’ theorem that [, ||V f|[*dV =
A M.( f)fdV, where A m(f) is the Laplace-Beltrami oper-
ator. It is a second order differential operator defined as the di-
vergence of the gradient of a function defined on M.

In many cases finding the mapping f explicitly is not required.
The goal then is to find a set of points f(x1),..., f(xn) € M
such that represent x1, ..., XN.

3.2 Image segmentation as the manifold embed-
ding problem.

For the sake of clarity first we consider the task of ob-
ject/background image segmentation. We aim to find real-valued
alpha-matting coefficients for each image pixel, the segmenta-
tion is then done by thresholding the result. Below we formulate
image segmentation problem as the problem of initialized one-
dimensional manifold embedding.

Suppose each image pixel is mapped in a feature space
X1,...,xn € RY. For example the features can include the spatial
coordinates and color of the pixels. Suppose we have defined a
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distance function between two pixels d : R! x R! — R that tells
how likely it is that both pixels belong to object/background.

Suppose that for each image pixel we know the output of some
local model 0 < y; < 1,7 = 1,..., N that tells how likely it is
that the pixel is a part of the object. Suppose also that we know
confidences ¢; > 0,7 = 1, ..., N that indicate how much belief
we put in the local model.

Our goal is to find real-valued f1, ..., fx that refine the outputs
of local model y1, ..., yn. We require that f1, ..., fv lie in the
optimally embedded one-dimensional manifold M and each f;
corresponds to x;. Therefore the problem of image segmentation
reduces to minimization of energy (2).

3.3 Approximation of Laplace-Beltrami opera-
tor.

We will now define a graph Laplacian that is an approxima-
tion of Laplace-Beltrami operator. Denote weight matrix by
W : Wi; = exp (—d (xi,x;))?) (in this work we consider only
Gaussian kernel). Let g; = Y ; Wij stand for a sum of W along
the ¢-th row. Denote diagonal matrix with values g; on diagonal
by D. Graph Laplacian is defined as a matrix L = W — D.

Belkin et al. [14] showed that graph Laplacian L converges to
Laplace-Beltrami operator in the limit N — oo. In this sense,
the graph Laplacian is a numerical machinery for approximating
a specific operator on the underlying manifold, by using a finite
subset of points.

3.4 Discretization of the problem with graph
Laplacian.

Using approximation of Laplace-Beltrami operator by graph
Laplacian the problem (2) reduces to minimization of the fol-
lowing energy function with respect to vector £ = (f1, ..., fn):

E(f) :Zq (fi —yi)2+zwm‘ (fi— 1) 3

The first term in (3) repeats the first term in (2) and the second
term in (3) is a dicrete approximation of the second term in (2)
according to [14]. Minimization of the energy E(f) can also be
interpreted as MAP inference in a real-valued CRF, which are
given by the real-valued outputs f1, ..., fn.

In the matrix form (3) takes the following form:
E(f)=(f-y)" C(f—y)+f Lf, @

where C' denotes a square diagonal matrix with ¢; on diago-
nal and y denotes an N-dimensional vector of initial likelihood
scores ;. This optimization problem reduces to solving a sparse
linear system:

(L+O)f =Cy. 5)
The object/background segmentation algorithm then consists in:
1) computing graph Laplacian matrix L; 2) solving the sparse
linear system (5); 3) thresholding the output.

Described formulation fits both in interactive segmentation sce-
nario and in semantic image segmentation scenario. In case of
interactive segmentation confidence values c; are infinite for pre-
labelled seed points, and O for a test points, y; = 1 for seeds
marked as object and equals 0 for background seeds. For seman-
tic segmentation we assume that initial estimates y; and confi-
dences c; are provided by local models (e.g. appearance model
of a specific category).

We notice that instead of pixels we can use image superpixels
without making any changes in the algorithm. In the case then
superpixels intersect we can average results of (5) for all super-
pixels that cover image pixel to obtain pixel-wise result.

This framework can be extended to a multi-class segmentation.
Let K denote the number of labels corresponding to object cat-
egories. If we solve (5) for each label [ vs all other labels
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Figure 2: Top: segmentation errors for the “fullmoon” image
from GrabCut database with respect to log € (« is fixed). Bottom:
Dashed line - logarithmic plot for the ”fullmoon” image with re-
spect to log € (« is fixed). The optimal value of € is chosen in the
point of maximum derivative of the logarithmic plot; Solid line -
sigmoid fit of the logarithmic plot.

1,---,1—1,1+1,---, K and obtain the values ygl) for all im-
age pixels; at the end, an i-th image pixel is assigned to the label

1
lmaw, Where lpae = argmaxi—,... k yf ),

4. UNSUPERIVISED LEARNING OF GRAPH
LAPLACIAN PARAMETERS

Suppose that the distance function d is represented as a weighted
sumof metrics d; : R xR — R*;i=1,... K:
K
1 2
d(xi,x;)° = = i (xi,%5)°, 6
(xi,%;) E;ak k(Xi, %;) (6)
with fixed ay = 1. Therefore the parameters of graph Laplacian
a;,i =2, ...,1 are the weights of features x,i = 2, ..., [ and the
kernel bandwidth e. Below we show that optimal value of € is
determined by the values of a;, 7 = 2, ..., [.

4.1 Kernel bandwidth ¢ selection with fixed c.

We start by fixing the parameters o;,i = 2,...,l. As shown
in [13], if we assume that L provides a good approximation of
Laplace-Belrami operator then the following condition holds:

N N2%(2r)™/?

log;w” (e) = m/2log(e) + log ( vol(M) ) , (D
where m is a dimensionality of corresponding manifold M and
w;; are the elements of the weight matrix .
Consider the logarithmic plot of log E” w;; with respect to
log e. Figure (2) shows the plot of log >, ; wij with respect to
log € and log a for one image from GrabCut dataset. According
to (7) if the approximation is good then the slope of this plot €
should be about the half dimensionality of corresponding mani-
fold. In the limit € — o0, wi; — 1,50 3, wi; — N On
the other hand, as e — 0, w;; — d;5, so Zij w;; — N. These
two limiting values set two asymptotes of the plot and assert that
logarithmic plot cannot be linear for all values of e.
Therefore in order to get better approximation of Laplace-
Beltrami operator with a4, ..., ax fixed we have to choose the

value of e from the linear region of logarithmic plot. We use the
point of maximum derivative as the point of maximum linearity.

4.2 Implementation details

We use the distance function from [9]:

P (%, %;) = [l — | n |z: — ]| ®)
1y ] 0_2 0_3 )

where 7 encodes mean RGB color in the superpixel,  encodes
coordinates of the center of the superpixel, parameters of the
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Figure 3: The plot of log Zij w;; with respect to log € and log .
The plot shown is shown in (2, bottom) corresponds to the 2-d
slice of this 3-d plot for fixed . Note that the slope of linear
region are not constant for all values of ae. We seek for o such
that the slope in the linear region equals 0.5.

method o, > 0 and o, > 0 are the scales of chromatic and
geometric neighbourhoods respectively.

This distance function {8) can be rewritten in the form of (6) as:
72 2 2
d (Xizxj):;(HT’i—TjH +alzi—zll) O

where € = 0.502 and a = o2/ 03. Therefore, the distance func-
tion has two parameters € and o.

As follows from (7) the slope of the logarithmic curve near opti-
mal value of € has to be close to m /2, where m is the dimension-
ality of manifold M. In our case m = 1, therefore the slope of
the logarithmic plot has to be 0.5. If the plot has different slope
in the linear region, this indicates that the second term in (7) is
large.

So in the first step of our learning method we should find such
a that the slope of logarithmic plot of log 3, wj(€) from € is
equal to 0.5. In the second step we use the sigmoid fit of the log-
arithmic plot. The shape of logarithmic plot can be approximated
with a sigmoid function: T'(z) = A/(B + exp(Cx + D)) + E.
Since the asymptotes of the sigmoid are set by (7) and the slope
in the linear region of the sigmoid should be 0.5 the sigmoid
has only one free parameter that controls the shift of the sigmoid
along horizontal axis. Figure 2 illustrates the choice of € accord-
ing to sigmoid approximation. In our experiments the values of
€ take values as degrees of 10 and the values of « take values as
degrees of 2.

We found empirically that usually the slope of the logarithmic
plot is greater than 0.5 for large o and is less than 0.5 for small
a. In most cases the slope of the logarithmic plot S(«) is mono-
tonic function of a.. One of the possible explanations of this fact
can be the following. Small « correspond to using only spatial in-
formation. This implies that the dimension of manifold where the
data lives is 2 and it is difficult to reduce dimensionality further.
By decreasing oo we decrease the weight of spatial information
in the distance function therefore it gets easier to find the cor-
responding one-dimensional manifold. On the other hand large
a corresponds to increased weight of color information. Infi-
nite o corresponds to using color information alone. As long as
the color space is three-dimensional and the color distribution of
object and background is complex it is difficult to embed one-
dimensional manifold in the input points. Example of the loga-
rithmic plot with respect to both € and « is shown in Figure 3.

5. EXPERIMENTS

For the experiments we used GrabCut, Graz and Pascal 2007
datasets. In all experiments graph Laplacian operated with su-
perpixels produced by image over-segmentation methods. Each
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Figure 4: Segmentation errors depending on graph Laplacian parameter € on three images from GrabCut dataset. Note that minimal
error is achieved on different values of e for different images.

(b) local model

(a) input image (c) thresholded (b) (d) Laplacian (e) thresholded (d)

Figure 5: Results of SVM and graph Laplacian method for images from Graz dataset. (a) - input images of bike”, "person” and “cars”
classes; (b) - real-valued output from local SVM model; (c) - results of thresholding the SVM outputs; (d) - real-valued output of graph
Laplacian using SVM as a local model with the parameters learnt by our method; (e) - thresholded output of our method. Note how

graph Laplacian refines the output from SVM. It doesn’t oversmooth the result and preserves fine details like the wheel of the bike and

the small figure of the person.

superpixel was linked with a fixed number of it’s nearest neigh-
bours, and the distances to other superpixels were assumed in-
finite. For all experiments we used confidences that are a lin-
ear function of the outputs of local appearance models ¢; =
0.5(1 — |p; — 0.5]).

5.1 GrabCut image database.

GrabCut image database contains 50 images of different objects
', In the experiments we used the set of superpixels which is the
union of oversergmentations provided by Colour Structure Code
and Watershed segmentation methods.

Figure 4 (d) shows the error on 3 different images from Grab-
Cut database with respect to log € (« is fixed). Depending on the
choice of € one can get different values of errors and for each im-
age, and the optimal values of € are different for different images.

We measured performance on GrabCut dataset according to stan-
dard metric [1]. We compared three versions of graph Laplacian.
First, we chose the best parameters for each image individually
by validation on the same image in order to obtain the top bound
on performance of graph Laplacian. The resulting error rate is
8.7%. In the second experiment we chose single set of parame-
ters for the whole dataset by validation on the test dataset. This
corresponds to upper bound on performance of the method with

lavailable at http://research.microsoft.com/
en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm
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fixed parameters. The resulting error rate is 9.9 4= 4.3%. Finally
we evaluated the performance of graph Laplacian with the param-
eters learnt individually for each image by our method. The re-
sulting error rate is 10.2 4= 4.0%. The results of graph Laplacian
with learnt parameters is very close to the upper bound of per-
formance of graph Laplacian with fixed parameters. Notably, the
standard deviation of errors obtained with the parameters learnt
individually for each image is smaller than of Laplacian with
fixed parameters.

The learning phase took from 0.5 seconds to 3 seconds, solving
linear system 5 took from 0.05 second to 0.5 seconds depending
on the number of superpixels in the image (the total number of
superpixels varied from 500 to 30000).

5.2 Graz image dataset.

Graz dataset > contains 1096 images of three classes: “person”,
”bike” and “car”. In our experiments we solved a separate bi-
nary segmentation problem for each category. To measure the
quality of segmentation we used a standard metric - percent of
incorrectly classified pixels in the image.

In our experiments we used an open-source VIBlocks toolbox
which implements the method described in [15]. We chose it for
comparison for the following reasons. First, it allows using dif-

2available at http://www.emt .tugraz.at
3code available at http://vliblocks.org/index.html
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(a) input image (b) N=0 (e) N=3 ) N=4
Figure 6: Results of using different local models. The first row shows real-valued output of local appearance models. The second
row shows results of our method. Parameter IV sets the size of superpixel neighborhood in the local model. The effect of using graph

Laplacian is better visible for smaller V.

N=0 N=1 N=2 N=3 N=4
cars bike pers | cars bike pers | cars bike pers | cars bike pers | cars bike pers
SVM 419 56.5 49.4 | 59.6 669 63.6 | 68.0 692 66.6 | 694 70.7 652 | 66.5 71.9 63.6
+CRF 43.0 57.7 493 | 602 67.1 639 | 70.1 70.2 669 | 70.7 71.0 654 | 68.8 722 64.2
+Laplacian (valid. GrabCut) 50.0 60.1 56.0 | 655 68.7 685 | 71.6 70.8 70.8 | 722 72.0 69.5 | 70.0 73.2 67.3
+Laplacian (valid.test set) 56.6 63.3 59.1 | 66.3 684 68.8 | 71.9 704 704 | 72.6 712 69.4 | 70.8 72.2 68.0
+Laplacian (learnt) 542 60.9 585 | 651 668 694 | 72.0 695 71.3 | 73.3 703 70.2 | 714 71.5 68.9

Table 1: Performance on Graz dataset at equal precision and recall rates for ’cars”, ’bike” and “person” classes. First row: local
appearance model (from VIBlocks toolbox). Second row: result of applying discrete CRF with graph cut inference (from VIBlocks
toolbox). Third row: graph Laplacian with parameters validated on GrabCut dataset. Fourth row: graph Laplacian with parameters
validated on the test set. Fifth row: graph Laplacian with parameters learnt individually for each image. For each appearance model used
in our experiments (we varied the number of neighboring regions as in [15]) the best result is shown in bold font. Underlined are the

best overall results.

ferent local appearance models. The method has a parameter [NV
meaning number of neighbouring superpixels which features are
used for classification of each particular superpixel. So we report
performance metrics for different values of N to illustrate the
performance of proposed graph Laplacian framework applied to
different local models. Second, the toolbox includes implemen-
tation of discrete CRF with graph-cut inference, which we use
for comparison. Note, this CRF model uses similar types of fea-
tures (color and spatial coordinates of superpixels) to those used
in our graph Laplacian. We used the same over-segmentation and
the same local appearance model based on SVM as [15]. To ob-
tain initial estimates y; for graph Laplacian framework we scaled
SVM outputs to [0, 1] interval for each image.

In the first experiment the parameters € and o were validated on
the GrabCut dataset. In the second experiment we validated the
parameters on the test set. In the third experiment we used our
unsupervised learning method for choosing the parameters indi-
vidually for each image. We also compared with Vlblocks im-
plementation of CRF with graph-cut inference. The strategy for
choosing internal parameters of CRF was the same as in [15].

Table 1 contains results of the comparison. Our unsupervised
learning gives results comparable to upper bound on performance
of graph Laplacian with fixed parameters from the second ex-
periment. The value of performance gain compared to local ap-
pearance model differs for different values of parameter N. The
smaller /N is the smaller neighborhood is considered by low-level
model, and the more significant is the gain in performance at-
tained by both CRF and graph Laplacian. The gain in perfor-
mance of graph Laplacian is almost uniformly higher than the
performance gain obtained by discrete CRF. Note that the gain
achieved by graph Laplacian is several times higher than the one
achieved by discrete CRF for N = 0. Figure 7 shows precision-
recall curves for local appearance models and for our method to
illustrate the gain in performance due to graph Laplacian.

Figure 5 shows results provided by local appearance model
(SVM) and corresponding results of using graph Laplacian with

Russia, Moscow, October 01-05, 2012
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Figure 7: Precision-recall curves for bike”, “person” and “car”
classes of Graz dataset. Blue curves - local appearance model
(N=0); Green curves - graph Laplacian with learnt parameters.

learnt parameters. Figure 6 shows how the results vary for differ-
ent local models.

The running time on Graz dataset is the following: learning phase
takes about 0.2 seconds on average, solving of linear system 5
takes about 0.02 seconds on average.

5.3 Pascal 2007 image dataset.

Pascal 2007 dataset * contains 21 classes. Again in this exper-
iment we use local models from VIBlocks toolbox trained with
parameters as in [15]. We compare our graph Laplacian method
with unsupervised learning to the discrete CRF implemented in
VIBlocks toolbox. The training and testing split is defined in
the challenge. We train local model on the train set and choose
the parameters of discrete CRF on the validation set. We do not
use the validation set in the experiment with our graph Laplacian
method and use our unsupervised learning method for choosing
Laplacian parameters for each particular image.

The table 5.2 shows the results of comparison to using local

4available at http://pascallin.ecs.soton.ac.uk/
challenges/VOC/voc2007/
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o %’ -
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T S 52 EE gy oz 2z EipicicBes il
s &8 58 8 8 8 28 8§ § 3 8 8 & 8 & & &G 2 5 z|< [
Pantofaruetal. [16] | 59 27 1 8 2 1 32 14 14 4 8 32 9 24 15 81 11 26 1 28 17| 20 -
Shottonetal. [17] | 33 46 5 14 11 14 34 8 6 3 10 39 40 28 23 32 19 19 8 24 9 | 20 -
Fulkersonetal [15] | 56 26 29 19 16 3 42 44 56 23 6 11 62 16 68 46 16 10 21 52 40| 32 | 51
localmodel (N=0) | 16 17 8 9 13 8 9 9 29 15 9 12 12 7 13 5 16 16 26 14 21| 14 | 15
+discrete CRF(N=0) | 17 18 8 9 21 8 9 8 28 14 9 13 12 7 13 5 16 16 26 14 22| 14 | 16
+Qurs(learnt) (N=0) | 23 20 26 12 18 12 17 14 49 17 1 23 16 11 50 4 42 20 44 30 33| 23 | 22
local model (N=1) | 24 13 18 13 9 12 14 24 35 16 9 11 28 15 36 23 14 21 20 35 27| 21 | 38
+discrete CRF(N=1) | 42 6 16 9 6 5 11 14 56 19 4 11 16 16 55 36 24 16 8 56 21| 21 | 38
+Qurs(learnt) (N=1) | 33 11 18 14 10 13 16 26 51 16 7 9 35 22 67 29 31 25 16 60 33| 26 | 32
local model (N=2) | 39 10 22 15 11 12 18 36 44 23 8 11 33 15 53 37 17 17 16 36 28| 24 | 36
+discrete CRF(N=2) | 58 9 25 14 6 3 20 38 54 27 12 10 31 7 59 44 12 17 13 43 27| 25 | 50
+OQurs(learnt) (N=2) | 52 9 24 17 8 12 19 41 55 21 10 10 37 14 68 42 14 12 14 51 32| 27 | 46
local model (N=3) | 52 13 14 18 8 5 23 38 45 17 7 10 30 21 63 50 17 20 19 43 23| 25 | 46
+discrete CRF (N=3) | 65 10 14 15 5 2 24 40 60 13 6 8 24 19 68 55 18 19 16 46 26| 26 | 56
+Qurs(learnt) (N=3) | 63 11 15 17 7 2 22 40 60 13 5 10 32 20 71 57 13 17 14 48 26| 27 | 55
local model (N=4) | 59 6 15 18 4 0 25 44 46 17 3 4 24 20 62 56 15 14 13 38 33| 25 | 51
+discrete CRF (N=4) | 63 8 15 18 4 0 26 46 48 17 2 4 25 20 64 58 12 14 12 38 34| 25 | 54
+Qurs(learnt) (N=4) | 69 5 11 19 4 0 28 45 55 13 2 3 18 18 69 60 7 13 7 44 36| 25 | 59

Table 2: Results on Pascal 2007 dataset. Best result for each category is shown in bold.

model alone, discrete CRF and our graph Laplacian method with
unsupervised learning. For comparison we also reproduce results
from [17], [16] and [15]. On this dataset, adding graph Laplacian
improves the results significantly compared to using local model
alone, and provides a consistent boost for the accuracy as well.

6. CONCLUSION

We presented an semantic segmentation framework based on
graph Laplacian approximation of manifold embedding problem.
The main contribution of this work is a method for choosing
internal parameters of graph Laplacian in a fully unsupervised
manner individually for each test image. Proposed unsupervised
learning method has a low computational cost and shows bet-
ter performance compared to discrete CRF with graph-cut infer-
ence.
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