Восстановление параметров движения объекта на основе последовательности монокулярных изображений сделанных подвижным наблюдателем

С. Шиханцов ^{*1,2}, Е. Цветков²

¹Московский физико-технический институт (Государственный университет) ²Центральный научно-исследовательский институт химии и механики

Рис. 1. Траектория процесса оптимизации в одном из сечений пространства параметров.

Аннотация

В статье описывается параметрический подход к полному восстановлению движения объекта в пространстве и исследуется влияние погрешностей входных данных на точность его работы. Подобные методы предлагались ранее, как для реконструкции движения объекта с точностью до масштабного фактора, в случае если наблюдатель покоится [1], [2], так и для полного восстановления движения объекта подвижным наблюдателем [3]. Однако, сколь-либо подробного исследования влияния погрешностей входных данных на точность работы таких алгоритмов авторами найдено не было. В данной работе рассматривается ситуация, когда наблюдатель сам может совершать контролируемое перемещение. Движение объекта наблюдения предполагается прямолинейным и равномерным, собственное вращение отсутствует, что означает возможность полного его описания шестью скалярными параметрами, составляющими вектор начального положения и начальной скорости. Для простоты структурой объекта мы пренебрегаем, что эквивалентно рассмотрению единственной контрольной точки на его поверхности. В сделанных выше предположениях, мы рассматриваем метод наименьших квадратов, который определяет глобальный фактор масштаба (глубину в начальный момент времени) на ряду с остальными параметрами движения. Численные эксперименты на сгенерированных данных были проведены с целью оценить устойчивость и статистическую эффективность алгоритма. Точность определения параметров в зависимости от величины ошибок во входных данных была изучена. В качестве источника ошибок были смоделированы погрешности, возникающие вследствии конечного размера пикселя фотоматрицы. Результаты моделирования представлены и определена область применимости предложенного подхода.

Ключевые слова : Монокулярное зрение, навигация, восстановление траектории.

1 Описание алгоритма

Задача реконструкции движения объекта может быть условно разбита на две последовательные процедуры: обработка исходных изображений с целью определения координат контрольных точек и последующий анализ извлеченных числовых данных. В данной работе мы предполагаем, что первая часть задачи выполнена, т.е. первоначальный анализ фотоснимков произведен, и на вход алгоритма поступает набор координат изображений соответствующих контрольных точек на поверхности объекта (методы такого анализа широко освещены в литературе, например [4], [5]). Для простоты предположим, что объект не совершает вращения относительно своего центра масс. В таком случае, его перемещение представляет собой только поступательное движение и может

^{*}shikhantsov@phystech.edu

быть описано как двжение единственной точки. В качестве такой точки выберем одну контрольную точку на поверхности объекта. Пусть в процессе измерений было сделано N фотографий в моменты времени $t_0, t_1, \ldots, t_{N-1}$. Тогда входными данными для алгоритма будут N векторов пространства фото-матрицы $\hat{X}_i = [\hat{u}_i, \hat{v}_i]^T, i = 0, 1, \ldots, N-1$ и соответствующие им скаляры - моменты каждого измерения $t_0, t_1, \ldots, t_{N-1}$. Ошибки, возникающие в процессе обработки изображений, обозначим как $\delta \hat{X}_i = [\delta \hat{u}_i, \delta \hat{v}_i]^T$.

Далее, пусть наблюдаемый объект движется по прямолинейной траектории с постоянной скоростью. Учитывая принятые выше предположения, закон движения анализируемой контрольной точки относительно наблюдателя задается шестью скалярными параметрами - тремя координатами радиус вектора ее начального положения и тремя компонентами относительной скорости объекта. Положение объекта в системе координат связанной с наблюдателем в момент t_i дается выражением

$$\boldsymbol{r}_i = \boldsymbol{r}_0 + \boldsymbol{v}t_i, \tag{1}$$

где $\mathbf{r}_i = [x_i, y_i, z_i]^T$ и $\mathbf{v} = [v_x, v_y, v_z]^T$. Таким образом, выходными данными алгоритма являются шесть скалярных величин.

Для моделирования метода отображения точек трехмерного пространства на пространство фото-матрицы при фотографировании будем использовать модель камеры-обскуры [6]. Данная модель по сути является центральной проекцией на плоскость, отстоящую от центра проекции на расстояние f - фокусное расстояние моделируемой оптической системы.

Рис. 2. Схема модели системы.

Система координат наблюдателя выбрана так, что:

- 1. Оптическая ось камеры совпадает с координатной осью *z*.
- Оси x и y координатного пространства попарно коллинеарны осям u и v пространства фотоматрицы.
- Центр проекции находится в нуле системы отсчета наблюдателя.

Теперь можно явно выписать это отображение

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{f}{z} \begin{bmatrix} x \\ y \end{bmatrix},\tag{2}$$

или, подставляя выражения для компонент радиус вектора в момент t_i из (1),

$$\begin{bmatrix} u_i \\ v_i \end{bmatrix} = \frac{f}{z_0 + v_z t_i} \begin{bmatrix} x_0 + v_x t_i \\ y_0 + v_y t_i \end{bmatrix}, i = \overline{0, N - 1}.$$
 (3)

Приравняв данные, полученные в результате реальных измерений, к данным предсказанным моделью, получим систему уравнений, в которой неизвестными являются параметры модели

$$\begin{bmatrix} \hat{u}_i \\ \hat{v}_i \end{bmatrix} = \begin{bmatrix} u_i \\ v_i \end{bmatrix}. \tag{4}$$

Дополнительно заметим, что отношения координат фото-матрицы к фокусному расстоянию равны тангенсам угловых координат вдоль соответствующих осей

$$u/f = \operatorname{tg} \varphi^x, v/f = \operatorname{tg} \varphi^y.$$
(5)

В таких обозначениях, с учетом (3), система уравнений (5) приобретает вид

$$\begin{cases} \operatorname{tg} \hat{\varphi}_i^x(z_0 + v_z t_i) - x_0 - v_x t_i = 0, \\ \operatorname{tg} \hat{\varphi}_i^y(z_0 + v_z t_i) - y_0 - v_y t_i = 0, \quad i = \overline{0, N - 1}. \end{cases}$$
(6)

В общем случае, в независимости от числа измерений $N \ge 3$, ранг матрицы однородной системы (6) равен пяти. Это означает, что множество её решений образует однопараметрическое семейство, или, что эквивалентно, траектория объекта может быть определена лишь с точностью до масштабного фактора. Этот факт широко известен в теории машинного зрения [6], а в качестве фактора масштаба, как правило, выбирается z_0 - глубина наблюдаемого объекта в начальный момент времени.

Для разрешения указанной неопределенности можно использовать следующий приём. Предположим, что в момент $t_b > t_{N-1}$ наблюдатель получает мгновенное приращение скорости $-v_b$. В системе отсчета, связанной с наблюдателем, это эквивалентно мгновенному приращению скорости объекта, равному по модулю, но с противоположным знаком v_b . Если теперь произвести k измерений в соответствующие моменты времени $t_N, t_{N+1}, \ldots, t_{N+k-1}$, то система (6) пополнится уравнениями

$$\begin{cases} \operatorname{tg} \hat{\varphi}_{i}^{x}(z_{0}+v_{z}t_{i})-x_{0}-v_{x}t_{i} = \\ v_{bx}(t_{i}-t_{b})-\operatorname{tg} \hat{\varphi}_{i}^{x}v_{bz}(t_{i}-t_{b}), \\ \operatorname{tg} \hat{\varphi}_{i}^{y}(z_{0}+v_{z}t_{i})-y_{0}-v_{y}t_{i} = \\ v_{by}(t_{i}-t_{b})-\operatorname{tg} \hat{\varphi}_{i}^{y}v_{bz}(t_{i}-t_{b}), \quad i = \overline{N, N+k-1}. \end{cases}$$
(7)

Расширенная система (6) + (7) уже является неоднородной. Кроме того, число линейно-независимых уравнений повышается до шести, что позволяет решить задачу нахождения параметров траектории однозначно.

Все сказанное выше, однако, относится к тому случаю, когда ошибки измерений отсутствуют. Такая идеализированная ситуация, конечно, не реализуется на практике. В действительности, каждому измерению \hat{X}_i соответствует случайная ошибка $\delta \hat{X}_i$, что делает систему (6) + (7) несовместной. Её приближенное решение требует применения процедуры оптимизации, чему посвящен следующий раздел.

2 Метод оптимизации

Для приближенного решения системы линейных уравнений нами использовался метод наименьших квадратов [7]. Этот подход успешно применялся ранее для определения параметров движения с точностью до масштабного фактора покоящимся наблюдателем [8], [1]. В представленных ниже результатах единственным источником ошибок является погрешность, возникающая вследствии конечного размера пикселя фото-матрицы. Как показано в [9], статистические свойства ошибки дискретизации лучше всего описываются случайной величиной, равномерно распределенной на отрезке, плотность распределения которой

$$p_{\delta u,\delta v}(x) = \begin{cases} \frac{1}{a}, & \text{если} - a/2 < x < a/2, \\ 0, & \text{иначе,} \end{cases}$$
 (8)

где а - характерный размер пикселя.

Минимизируемый функционал имеет вид

$$J = \sum_{i=0}^{N+k-1} \left((\hat{u}_i - u_i)^2 + (\hat{v}_i - v_i)^2 \right).$$
(9)

Для его минимизации нами были использованы метод Левенберга-Марквардта [10] и гибридный метод Повелла [11]. Это - итерационные методы первого порядка и для вычисления якобиана на каждом шаге используется аппроксимация вперед. Оба метода показали хорошие результаты и могут быть применены для решения задачи. При программировании была использована библиотека Imfit для языка Python, которая, в свою очередь, основана на открытой библиотеке MINPACK, написанной на C++ и реализующей поддержку указанных методов.

3 Численное моделирование

Значения параметров модели, которые использовались для проведения тестов, подобраны таким образом, чтобы за время эксперимента наблюдаемый объект испытывал угловое смещение порядка 15°, что вписывается в диапазон характеристик многих фото-объективов.

В экспериментах учитывались только ошибки дискретизации на фото-матрице. Безусловно, в реальных условиях присутствует множество других источников погрешностей измерений, такие как неточность определения пространственной ориентации наблюдателя и его собственного положения, эффекты выдержки, сферические аберрации оптики и т.д.

Для симуляции реальных измерений, к каждому фотоснимку разыгрывались случайные величины $\delta u_i, \delta v_i$ в соответствии с распределением (8)

$$\begin{bmatrix} \hat{u}_i \\ \hat{v}_i \end{bmatrix} = \begin{bmatrix} u_i \\ v_i \end{bmatrix} + \begin{bmatrix} \delta u_i \\ \delta v_i \end{bmatrix}.$$
(10)

а) Размер пикселя - 5.6 микрон, 10⁴ испытаний

б) Размер пикселя - 56 микрон, 10⁵ испытаний

Рис. 3. Распределение значения параметра z₀ при оптимизации. Количество изображений в каждом эксперименте - 10. Красным пунктиром обозначено положение истинного значения искомой величины, черной сплошной линией - Гауссов профиль с подогнанными параметрами.

Для оценок полезно отметить, что угловая погрешность, соответствующая ошибке в один пиксель размером a, может быть найдена как a/f и в нашем случае составляла от примерно 0.005° до 0.1° .

В целях определения степени влияния погрешностей на разброс значений искомых параметров испытания проводились сериями. В каждом испытании серии независимо генерируются случайные ошибки, производится оптимизация параметров и их значения добавляются в массив выходных данных. Гистограммы распределений параметра z₀ для двух серий испытаний представлены на рис. 3.

Пока ошибки достаточно малы, значения оптимизированного параметра имеют распределение близкое к нормальному вокруг истинного значения этого параметра (рис. 3, а). При увеличении ошибки наблюдается отклонение среднего значения от истинного и нарушение симметрии распределения (рис. 3, б). Для определения степени малости ошибки можно использовать как относительный среднеквадратичный размер распределения, так и модуль отношения смещения среднего к истинному значению параметра.

Также была проведена серия экспериментов с целью определить вид функциональной зависимости корня из дисперсии распределения от размера пикселя. Результаты моделирования для 20 значений в диапазоне от 5.6 до 56 микрон изображены на рис. 4.

Рис. 4. Зависимость среднеквадратичного размера гистограммы распределения x₀ от ошибки, выраженной в угловых единицах. Наблюдается высокой степени линейность.

Полученный набор данных хорошо аппроксимируется линейной зависимостью. Коэффициент наклона прямой характеризует эффективность работы построенного алгоритма. Минимальный теоретически возможный наклон прямой дается нижней границей Крамера-Рао (НГКР)[12]. Т.к. нижняя граница Крамера-Рао применяется к оценкам максимума правдоподобия [13], то для ее вычисления необходимо принять условие о нормальном законе распределения ошибок : δu , $\delta v \sim N(0, a/\sqrt{12})$, которые в проделанных экспериментах имели равномерное распределение с параметром a. Логарифм функции правдоподобия, в нашем случае, записывается как

$$l = -(N+k)\ln(\sqrt{2\pi a^2}) - \frac{1}{2a^2} \sum_{i=0}^{N+k-1} \left(\frac{x_i}{f} - \frac{x_0 + v_x t_i}{z_0 + v_z t_i}\right)^2,$$
(11)

а её вторая производная по варьируемому параметру позволяет найти НГКР

$$s = \frac{\partial^2 l}{\partial x_0^2} = -\frac{1}{a^2} \sum_{i=0}^{N+k-1} \frac{1}{(z_0 + v_z t_i)^2}$$
(12)

И

$$\sigma_{\rm H\Gamma PK} = \sqrt{-s^{-1}} = a \left(\sum_{i=0}^{N+k-1} \frac{1}{(z_0 + v_z t_i)^2} \right)^{-1/2}.$$
 (13)

Отметим линейность по *а* получившейся зависимости. При подстановке необходимых числовых значений в (13) получим

$$\sigma_{\rm H\Gamma PK} \approx 52164 \, a, \tag{14}$$

что более чем в два раза меньше оценок, полученных экспериментально.

Список литературы

- TEDJ Broida and Rama Chellappa. Estimating the kinematics and structure of a rigid object from a sequence of monocular images. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, (6):497-513, 1991.
- [2] G. S. Young, R. Chellappa, and T. H. Wu. Monocular motion estimation using a long sequence of noisy images. Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference, 4:2437 – 2440, 1991.
- [3] David C Woffinden. Angles-only navigation for autonomous orbital rendezvous. ProQuest, 2008.
- [4] Mark Andrew Shackleton and William John Welsh. Normalized image feature processing, February 17 1998. US Patent 5,719,951.
- [5] Ian D Reid and David W Murray. Active tracking of foveated feature clusters using affine structure. *International Journal of Computer Vision*, 18(1):41-60, 1996.
- [6] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Pearson; 2 edition, 2011.
- [7] Donald W Marquardt. An algorithm for leastsquares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431-441, 1963.
- [8] T.J. Broida, S. Chandrashekhar, and R Chellappa. Recursive 3-d motion estimation from a monocular image sequence. Aerospace and Electronic Systems, 26:639 - 656, 1990.
- [9] Bernard Widrow, Istvan Kollar, and Ming-Chang Liu. Statistical theory of quantization. *IEEE Transactions* on Instrumentation and Measurement, 45(2):353-361, 1996.
- [10] Jorge J Moré. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical analysis, pages 105-116. Springer, 1978.
- [11] Michael JD Powell. A hybrid method for nonlinear equations. Numerical methods for nonlinear algebraic equations, 7:87-114, 1970.
- [12] Kenichi Kanatani. Cramer-rao lower bounds for curve fitting. Graphical Models and Image Processing, 60(2):93-99, 1998.
- [13] Herbert E Rauch, CT Striebel, and F Tung. Maximum likelihood estimates of linear dynamic systems. AIAA journal, 3(8):1445-1450, 1965.