
216 Barladian B.Kh. и др.

Global Illumination simulation on multi core computers*
B.Kh. Barladian, L.Z. Shapiro, E.Yu. Denisov, A.G. Voloboy

bbarladian@gmail.com, eed@gin.keldysh.ru, pls@gin.keldysh.ru, voloboy@gin.keldysh.ru
Keldysh Institute of Applied Mathematics RAS, Moscow

Global Illumination (GI) simulation is time consuming. Taking into account that modern computers contain tens
of cores the simulation algorithms should be effectively distributed. The paper describes GI simulation algorithm
specially tuned for spectral simulation on the multi core computers. Results of simulation are stored in the
Illumination Map form. The algorithm dynamically creates additional threads for the critical branches of the
computational process. This leads to balanced loading of the threads and finally ensures a full load of physical and
virtual cores.

Keywords: realistic rendering, global illumination, Illumination Map, hyper spectral simulation, multi-threaded
simulation.

1. Introduction
All modern realistic visualization systems utilize
global illumination (GI) for generating of highly
realistic images. In our system we calculate the GI by
forward Monte-Carlo ray tracing [1]. And resultant
illuminance distribution is stored in the so called
Illumination Maps (i-maps) in view-independent way
[2]. GI simulation is the most costly procedure
and requires a significant amount of calculations for
realistic rendering as well as for optic simulation tasks.
Modern computers offer today two options for
calculation acceleration: general purpose GPU usage
and multi-core, multi-threaded processing. Both
approaches have own advantages and disadvantages.
Using GPU requires, as a rule, essential rewriting
of existing algorithms [3]. Effective implementation
of a complex optical model of surface and medium
on GPU is a difficult task. Especially it concerns
using large 4-dimensional tabulated a Bidirectional
Reflection Distribution Function which describes
arbitrary optically complex surfaces, simulation of
volume scattering, fluorescence, dispersion phenomena
and so on. GI algorithms on GPU typically are
used on notebooks with powerful modern graphic
cards in game and animation applications. In the
same time the realistic rendering and optic simulation
systems, where physically accurate simulation with
high accuracy is required, often use powerful
workstations like HP DL380z Generation9 (Gen9)
Virtual Workstation [4]. Basing on IntelR○ XeonR○
Processor E5-2600 v4 [5] these workstations can
used up to 22 cores and 44 threads per socket,
totally up to 88 threads for calculations. Our main
GI algorithm – forward Monte Carlo ray tracing
– can be easily implemented for multi-threaded
calculations. In this case each thread performs
ray tracing independently. A scene description
(geometry, acceleration structures, light sources,

The work was supported by RFBR, Grants No. 15-01-01147,
16-01-00552 and Integra Inc. company. Работа опубликована
по гранту РФФИ №16-07-20482

optical properties of surfaces and media and so on) is
not changed during simulation. Therefore the shared
memory is most suitable for the scene data storing.
However there is a problem with storing of the
simulation results in the form of Illumination Map.
Our system uses rays (photons) with unit energy.
The correct result of the simulation is achieved by
appropriate selection of probabilities for the light
events such as creation a light ray, its reflection,
refraction or absorption on surfaces, absorption and
scattering of light in the environment [6]. At the
moment of the ray intersection with the triangle (i.e.
with the element of Illumination Map) the energy
stored in the triangle vertices is modified in accordance
with the energy delivered to the surface by the ray.
The only Illumination Map for all threads is stored
in the shared memory because the amount of memory
necessary for its storing is big enough. If we calculate
i-maps in the RGB mode then for each triangle vertex
and for the each surface side the four values must be
stored in double precision format. The three values
of them are needed to store the RGB values and
the fourth one is needed to estimate the accuracy
achieved by the Monte Carlo ray tracing simulation.
Double precision format is required to avoid the loss of
precision in the energy accumulation when billions of
rays are used in simulation. In the spectral simulation
the number of color values has to be equal to the
number of wavelengths used in simulation. Thus to
store the Illumination Map for a scene with 1000000
vertices it is necessary 64Mb for simulation in the
RGB mode and 640 Mb for spectral simulation with
40 wavelengths.
In multi-threaded Illumination Map calculation each
thread performs Monte Carlo ray tracing for a
limited number of rays and accumulates a portion
of ray-triangle “intersection objects”. The object
describing intersection contains information about the
triangle and geometric object indices, the barycentric
coordinates of the ray-triangle intersection point and
the ray color. These portions (let’s define them IOP
– Intersection Objects Portion) are independently

26-я Международная конференция (GraphiCon2016), Россия, Нижний Новгород, 19–23 сентября 2016 г.
26th International Conference (GraphiCon2016), Russia, Nizhny Novgorod, September 19–23, 2016



Global Illumination simulation on multi core computers 217

calculated in each thread. Then they are stored in a
stack from which they were extracted and processed
by main thread. The IOP processing included:
1. calculation of contribution of ray-surface intersection
to the energy stored in the triangle vertices according
to the barycentric coordinates of the intersection
point;
2. addition of the calculated contribution to the
respective energy values accumulated in the triangle
vertices.
Since the access to the arrays of energies accumulated
in the triangles vertices is made from the one main
thread only then there is no need in synchronization
with other threads. In this approach synchronization is
required only between the threads putting calculated
portions into the stack and the main thread which
removes the portions for subsequent processing (Fig.
1).

Рис. 1: Classic multithreaded computing algorithm.

Synchronization in these procedures is provided by
the common critical section. As the procedures to
put the portion in stack and to get it are a simple
pointer copying, they are very fast and thus conflicts
and performance losses in these procedures do not
arise. We call the algorithm of the multithreaded
Illumination Map computing represented on Fig. 1
as a classic one. The bottleneck in this approach
is the performance of the main thread that is
IOP processing. This approach usually works quite
effectively on computers with a few (two or four)
physical cores but even for eight cores the computer
can be not fully loaded. The Task Manager shows
performance degradation in this case (Fig. 2).

The evident solution is to increase the number of
threads that process calculated IOP. However direct
using of several threads for IOP processing will
require synchronization of access to the array of
energies accumulated in the triangles vertices. Using
synchronization here will decrease the performance
significantly. To solve the problem the new algorithm
was suggested.

Рис. 2: The loss of performance for classic algorithm.

2. Proposed algorithm

The scheme of the proposed algorithm is presented on
the Fig. 3.

Рис. 3: New multithreaded computing algorithm.

We subdivide the whole set of the scene vertices on
the several groups. It can be said that we subdivide
Illumination Map. Now the energy addition to the
energy accumulated in the vertices can be done for
each group by separate thread independently and
without critical section. The first part of the IOP
processing (calculation of the contribution of ray
surface intersection) is moved now to the computing
threads. This reduces the loading on the threads
which process the calculated portions. The calculated
vertex energy contributions we divided into the non-
overlapping groups corresponding to the different
vertex groups in the i-maps. Since the groups of
vertices are not intersected then there is no need for
thread synchronization during adding these simulation
results to the corresponding vertex groups. The
synchronization is needed only for the transfer of
new portions of energy additions to the new threads
carrying out this addition to the triangle vertices.
But as it was mentioned above this is simple pointer
copying which is a very fast procedure and thus
conflicts and performance losses do not arise here.
Initially the vertices of the triangles can be divided
into equal groups by using natural vertex numeration.



218 Barladian B.Kh. и др.

To control the work with memory we use some fixed
number of IOP to store vertex energy additions. These
IOPs are initially created and stored in the input
IOP stack and are gotten from it by calculating
threads. After filling them by results they are put into
the appropriate output stack. Appropriate processing
thread gets IOP and after adding the energy to the
Illumination Map returns it to the input IOP stack.
The suggested approach of the IOP processing is quite
effective for most of the practical scenes where photon
number for different vertex groups varies not very
much.

Рис. 4: Scene with nonuniform photon distribution.

However in some cases the full processor loading
cannot be reached. Appropriate example is the scene
"dispersion” presented on Fig. 4. The reason is
essentially nonuniform distribution of photons on the
vertex groups. Some threads are forced to process
a significantly more photons than others. Finally
the IOP processing is slower than its creation by
calculating threads. As a result the calculating threads
are caused to wait until processing threads return the
IOP to the input stack.
This problem is critical in case of a large number of
threads when the vertices are divided into a relatively
large number of groups. The first evident solution
is to define the statistical distribution of photons
on triangles vertices and perform the subsequent
vertices partitioning into the groups based on these
statistics. However this approach requires special
preliminary calculation step to get the necessary
statistics, rebuilding data structures for optimum
partitioning of vertices. Only after that the final
calculations will be started. It is unlikely that we can
avoid idle processors in such an approach. At the same
time our goal is not to obtain an optimal vertices
partitioning on the groups but to get the most efficient
usage of the computing threads. Nonuniform loading
of processing threads or even their stoppage time from
time is not critical for the system. The effectiveness of
the system is determined, mainly, by a full loading
of calculating threads. In most cases their number is
chosen equally to the total number of computer cores
(physical and virtual).
To solve the problem of nonuniform loading of the
threads we elaborated an adaptive algorithm of

dynamical partitioning the vertices in the groups
without stopping the calculating threads.

3. Dynamical partitioning of vertices
At the first step the vertices are divided into a finite
number of groups. The group index for a given vertex
is determined by simple dividing the vertex index
on the number of vertices in the group. Then the
structures required for the calculations are prepared.
The main structures are the input IOP stack and an
array of the output IOP stacks. The dimension of the
array of the output IOP stacks equals to the number
of the vertex groups.
Calculating thread gets one portion for each group
from the input IOP stack and performs Monte Carlo
ray tracing until at least one portion is filled. Then
each calculated portion is put into the output IOP
stack corresponding to a given vertex group. Each
processing thread adds simulation results obtained
from the portion into accumulated energy arrays of the
respective vertex group. After processing the portion
is cleaned and returned to the input IOP stack.
If one of the processing threads processes incoming
portions slower than the calculations threads create
them then the length of its output IOP stack is
increasing and the length of the input IOP stack is
respectively decreasing. At some moment the portion
number in the input IOP stack becomes insufficient
for work of calculating threads. So they have to wait
while processing threads provide necessary number of
portions.
This problem is detected if length of the input IOP
stack becomes below a certain threshold. It is solved
by splitting of the problematic vertex group. The
group is split into a number of new ones and new
processing threads should be created. The group
is determined by the length of the output IOP
stack which exceeded a predetermined threshold. The
simple but effective splitting method was selected:
splitting into a fixed number of sub-groups with the
same number of vertices of triangles. Let us denote
this parameter as subd for further discussions and
formulas. Experiments with practical scenes using
computers with various numbers of cores showed
that in most cases the division into four subgroups
provides fast convergence of the algorithm and allows
implementing an efficient algorithm for determining
the index of group by vertex index.
After splitting the group index cannot be defined by
simple division of the vertex index. Firstly we try to
use array of group indices for all vertices. However
experiments showed that using of this array reduces
the tracing speed about 5-7%. This problem is related
to the caching of memory in the case of multi-core
processors because simple calculations take less time
than index-based access to large arrays in the shared
memory. So in the dynamic groups partitioning we



Global Illumination simulation on multi core computers 219

developed a recursive algorithm corresponding to the
recursive partitioning groups into subgroups. For a
description of each group of vertices the following
structure is used:

struct VertexLevelSubd { int subd_state; // (0 - not
subdivided, 1 - subdivided). int vert_indx; // Index of
first vertex in the group. int vert_number; // Number
of vertices in given group. int first_thread_indx; //
Index of first new subgroup };

At the first step all the vertices are divided into equal
groups and initial array of VertexLevelSubd structures
is created. The structure fields are initialized as
follows: subd_state = 0 – the group is not subdivided;
vert_indx and vert_number are set in accordance
with their actual values for this group;
first_thread_indx = -1 – it is not defined until the
group splitting.
During splitting of the given group into the subd
subgroups the subd new processing threads are
created. Thread index corresponds to the new
subgroup index. Array of the output IOP stacks also
is extended by subd elements corresponding to the
new vertex groups. The field first_thread_indx is set
to the index of the first new thread. The array of
VertexLevelSubd structures also is extended by subd
elements. The subd_state value of VertexLevelSubd
structure is set to “1” for the subdivided group.
Calculating threads do not put new portions to the
output IOP stack of subdivided group. They will
start to fill the output IOP stacks for new created
groups. It should be noted that the field subd_state
is used simultaneously by calculating threads and by
the main thread which detects the problematic groups
and splits them into subgroups. So this field changing
must be thread safety. Using a critical section here
is inconvenient. Therefore we used so-called atomic
operations (InterlockedIncrement ()) that allow you to
safely increase value of the variable used by multiple
threads simultaneously.
The following recursive algorithm is used to determine
the group index by the vertex index:
1. The group index of the initial partition is
determined by simple dividing the global vertex
index on the group vertex number. Then the field
subd_state of structure corresponding to the given
group is checked. If this value is zero (i.e. the group
was not subdivided) then group index is found.
2. If the value is 1 (i.e. the group was split into
subgroups) then the next algorithm is used. The group
is split on subd subgroups so the subgroup index is
determined by the formula:
indx = (iglob - vert_indx) / (vert_number / subd +
1) + first_thread_indx,
where iglob – global vertex index.
3. Now if the subd_state field for the found group
is equal to zero then this group was not subdivided

and the group index is found. Otherwise the procedure
from p. 2. is repeated recursively.

4. Results

The following five scenes were used for algorithm
testing:
1. Scene "dispersion"(Fig. 4) consists of 16 objects,
3988110 triangles, 16 parts with different optical
attributes, 2002795 vertices and two light sources that
are simulated as self-emitting objects. The medium of
one objects (prism) has dispersion, its refractive index
depends on the wavelength.
2. Scene “room” (Fig. 5) consists of 1 object, 5645608
triangles, 20 parts with different optical attributes,
2925375 vertices and 9 light sources.
3. Scene “vehicle” (Fig. 6) consists of 205 objects,
12533973 triangles, 213 parts with different optical
attributes, 6709308 vertices. The scene is illuminated
by High Dynamic Range Image and 7 light sources
simulated as self-emitting objects.
4. Scene “hall” (Fig. 7) consists of 18207 objects,
387975 triangles, 18207 parts with different optical
attributes, 423419 vertices and 361 light sources.
5. Scene “atrium” (Fig. 8) consists of one object,
4543887 triangles, 32 parts with different optical
attributes 2380261 vertices and 108 light sources.

Рис. 5: Test scene room.

Рис. 6: Test scene vehicle.



220 Barladian B.Kh. и др.

Рис. 7: Test scene hall.

Рис. 8: Test scene atrium.

The following computers were used during testing:
1. INTEL Xeon E5-2697 v3 – 28 physical cores, with
Hyper Threading – 56 threads.
2. INTEL Xeon E7420 – 4 processors, each containing
4 physical cores, Hyper Threading is not supported.
3. INTEL Core (TM) i7-4770 4 physical cores, with
Hyper Threading – 8 threads.
Our algorithm efficiency was measured by the speed
of ray tracing. The ray speed was measured as the
ray-surface intersection per second. The ratios of the
speed of our algorithm to the classic one for the
scenes and computers described above are shown in
the tables 1 (simulation in RGB mode), 2 and 3
(spectral simulation).
Table 1: Speed ratio for simulation in RGB mode.

Table 2: Speed ratio for spectral simulation (41
wavelengths).

Table 3: Speed ratio for spectral simulation (81
wavelengths).

The results show that the proposed parallelization
algorithm of forward Monte Carlo ray tracing for
Illumination Map calculation on the multi core
computers is effective for the modern powerful
computers with a large number of physical and virtual
cores (e.g. Computer 1 with 28 physical cores). The
proposed algorithm provides a significant performance
improvement even for relatively simple calculations
in RGB mode. In case of spectral calculations it
has practically the same efficiency as the classical
algorithm even at the relatively slow computers
(Computer 3 with four physical and four virtual
cores).

5. Conclusion
Suggested algorithm of parallelization of forward
Monte Carlo ray tracing provides full loading of
physical and virtual cores during Illumination Map
calculation on the multi core computers. The solution
has significant advantage for spectral and hyper
spectral simulation.

Литература
[1] Khodulev A., Kopylov E. Physically accurate lighting

simulation in computer graphics software // Proc. 6th
International conference on Computer Graphics and
Visualization, Russia, 1996, p. 111-119.

[2] Kopylov E., Khodulev A., Volevich V. The Comparison
of Illumination Maps Technique in Computer Graphics
Software // Proc. 8th International Conference on
Computer Graphics and Visualization, Russia, 1998,
p. 146-153

[3] Фролов В.А. "Методы решения проблемы глобаль-
ной освещенности на графических процессорах"//
Диссертация на соискание ученой степени кандида-
та физико-математических наук по специальности
05.13.11, Москва, ИПМ им. М.В. Келдыша РАН,
2015.

[4] HP company website
http://www8.hp.com/h20195/v2/GetDocument.aspx?
docname=c04484636

[5] Intel company website
https://newsroom.intel.com/wp-
content/uploads/sites/11/2016/04/intel-xeon-
processor-e5-2600-v4-fact-sheet-x.pdf

[6] R.L.Cook, T.Porter, L.Carpenter. Distributed Ray
Tracing. Comp. Graph. (SIGGRAPH’84 Proc.),
V.18(3), p.137-145, 1984.


