Термографическая визуализация струйных затопленных турбулентных течений

Знаменская И.А., Коротеева Е.Ю., Новинская А.М.

Физический факультет

Московский Государственный Университет имени М.В.Ломоносова, Россия novinskaja.anastasija@physics.msu.ru

АННОТАЦИЯ

На основе тепловизионной цифровой видеорегистрации с временным разрешением до 400 кадров в секунду в диапазоне длин волн 3.7-4.8 инфракрасного излучения визуализировано: неизотермическиое течение жидкости в пограничном слое (при взаимодействии импактной струи со стенкой, прозрачной для ИК излучения); струйное пространственное турбулентное течение газа (дистанционный анализ психологического состояния человека по дыханию).

Ключевые слова: визуализация, ИК термография, струйные течения, турбулентность.

1. ВВЕДЕНИЕ

Инфракрасная термография это метод дистанционной визуализации и регистрации теплового излучения от объектов, прежде всего, с целью анализа их температурных полей.

Тепловое излучение возникает во всех средах при температуре выше абсолютного нуля - в газах, плазме, жидкости и в твердых телах – вследствие движения молекул. Диапазон электромагнитных волн инфракрасного (ИК) излучения – от 770 нм до 1000 мкм. Регистрация теплового излучения дает обширную информацию об энергетическом состоянии объекта. Термография – мощный инструмент исследования, используемый практически во всех областях естественных наук: медицине, геологии, биологии, энергосбережении, неразрушающем контроле и др. [2, 5, 6]

В последние годы широкое распространение получили такие методы экспериментальной визуализации как теневой метод, интерферометрия, PIV, LIF, термография, теневой фоновый метод, бароиндикаторные покрытия и др.[4] Возросший интерес к термографии обусловлен как появлением тепловизоров нового поколения, так и возможностями цифровой обработки, анализа, хранения термографических изображений и фильмов.

2. МЕТОД ВИЗУАЛИЗАЦИИ ПРОЦЕССОВ С ПОМОЩЬЮ ИК ТЕРМОГРАФИИ

Термографический анализ течений жидкости, газа и плазмы требует специальных знаний о законах и свойствах электромагнитного излучения ИК диапазона. Тепловизором регистрируется не только собственное излучение объекта, но и отраженное, рассеянное, фоновое тепловое излучение. В отличие от твердых тел и жидкостей, имеющих в большинстве случаев сплошные спектры излучения, газы и жидкости излучают энергию лишь в определенных интервалах спектра. Для лучей других длин волн, находящихся вне этих полос, газы прозрачны, и их энергия излучения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер.

Поглощение и излучение тепловой энергии в воде происходят в тонком слое порядка нескольких микрон. Газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа и пропорционально толщине газового слоя l, парциальному давлению газа P и его температуре T, следовательно, A_{λ} =f(T,P,l).

Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают преимущественно трехатомные и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар.

В процессе дыхания воздух окружающей среды, попадая в дыхательный аппарат человека, нагревается, меняет состав, насыщается водяными парами. Количество теплоты Q, отдаваемой в окружающий воздух, составляет

$Q{=}V_{\scriptscriptstyle BJ}\rho C_{\rho}(t_{\scriptscriptstyle BJJ}{-}t_{\scriptscriptstyle BJ})$

где V_{BR} – объем воздуха, вдыхаемого в единицу времени в M^{3}/c (легочная вентиляция), ρ - плотность вдыхаемого воздуха, C_{ρ} - удельная теплоемкость выдыхаемого воздуха Дж/кг·с, $t_{BыR}$ и t_{BR} - температура выдыхаемого и вдыхаемого воздуха. При температуре воздуха +13°C и ниже выполнение одинаковой физической нагрузки обеспечивалось меньшим потреблением кислорода и легочной вентиляции – на 10-12% по сравнению с нагрузкой при +37°C и +22°C. В покое взрослый человек вдыхает и выдыхает около 500 см³ воздуха. Частота дыхательных движений грудной клетки в покое в среднем равна 16 в минуту (от 12 до 24).

Человек вдыхает воздух, содержащий 21% кислорода и 0,03% углекислого газа. Во выдыхаемом воздухе содержится 16% кислорода и около 4% углекислого газа. Выдыхаемый при комнатной температуре газ имеет температуру близкую к 36°С.

Для регистрации нестационарных температурных полей в данной работе использовалась тепловизионная камера FLIR SC7700, спектральный диапазон измерений которой 3.7 – 4.8 мкм (по уровню 60% от максимальной чувствительности). В этом диапазоне находится полоса поглощения углекислого газа (4.13 – 4.43 мкм). Таким образом, струя выдыхаемого газа благодаря температурному и концентрационному контрасту является регистрируемым объектом для данного тепловизора.

2.1 Визуализация дыхательных струйных потоков

В ходе работы была выполнена качественная и количественная визуализация дыхательных струйных потоков на основе высокоскоростной ИК термографии. Получены тепловизионные записи нормального носового дыхания ряда добровольцев. Время регистрации составляло 10-100 секунд, частота кадров была в диапазоне от 5 Гц (полный кадр, с разрешением 640x512 пикселей) до 400 Гц (с ограниченным разрешением). Записи велись анфас и в профиль; интерес представляет изменение теплового потока из области вокруг ноздрей (зона регистрации). Температура зоны регистрации колеблется в пределах каждого дыхательного цикла: вдыхание холодного воздуха из окружающей среды с последующим выдохом теплого воздуха из легких.

Рисунок 1: Схема получения частотных характеристик дыхания человека с помощью ИК термографии: 1-2 визуализация процесса с помощь тепловизионной камеры; 2-3 выявление частотных закономерностей;

3-4 исследование спектральных характеристик.

Проведен цифровой анализ анимационных тепловизионных файлов на базе программного обеспечения компании FLIR (Altair и ResearcherIR). Отождествление области анализа и определение дыхательных циклов проводились следующим образом (Рисунок 1). В выбранных точках температурного поля зоны контроля из зависимостей температуры от времени построены энергетические спектры тепловых были пульсаций. Для обработки результатов был использован быстрого преобразования Фурье алгоритм (FFT). реализованный в программной среде Python 2.7. Затем данные усреднялись для количественного определения преобладающей частоты, то есть частоты дыхания. Получено, что регистрации полей ИК излучения в течение 20 секунд при 5 Гц достаточно, чтобы исследовать эволюцию и частотные характеристики дыхания с высокой точностью. Смещение головы во время эксперимента не превышает 1 мм, в связи с чем, не учитывается

Рисунок 2: Визуализация дыхания в различные моменты времени.

Разработанная методика позволяет обнаруживать нерегулярные паттерны в дыхании, которые можно рассматривать В качестве маркеров для анализа психологического или физиологического стресса [7]. В частности, показаны изменения несущей частоты дыхания при испуге и физических нагрузках.

Высокочувствительными теневыми методами визуализации было показано. что максимальная протяженность струи воздуха при дыхании составляет до 0.6 м и скорость потока - около 1.4 м/с [9]. Область термографической визуализации, как показали результаты съемки, составляла не более 0.2 м. Пространственные размеры зоны регистрации выбраны около 15x15 см. Областью количественного динамических анализа характеристик струйного течения является область вниз и по бокам от ноздрей 5х5 см (Рисунок 2).

Проанализированы зависимости спектральных характеристик от психофизиологического состояния испытуемых.

2.2 Затопленная импактная струя

Затопленная струя воды не может быть объемно визуализирована даже при высоком температурном контрасте струи и среды - ввиду полного поглощения ИК излучения данного диапазона в толще воды. Однако за счет этого свойства воды большие возможности открываются для термографического анализа пограничного слоя в течении при взаимодействии струи со стенкой, прозрачной для ИК излучения [1]. Практический интерес представляют возможности тепловизионной визуализации газовых и жидких импактных затопленных струй, измерение пространственно-временных, частотных характеристик.

Рисунок 3: Экспериментальная установка для изучения двух конфигураций: 1. импактная затопленная струя;
2. взаимодействие двух струй в дискообразном тройниковом устройстве.

Объектом исследования был резервуар с холодной водой, в который погружена трубка с горячей водой (Рисунок 3.1). Температура воды контролировалась с помощью термопары и градусника. Мощность струи регулировалась вентелем на кране с горячей водой. Диаметр отверстия сопла D = 1 мм. Расстояние между соплом и поверхностью соударения порядка h/D ~ 2 - 4 мм. Затопленная неизометрическая струя падала под прямым углом к поверхности и создавала

турбулентные возмущения у внутренней стороны прозрачной для ИК излучения стенки (Рисунок 4).

Рисунок 4: Пример термограммы и развертки температуры во времени, полученные с помощью макрообъектива. Расстояние между точками 3.15 мм.

Для импактной затопленной струи были построены энергетические спектры при различных экспериментальных условиях: разность температур струи и резервуара ($\Delta T = 20$ -40°С) и скорость истечения (7-15 м/сек). Спектры, различной истечения, соответствующие силе потока изображены Рисунке 5. Проведено сравнение на экспериментально полученных энергетических спектров импактной неизотермической струи co спектром Колмогорова (законом «-5/3»).

Рисунок 5: Сравнение энергетических спектров импактной затопленной струи при разной силе потока: 9 м/с и 15 м/с.

2.3 Смешивание двух струй в тройниковом устройстве

Для реализации второй задачи использовался дискообразный тройник, в котором взаимодействовали две затопленные струи под углом 120° (Рисунок 3.2). Холодная и горячая вода поступала через два боковых сопла и вытекала через сток в верхней точке сосуда диаметром 14 мм. Внутренний диаметр тройника — 67 мм, толщина слоя воды – 13 мм. Смешивались струи горячей (30-55°С) и холодной (10-20°С) воды. При смешении двух затопленных струй разной температуры в тройниковом устройстве (Рисунок 6) была визуализирована динамическая картина течения в пограничном слое жидкости

для разности температур до 40°С.

Рисунок 6: Пример термограммы взаимодействия двух затопленных струй с указанием опорных точек, относительно которых производится временная развертка. Температура холодной воды 12°С, горячей 52°С. Длительность фильма 600 с.

На термограмме рассмотрены две области точек: центральноосевая и на периферийная. Показано существование двойного инерционного интервала в турбулентном потоке, образующемся при пересечении двух струй в пространстве дискообразного тройника (Рисунок 7а). Коэффициент наклона спектра точек на оси в интервале от 1 до 9 Гц лежит в пределах α = 1.5 – 1.8; для 9 - 25 Гц, коэффициент составляет $\alpha = 2.9 - 3.5$. Это имеет аналогию в теоретическом описании двумерной турбулентности в специальных течениях [3, 8]. Механизм формирования зоны двойного каскала турбулентности может быть связан как со стратификацией в пристеночном течении, так и с закруткой потока в сосуде. Для точек на периферии двойного каскада не наблюдалось (Рисунок 7б).

Рисунок 7: Сравнение спектров в цилиндрическом тройнике. Время съемки 600 с, скорость истечения 1.2 м/с.

а) в центрально-осевой области; б) на периферии.

Для понимания общей картины проведено трехмерное численное моделирование быстропротекающих неизотермических процессов. Расчет выполнен на основе программного пакета ANSYS CFX 14.5 с параметрами, близкими к эксперименту. Результаты численной визуализации сравнены с экспериментально полученными термографическими анимациями [10]. 326

3. ЗАКЛЮЧЕНИЕ

Использованы экспериментальные метолы темографической визуализации с высоким пространственно-временным разрешением струйных затопленных течений жидкости и газа, основанные на физических явлениях, связанных с излучением и поглощением инфракрасного излучения. В сочетании с математическим аппаратом цифрового программного анализа изображений динамических процессов данные методы могут использоваться в самых различных областях науки и техники. Приведены полученные таким образом некоторые результаты, относящиеся в физике турбулентного пограничного слоя жидкости и к психофизиологии.

4. БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского Университета, при поддержке грантов 16-18-00080 и 16-38-60186 (мол а дк).

5. СПИСОК ЛИТЕРАТУРЫ

- [1] Большухин М.А., Знаменская И.А., Крепков В.П., Свешников Д.Н., Фомичев В.И. Патент № 2677793 Способ тепловизионного определения характеристик турбулентности неизотермического потока от 30.09.2014.
- [2] Вавилов В.П. Инфракрасная термография и тепловой контроль. 2-е издание, доп. М. Издательский дом Спектр, с. 544, 2013.
- [3] Данилов С.Д., Гураций Д. Квазидвумерная турбулентность. Успехи физических наук, т. 170, №9, с. 923-928, 2000.
- [4] Знаменская И.А. Визуализация потоков и обработка изображений: сближение и взаимодействие экспериментальных и численных данных. ГрафиКон'2012: 22-я Международная конференция по компьютерной графике и зрению: Москва, МГУ имени М.В. Ломоносова, труды конференции. – М.: МАКС Пресс, с. 300, 2012.
- [5] Carlomagno G.M., Cardone G. Infrared thermography for convective heat transfer measurements. Experiments in Fluids, vol. 49(6), pp. 1187–1218, 2010.
- [6] Carlomagno G.M., Ianiro A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance. A review. Experimental Thermal and Fluid Science, vol. 58, pp. 15–35, 2014.
- [7] Lewis G.F., Gatto R.G., and Porges S.W. A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology, vol. 48, pp. 877– 887, 2011.
- [8] Kraichnan R.H. Inertial Ranges in Two-Dimensional Turbulence Physics of Fluids, vol. 10(7), pp. 1417-1423, 1967.

- [9] Tang J.W., Nicolle A.D., Klettner C.A., Pantelic J., Wang L. Airflow Dynamics of Human Jets: Sneezing and Breathing -Potential Sources of Infectious Aerosols. PLoS ONE vol. 8(4), 2013.
- [10] Znamenskaya I.A., Koroteeva E.Y, Novinskaya A.M., Fomichev V.I. *Thermographic analysis of turbulent nonisothermal water boundary layer*. 10th Pacific Symposium on Flow Visualization and Image Processing, 2015.

Об авторах

Знаменская Ирина Александровна – профессор физического факультета Московского Государственного Университета имени М.В.Ломоносова, кафедра молекулярных процессов и экстремальных состояний вещества.

E-mail: znamen@phys.msu.ru.

Коротеева Екатерина Юрьевна – научный сотрудник физического факультета Московского Государственного Университета имени М.В.Ломоносова, кафедра молекулярных процессов и экстремальных состояний вещества.

E-mail: forsp@mail.ru.

Новинская Анастасия Михайловна – аспирант физического факультета Московского Государственного Университета имени М.В.Ломоносова, кафедра молекулярных процессов и экстремальных состояний вещества.

E-mail: novinskaja.anastasija@physics.msu.ru.