
Parallel implementation of image sharpening method
using grid warping∗

A.D.Gusev, A.V.Nasonov, A.S.Krylov
kryl@cs.msu.ru

Laboratory of Mathematical Method of Image Processing

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

The development of image sharpening algorithms is a challenging problem. The paper presents a parallel imple-
mentation of grid warping algorithm for the problem of image sharpening. The algorithm shifts pixels toward edge
centerlines to make the edges sharper instead of changing pixel values directly. This approach does not amplify
noise level and does not add ringing effect.

Keywords: Image sharpening, Grid warping, CUDA.

Introduction

Real images rarely have a high quality. Image blur is
typical for real images. It is mainly caused by defo-
cus, camera movement or sensor blur. Image sharpen-
ing is a challenging problem. Image deblurring algo-
rithms have to make the image edges and fine textures
sharper. At the same time they should not amplify
noise, introduce ringing effect or produce other un-
wanted artifacts.

Typical image sharpening algorithms try to improve
the high-frequency information of the image. The sim-
plest deblurring algorithm is unsharp mask method
that simply amplifies high-frequency information (see
Fig. 1):

zα = αz + (1− α)(z ∗Gσ),

where α is the amplification factor, σ is the scale pa-
rameter that defines the range of frequencies to be
amplified.

Regularization-based methods [1, 2, 3] use a parame-
ter to set a compromise between smooth result with
blurry edges and sharp result with artifacts.

(a) (b)

Fig. 1. The idea of edge sharpening by grid warping: (a)
Grid warping: pixels are shifted; (b) Typical deblurring
approach: pixel values are modified.

The work was supported by Russian Science Foundation grant
14-11-00308.

Grid warping algorithms use another approach to
make the image sharper: instead of changing pixel
values they transform the pixel grid so that the pixels
near the edge move towards the edge centerline [4].
It makes the edge sharper, but does not add noise or
ringing effect.
The warping approach for image enhancement was in-
troduced in [5]. The warping of the grid is performed
according to the solution of a differential equation
that is derived from the warping process constraints.
The solution of the equation is used to move the edge
neighborhood closer to the edge, and the areas be-
tween edges are stretched. The method has several
parameters, and the choice of optimal values for the
best result is not easy. Due to the global nature of the
method the resulting shapes of the edges are some-
times distorted.
In [5] the warping map is computed directly using the
values of left and right derivatives. In both meth-
ods [5] and [6] the pixel shifts are proportional to the
gradient values. It results in oversharpening of already
sharp and high contrast edges and insufficient sharp-
ening of blurry and low contrast edges. Both methods
also introduce small local changes in the direction of
edges and produce aliasing effect due to calculation
of horizontal and vertical warping components sepa-
rately.
The work [4] overcomes the drawbacks of the meth-
ods [5] and [6]. It constructs the pixel density map
that defines the target pixel density after grid warp-
ing. The warping vectors are found from a solution of
Poisson equation. The work [7] extends the grid warp-
ing algorithm for 3D image sharpening and proposes
a direct method for finding warping vectors from the
density map.
In this work we propose a parallel implementation of
image sharpening using grid warping [4] for GPU.

One dimensional edge sharpening
We describe the pixel shift vectors for one-dimensional
edge profile centered at x = 0 by the proximity func-

26-ÿ Ìåæäóíàðîäíàÿ êîíôåðåíöèÿ (GraphiCon2016), Ðîññèÿ, Íèæíèé Íîâãîðîä, 19�23 ñåíòÿáðÿ 2016 ã.
26th International Conference (GraphiCon2016), Russia, Nizhny Novgorod, September 19–23, 2016

294 Gusev A.D., Nasonov A.V., Krylov A.S.

tion p(x) : p(x) = 1+d′(x), where d(x) is the displace-
ment function d(x): x→ x+ d(x). The displacement
function can be calculated from proximity function us-
ing the equation

d(x) =

∫ x

−∞
(p(y)− 1)dy (1)

The proximity is the distance between adjacent pixels
after image warping. If the proximity function p(x) is
less than 1, then the area is densified at the point x
(see Fig. 2). If the proximity is greater than 1, then
the grid is rarefied. For a non-warped image p(x) ≡ 1.

Fig. 2. Example of proximity function for edge sharpening

The proximity function greatly influences the result of
the edge warping. On the one hand, the edge slope
should become steeper. On the other hand, the area
near the edge should not be stretched over some pre-
defined limit to avoid wide gaps between adjacent pix-
els in the discrete case. The necessary conditions for
density and proximity functions are stated in [4].
The work [4] shows the effectiveness of the proxim-
ity function constructed as the difference of Gaussian
functions

p(x) = 1 + α
Gσ(x)−Gkσ(x)

Gσ(0)−Gkσ(0)
, (2)

where Gσ(x) = 1
σ
√
2π

exp
(
−x2

2σ2

)
, α is the strength of

warping effect, k is the parameter that controls the
area of rarefication. We use α = 1, k = 2. Pa-
rameter σ depends on the blur level of superresolu-
tion results and is chosen according to superresolution
method and scale factor.

Two-dimensional grid warping
In the two-dimensional case the displacement is a vec-
tor field d̄(x, y) which is connected to the proximity
function by the equation

p(x, y) = 1 + div d̄(x, y).

For known p(x, y) the displacement function is ob-
tained from the solution of the equation

d̄(x, y) = ∇u(x, y),{
∆u = p(x, y)− 1,

u(x, y) = 0 at image borders.

In order to get the same results as in the 1D case
and to keep the edge pixels unwarped, the proximity
value should be equal to the 1D proximity function
depending on the distance to the edge. However, the
distance to the closest edge as an argument of the
proximity function is not efficient as it may produce
gaps between close edges. Also it blurs edge ends.

We suggest the following method for calculating the
proximity function in the two-dimensional case using
one-dimensional proximity function p(x):

p(x, y) =
∑

(xe,ye)∈N(x,y) w(xe,ye)p(xn)∑
(xe,ye)∈N(x,y) w(xe,ye)

,

w(xe, ye) = Gσ(xt)|ḡ(xe, ye)|,

where N(x, y) is the set of edge points in the neighbor-
hood of (x, y). The values xn and xt are projections
of the vector (x − xe, y − ye) on the edge gradient
vector ḡ(xe, ye) and on its perpendicular. Edges are
detected using Canny edge detection algorithm with
zero thresholds [8].

The solution of the equation can be found directly:

d̄(x, y) =

∑
(xe,ye)∈N(x,y)Gσ(xt)d(xn)ḡ(xe, ye)∑

(xe,ye)∈N(x,y)Gσ(xt)|ḡ(xe, ye)|
(3)

The calculation of the grid warping vectors (3) is com-
putationally slow. In time critical applications it can
be approximated by taking only the nearest edge point
in (3).

Finally we perform interpolation on the non-regular
pixel grid. The work [4] proposes taking all neighbor-
ing pixels (xk, yk) of the pixel (x, y) and performing
weighted averaging

IR(x, y) =

∑
k I(xk, yk)w(x, y, xk, yk)∑

k w(x, y, xk, yk)
(4)

where

w(x, y, xk, yk) = exp

(
− (x− xk)2 + (y − yk)2

2σ2
0

)
,

σ0 = 0.3

Parallel implementation

Modern GPUs can provide significantly better perfor-
mance than the CPU but have some architectural lim-
itations that require algorithm adaptation for GPU.

Parallel implementation of the proposed grid warping
consists of the following steps:

1. Calculation of horizontal and vertical derivatives to
find image gradient by convolving the image with 5x5
kernels. Each pixel is calculated independently so this
step can be easily parallelized.

2. Perform non-maximum suppression to find the
edges. We do not apply hysteresis from Canny edge
detector [8] and use only single threshold.

Parallel Implementation of Image 295

3. Apply the formula (2) pixelwise to find the warping
vectors.
4. The interpolation step (4) should be adapted for
GPU processing. The problem is to find the neighbor-
ing pixels: each pixel is assigned the new coordinates
but we need to process the warped pixels. The length
of the obtained displacement vectors is limited from
(1) and (2) to about ∼ 2σ so we need to check all the
pixels in the neighborhood of the radius 2σ.
In the fast version of the proposed algorithm the step
3 is replaced to the result of Euclidean distance trans-
form [9, 10].

Results
The results of the proposed algorithm are shown in
Fig. 3. The reference images are blurred by Gaus-
sian filter with σ = 3, Gaussian noise with σ = 10 is
added, then image sharpening is applied. It can be
seen that the contours become sharper while no noise
amplification of ringing effect is observed.
Fig. 4 demonstrates the application of the proposed
method to the real medical immunofluorescence im-
age. Grid warping algorithm makes lines thinner.
It takes about 1.2 seconds to process 512 × 512 us-
ing CPU implementation and about 0.3 seconds us-
ing GPU implementation with CUDA technology on
a computer with Core i7 processor 4 GHz with NVidia
GTX 570 video card. The execution time is propor-
tional to the number of pixels.

Reference image Blurred and noisy Warping result
image

Fig. 3. Results of the proposed algorithm for synthesized
blur and noise

Conclusion
A parallel implementation of grid warping algorithm
was developed. It was applied to real and synthetic

Fig. 4. Results of the proposed algorithm for the real
image: the cell boundaries become thinner and sharper

images to demonstrate the results. The algorithm
was implemented for CUDA architecture and showed
about 3–5x increase in performance.

296 Gusev A.D., Nasonov A.V., Krylov A.S.

References
[1] M. Almeida and M. Figueiredo Parameter estima-

tion for blind and non-blind deblurring using residual
whiteness measures // IEEE Transactions on Image
Processing, vol. 22, pp. 2751–2763, 2013.

[2] J. Oliveira, J. M. Bioucas-Dia, and M. Figueiredo
Adaptive total variation image deblurring: A
majorization-minimization approach // Signal Pro-
cessing, vol. 89, pp. 1683–1693, 2009.

[3] S. D. Babacan, R. Molina, and A. K. Katsaggelos Vari-
ational bayesian blind deconvolution using a total vari-
ation prior // IEEE Transactions on Image Processing,
vol. 18, pp. 12–26, 2009.

[4] A. Nasonova, A. Krylov Deblurred images post-
processing by Poisson warping // IEEE Signal Pro-
cessing Letters, Vol. 22, No. 4, 2015, pp. 417–420.

[5] N. Arad and C. Gotsman Enhancement by image-
dependent warping // IEEE Transactions on Image
Processing, vol. 8, pp. 1063–1074, 1999.

[6] J. Prades-Nebot et al. Image enhancement using warp-
ing technique // Electronic Letters, vol. 39, pp. 32–33,
2003.

[7] A. S. Krylov, A. V. Nasonov 3D image sharpening by
grid warping // Lecture Notes in Computer Science
(IScIDE2015), Vol. 9242, 2015, pp. 441–450.

[8] J. Canny A Computational Approach To Edge Detec-
tio” // IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 8, No. 6, pp. 679–698,
1986.

[9] Fabbri, Ricardo, et al 2D Euclidean distance transform
algorithms: A comparative survey // ACM Computing
Surveys (CSUR), Vol. 40, No. 1, 2008, #2.

[10] T. T. Cao, K. Tang, A. Mohamed, T. S. Tan Paral-
lel banding algorithm to compute exact distance trans-
form with the GPU // Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics
and Games. 2010, 83–90.

Parallel Implementation of Image 297

	Blank Page

