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In this paper, we propose a novel image processing and analysis method for immunofluorescence microscopy images
of skin tissue for the problem of pemphigus diagnosis. The method includes illumination equalization algorithm,
ridge detection, Euclidean distance transform, graph cut algorithm and cell boundary density metric. First four
steps perform image enhancement and with last step we get numerical result. The proposed method helps the
doctor find the intercellular structures both visually and numerically and make diagnosis. Experimental results
for various patients show conformity between doctor’s diagnosis and results of the proposed method.
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Introduction
Nowadays image processing become more and more
important in the clinic of skin diseases. New improved
diagnostic methods are needed for a more thorough
and accurate processing of the skin image data. Au-
tomated skin image processing has great potential to
help the doctor make right diagnosis.

One of the most important problems in the diagno-
sis of autoimmune blistering diseases is selection of
appropriate therapies, as different forms of disease re-
quire very different treatment regimens. Immunofluo-
rescence methods [1] used in the clinic of skin diseases
are the main tool in diagnosing bullous dermatoses.

Structural features obtained from immunofluorescence
images can be used not only to correct diagnosis,
but also to predict the further disease progression
[1].Unfortunately, in many cases, these structural fea-
tures are not strong enough making it difficult to pre-
dict the disease progression. To resolve this problem
we proposed a method that can improve the quality of
input images and detect and analyze cell structures.

This paper is organized as follows. First we de-
scribe preprocessing step including illumination equal-
ization [2], Gauss [3] and median filtering [4]. Af-
ter preprocessing we perform ridge detection [5, 6, 7].
Then we use Euclidean distance transform [8] to find
cell centers. Next cell-boundary detection using graph
cut algorithm [9] is described. Then we propose cell
boundary density metric. Finally we show experimen-
tal results and conclude the paper.

Immunofluorescence image preprocessing
Preprocessing consists of 3 steps: illumination equal-
ization, median filtering and Gauss filtering. These
steps follow one after another in the sequence listing.
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The following algorithm has been selected for illumi-
nation equalization:

1. Image is filtered by two-dimensional Gaussian fil-
ter with σ = 20

G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
So, because of big sigma we use Gaussian separable
property dividing the process into two passes.

2. The original image is divided pixelwise by the
Gaussian filter result with small value added to
prevent division by zero. Then the result is multi-
plied by the average brightness of the image.

3. Median filtering is applied to delete defective pixels
(due to imperfections in the matrix) and Gaussian
filtering with σ = 6 to delete thermal noise.

The results of image preprocessing are shown in Fig. 1,
Fig. 2 and Fig. 3.

Fig. 1. Image of immunofluorescence microscopy before
illumination equalization.
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Fig. 2. Image of immunofluorescence microscopy after il-
lumination equalization.

Ridge detection

Mathematically the ridges of a smooth function of two
variables are defined as a set of points that are local
maxima (or minima) of the function in at least one di-
mension. Intercellular boundaries are typical ridges.
To detect ridges we use the image with corrected illu-
mination from the previous step. We use the following
ridge detection algorithm:

1. Compute the second derivative of the image. For
that we convolute the image with the second
derivative of the Gaussian function with scale σ.

2. Construct Hessian matrix at each pixel:(
Lxx Lxy
Lxy Lyy

)
,

where L — values of the original image;.
3. Compute the eigenvalues λ1,λ2 of the matrix;
4. Find eigenvalue with the maximal absolute value;
5. Calculate the ratio between absolute values of the

maximal eigenvalue and the minimal eigenvalue. If
both eigenvalues are close to zero, then there are
no features. If the ratio is greater than a threshold
T, then the point is ridge. If less than the threshold
but greater than zero then blob. If less than zero
saddle.

We use the single scale σ = 4 that corresponds to the
real thickness of cell boundaries and imaging condi-
tions.

The absolute value of the maximal eigenvalue is re-
sponsible for the strength of the ridge. The sign of
the eigenvalue defines the polarity (ridge or valley).

The result of ridge detection algorithm is the ridge
map. It contains not only intercellular structures, but
also isolated structures inside cells. To delete them,
we analyze the objects on the binarized ridge detection
result and remove all connected objects [8] with radius
less than a threshold. As a threshold select the half

maximum distance from the boundary of the cell. The
binarization is carried out as follows: if we have ridge
in this point of any ”power”, then one is written and
zero otherwise.

Fig. 3. Image of immunofluorescence microscopy after il-
lumination equalization.

Fig. 4. Image of immunofluorescence microscopy after
ridge detection.

Fig. 5. Image of immunofluorescence microscopy after bi-
narization.

Fig. 6. Image of immunofluorescence microscopy after
finding connected components with small radius.
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Fig. 7. Figure 7: Image of immunofluorescence mi-
croscopy after deleting connected components with small
radius.

Cell detection

The found cell boundaries by the ridge detection al-
gorithm are not accurately enough for further cell
boundary analysis. We use its result to detect cell
centers and to apply graph cut algorithm for more
accurate cell boundary detection.

We use Euclidean distance transform [9] to find cell
centers. Euclidean distance or Euclidean metric is
the ”ordinary” (i.e. straight-line) distance between
two points in Euclidean space. Distance transform is
a transformation that assigns each pixel the shortest
distance d(p, q) from that pixel to the object set O:

D(p) = min
q∈O

d(p, q).

In the case of the Euclidean distance transform, we
the following distance function is used:

d(p, q) =
√

(px − qx)2 + (py + qy)2.

We compute distance map D taking the binarized
ridge detection result as the object. Then we find
the local maxima on the distance map. We use these
points as candidates to cell centers. The candidate
point is the cell center if it meets the following condi-
tions:

1. If two cell center candidates are closer than the
value in one of them on the distance map, the cell
center candidate with the least distance value is
removed. It is implemented by starting from the
points with the highest distance value are remov-
ing all the points from its neighborhood.

2. If any of the two circles around different maxima
intersect, we consider that these peaks are inside
the same cell. Radius of circle are the value of
distance transform in center of circle. Since the
center of the cell can be only one, then we calculate
its position, averaging coordinate value in the X
and Y with weights proportional to the value of
these maxima. This process is repeated till the
center is not moving.

The result of the cell center detection is shown at
Fig. 8.

Fig. 8. Image of immunofluorescence microscopy contain-
ing only ridges and cell centers.

Cell boundary detection

The main idea of the proposed cell boundary detec-
tion method is to obtain cell segmentation. Then the
boundaries between them are constructed.

The unsharp masking is applied to the grayscale in-
put image to increase the contrast level between the
internal area of the cell and its boundaries.

The unsharp mask filter looks as:

zum = z ∗Gσ + α(z − z ∗Gσ)

where Gσ is Gaussian filter, σ = 3, α = 2.

Cell segmentation using graph construction
and cut

At this stage each cell is analyzed separately.

An area around the cell center is considered. Its size
should be large enough to contain the entire cell. At
the same time it should be as low as possible to reduce
computational costs and to avoid false results because
of different image brightness, contrast and noise level
among different areas of the image.

To restore cell boundaries the image is divided into 2
parts: cell pixels and other pixels. Chan-Vese segmen-
tation model with only one iteration is used. Taking
into account the discrete nature of the images Graph-
Cut based variant is selected due to its speed and ef-
ficiency [10].

The graph of a special kind [10] is constructed for the
analyzed image piece. The parametersλ1, λ2, µ, c1, c2
are selected for the whole image depending on par-
ticular equipment characteristics. The center of the
cell and its small neighborhood are considered as cell
inner part (objects) and are connected to the sink
with infinite weight. All pixels farther from the cen-
ter than a specific distance are considered as pixels
outside the current cell (background) and connected
with the source with infinite weight. The distance is
selected based on the parameters of the photo. Re-
maining pixels are connected both to the source and
the sink with weights defined in [10].

Then the minimal cut is searched by the algorithm
from [11].
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The results for different cells are combined to the sin-
gle cell mask.

Skeletonization

Next, the skeletonization of the background of the cell
mask image is performed using EDT. Every pixel of
the background receives the distance from it to the
object (to the nearest cell). To prevent cell boundary
disconnection of the external layers and to keep these
cells in the skeleton, all pixels that have distance more
than an average cell size become object pixels and
EDT is applied again. It closes the boundaries of cells
which lie in external layers of cell groups, as the new
object areas lie in the external layer, and the required
cells are in the internal layer.

Local maxima of distance map form the skeleton.
To finish constructing the boundary non-closed con-
tours are deleted from the result. Small unnecessary
branches and added cells boundaries are removed.

Nonadjacent cells boundary removal

As the boundaries between cells are the most impor-
tant, all boundaries that are not located between ad-
jacent cells are removed. The result of the algorithm
is shown on Fig. 9.

Cells boundary detection results

The tests were conducted with λ1, λ2, µ, c1, c2 set to
1, 1, 20000, 128 and 0 respectively [10]. With the
increasing of µ the smoothness of cells detected by
Graph-Cut segmentation increases.

Cell boundary analysis

We introduce cell boundary density metric to analyze
cell boundary.

To compute cell boundary density metric we need
to count the ”density” between neighboring cells and
then count its average value for the entire image. For
this we use cell density function. It depends on the
intensity of the pixel at current point. We assume
that the neighboring centers are connected by series
of lines connecting the two segments, perpendicular to
line connection points. The length of each segment is
equal to double value of the appropriate maximum on
distance map. We will take only points placed on cell
boundary.

”Total density” between the neighboring centers is the
average density value on these lines. The total den-
sity for the entire image is the weighted sum of total
density with the weights inverted proportional to the
length of the lines connecting the centers. All these
steps are described in general terms by the formulas
below:

Pline = P1 + P2 + ...+ Pn

Pcenter =
Pline1 + Pline2 + ...+ Plinen

N

Pimage =
Pcenter1

dcenter1
+ ...+ Pcentern

dcentern

Ncenter

a) Source image

b) Cells detection

c) Boundary restoration

d) Final result

Fig. 9. Steps of the algorithm.

P1, ..., Pn — ”density” in points.

Pline1, ..., Plinen — total ”density” on the lines con-
necting the centers of the cell line.

N — the number of lines connecting the two centers.

Pcenter1, ..., Pcentern — the average density between
the centers.

dcenter1, ..., dcentern — Euclidean distance from the
center to the boundary.

Ncenter — number of center points in the image.

Pimage — total boundary density for the entire image
(cell boundary density metric).

High cell boundary density metric value corresponds
to intensive cell boundaries. If the metric value is
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small, it can be assumed that cell boundary is dotted,
High metric value is also typical to normal cell grid
with the presence of pellets. They are the brightest
structures that have a huge contribution to the total
image ”density” value.

Results
We have evaluated the proposed method with real im-
munofluorescence images of pemphigus taken from dif-
ferent patents diagnosed by a doctor.
The Table 1 presents the experimental results. The
first column contains the calculated cell boundary den-
sity metrics value. The second one is the classification
of cell structures made by a doctor after image en-
hancement. The last one is the disease progression.

Boundary Intercellular Disease
metric structures progression
6,99 Grid Favorable
7,32 Dotted grid, Pellets Adverse
4,25 Grid Favorable
7,94 Pellets Adverse
4,95 Grid Favorable
6,53 Grid Favorable
8,65 Grid, Pellets Adverse
4,95 Grid Favorable
7,03 Grid Favorable
1,50 Grid Favorable
8,19 Grid Favorable
5,66 Grid Favorable
5,79 Grid Adverse
7,09 Grid Favorable
6,88 Grid Favorable
6,09 Grid, Dotted grid Favorable
6,80 Grid Favorable
5,72 Dotted grid Favorable
2,56 Grid Favorable
6,99 Grid Favorable
3,79 Grid Favorable
7,29 Grid, Pellets Adverse
5,82 Dotted grid Favorable
7,95 Grid, Pellets Favorable
6,20 Grid Favorable
6,24 Grid Favorable
4,70 Grid Favorable

Table 1. Experimental results.

Conclusion
We have proposed an image processing and analysis
algorithm for the images of immunofluorescence mi-
croscopy of pemphigus. The algorithm calculates cell
boundary density metric based on the structural fea-
tures of intercellular boundaries. The proposed algo-
rithm has been tested with real images of immunofluo-
rescence microscopy. Experimental results for various

patients demonstrate that the proposed method can
be used as a pemphigus diagnostic tool.
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