
364 Shakaev V.

Polygonizing volumetric terrains with sharp features*
V. Shakaev

Ltd. “K-Mobile”

In recent years, volume-based terrains have been steadily increasing in popularity due to their vastly superior
capabilities compared to conventional elevation-based terrains. However, using a fully 3D representation entails a
number of challenges, mainly reducing memory consumption, employing Level-Of-Detail techniques and achieving
seamless polygonization for artifact-free rendering. We present a modified Dual Contouring algorithm which is
designed for efficient out-of-core isosurface extraction. The algorithm can be interpreted as a bottom-up traversal
of linear octrees. Then we describe a compact representation for storing levels of details of a volumetric terrain,
particularly well-suited for the above algorithm. Finally, we show how our approach can easily support crack-free
polygonization of a volumetric terrain with sharp features and different levels of detail at interactive frame rates.

Keywords: volumetric terrain, isosurface extraction, dual contouring, out-of-core strategy

1. Introduction

Interactive terrain rendering is an important component
in many applications ranging from GIS visualization
to videogames. Traditionally, terrains have been
modeled using heightmaps: scalar elevation values
sampled over a 2D regular grid. Due to their planar
nature, heightmaps can represent only 2.5D surfaces:
it’s inherently impossible to have caves, arches or
overhangs. These limitations can be overcome by using
a full-blown 3D, volumetric representation. However,
this incurs significant memory cost and increases
rendering complexity.
Typically, for interactive rendering of a volumetric
terrain a polygonal mesh approximating the surface
of the terrain needs to be extracted using a method
such as Marching Cubes (MC) [8]. The resulting
mesh can then be efficiently rendered in real-time by
the graphics hardware. A desirable feature is ability
to capture sharp features which allows to represent
artificial objects such as buildings on the terrain.
In order to allow for visibility culling, level of detail
(LOD) selection and editing, large-scale terrains are
usually broken up into separate pieces. Polygonizing
each part independently from its neighbours leads to
the well-known problem of cracks along the boundary
between parts with different levels of detail. In real-
time or interactive applications the tasks of loading
the necessary levels of detail and seamless isosurface
extraction need to be computed at high speed.
To solve these problems we developed a modified
version of the adaptive dual contouring algorithm. Our
approach is based on the linear octree representation,
doesn’t have any additional space overhead and is
much simpler to implement than existing alternatives.
Then we describe a compact representation for storing
levels of details of volumetric terrains which is
naturally suited for our algorithm. The methods are
generic enough to be used for volume tiling and
seamless out-of-core isosurface extraction in other

Работа опубликована по гранту РФФИ №16-07-20482

application domains as well. Finally, we suggest
further improvements and future research directions.

2. Related work
Although there has been separate work on feature-
preserving isosurface extraction and on real-time
rendering of volumetric terrains, there has been little
previous work in considering these areas together.
Isosurface extraction is a well-studied (and still
actively researched) problem. Marching Cubes (MC)
[8] is the most popular algorithm for isosurface
extraction, but it’s not feature-preserving. Moreover,
it was designed for uniform grids and cannot be
applied for crack-free adaptive triangulation.
Dual Contouring (DC) [2] is a unified method to
extract crack-free surfaces using both uniform and
adaptive subdivision. DC generates one representative
vertex inside each boundary cell (a boundary cell
intersects the isosurface). When Hermite data (exact
intersection points and normals of the surface with
cell edges) is available, DC can reconstruct sharp
features by positioning the vertex at the minimizer
of the quadratic error function (QEF). On a uniform
cubic grid, for each zero-crossing cell edge DC forms
a quad by connecting the four vertices from the grid
cells sharing the edge. The orientation of the quad is
derived from the signs at the edge’s endpoints (signs
denote inside/outside statuses).
The task of polygonizing a voxel terrain can be viewed
as a problem of out-of-core isosurface extraction.
More recently, [5] presented an adaptive out-of-core
isosurface extraction method. The method consists in
dividing the volume into rectangular blocks which are
then seamlessly combined together, using a modified
Dual Marching Cubes (DMC)[9] algorithm adapted to
the linear octree representation.
In contrast to traditional heightmap-based terrains,
real-time rendering of volumetric terrains has received
relatively little attention, with most of research
devoted to smooth voxel terrains.
The Transvoxel Algorithm [3] was designed for
seamless and high-performance triangulation of

26-я Международная конференция (GraphiCon2016), Россия, Нижний Новгород, 19–23 сентября 2016 г.
26th International Conference (GraphiCon2016), Russia, Nizhny Novgorod, September 19–23, 2016



Polygonizing volumetric terrains 365

a chunked multiresolution voxel terrain. Between
neighbouring blocks with differing resolutions transition
cells are introduced, which are triangulated using an
extended MC table.
Material stacks [1, 10] is a compact and efficient
representation for 3D terrains based on vertical
columns with multiple material layers. To render
stack-based terrains in real-time [6] developed
techniques for LOD generation and seamless isosurface
extraction using GPU-based dual contouring.
To generate high-quality, and, possibly, feature-
preserving surface meshes at interactive frame rates
[7] presented a GPU-based parallel processing pipeline
using DMC [9], but didn’t address visualization of
large-scale terrains with LODs.
Finally, tetrahedral bisection [11, 12] allows for a
GPU-friendly LOD algorithm with large volumetric
datasets and doesn’t need any preprocessing or crack
patching.
In this article, we explicitly address the issue of
generating surface meshes for interactive rendering of
volumetric terrains with sharp features.

3. General approach
In this section we outline our approach to storage and
real-time rendering of volumetric terrains. We present
a modification to the dual contouring algorithm
which accepts as input a signed linear octree and
doesn’t have any additional space overhead. Then
we describe a memory-efficient data structure to
represent different parts of the terrain at varying
resolutions.

3.1 Surface Extraction
We use adaptive Dual Contouring [2] for generating
triangle meshes, because it provides built-in solutions
for LOD generation with seamless multiresolution
contouring and offers a good compromise between
simplicity, performance and mesh quality. Adaptive
Dual Contouring [2] generates a feature-preserving
and crack-free mesh from an unrestricted, signed
octree with different cell sizes. To generate a closed
contour, only minimal octree edges (those edges of
leaf cells that do not properly contain an edge of a
neighboring leaf) should be examined. In an octree,
each minimal edge is shared by four or three leaf cells.
Following [5], for more efficient out-of-core processing
we adopt the linear octree representation.

3.1.1 Dual Contouring of Linear Octrees
A linear octree consists of only terminal, leaf nodes
together with their locational codes for uniquely
identifying each node within the hierarchy. We use
Morton codes as keys for fast neighbor finding [4].
Assuming the key of the root is 1, a Morton code for
the given node can be built by recursively descending
the tree and concatenating the 3-bit octal number of

each encountered node. Then the depth of the node
is encoded by the most-significant bit in the node’s
code and the code of the parent can be obtained by
removing the last 3 bits of the node’s code.
The use of linear octrees with keys allows to
completely abandon internal nodes with pointers and
bypass hierarchical traversal. For adaptive isosurface
extraction it’s necessary to store only boundary, leaf
cells. In our implementation, each cell contains the
quantized position of the representative vertex, the
signs at the corners of the cell and is associated with
the corresponding Morton code.
The resulting dual-contouring algorithm can be
described in three steps. First, all leaf nodes are sorted
by their Morton codes in descending order so that
the smallest leaves (the deepest in the hierarchy) are
placed at the beginning. This step is required only
when the octree is modified (which is always the
case in our seamless out-of-core isosurface extraction
strategy).
Second, for each leaf cell we create a mesh vertex.
The vertex’s position is de-quantized using the cell’s
bounding box, which in turn is computed from the
cell’s Morton code.
Third, we iterate over each leaf cell and create a quad
for each intersecting edge of the cell. Specifically, we
search for the other three adjacent leaf cells sharing
the edge, and if they are all found, we emit a quad.
We build the neighbour’s Morton code and check it
for overflow. If the neighbour lies deeper than the
current cell or is located outside the octree bounds,
the current edge is discarded. For neighbour finding
we use binary search on the (sorted) array of leaf cells,
starting with the next cell (to skip the current cell and
previously visited ones). If no adjacent cell is found,
the current edge is likewise discarded, and we continue
with the next active edge. Finally, if the other three
neighbouring cells are found (they are the same size
or larger than the current cell), we create a quad by
connecting the mesh vertices corresponding to the four
leaf cells containing the edge. In transitional areas of
the octree there are only three distinct cells sharing
the edge, and the quad degenerates into a triangle, as
can be seen in Figure 1.
In comparison to [5], the above algorithm doesn’t rely
on any auxiliary data structure, besides the sorted
array of leaf nodes. No explicit tagging is needed
for cells/edges that have already been visited. Each
leaf cell is processed exactly once, in a sequential
manner. Therefore, the running time of the algorithm
is roughly linear in the number of leaf nodes.
Compared to the traditional top-down recursive
approach [2] where all edges in the octree are
enumerated, the bottom-up traversal strategy allows
to visit only intersecting edges.
These design choices make the contouring algorithm
very simple and easy to implement. Instead of



366 Shakaev V.

Рис. 1: Surface extracted from an implicitly-defined
object using adaptive dual contouring. The lower
image shows octree cells in the uniform and adaptive
case.

implementing several mutually recursive procedures,
the algorithm requires only a few dozen lines of C
code.
As long as the leaf cells continuously cover the surface
and their signs are consistent with each other, the
algorithm will produce a closed, watertight surface.
If 2-manifold meshes are required, the algorithm can
be extended to adaptive DMC [9, 5], at the cost of
increased complexity.

3.2 Terrain Generation
In our tests all data sets have been generated
procedurally or created by scan-converting existing
triangle meshes.

3.3 Terrain Representation
For enabling out-of-core processing the voxel terrain
is broken up into same-sized rectangular blocks (or
meta-cells using the terminology from [5]), with up
to 4 levels of detail each. In our framework, the
finest (lowest) LOD of each block can be stored using
several types of volumetric representations, namely,
Signed Distance Fields with distance gradients, binary
volumes with Hermite data, Points with Implicit
Connectivity (PIC) [14] and Layered Depth-Normal
Images. Our framework currently handles only solid
and empty space.
All coarser levels of detail are stored as signed
linear octrees, so that they can be readily used
by the adaptive dual contouring algorithm. This
representation is similar to PIC, except that we don’t
store the object’s interior (which is required for CSG

operations).
In the PIC representation, a solid is adaptively
sampled into an octree composed of black (inside),
white (outside), and gray (boundary) leaf nodes.
Each gray leaf cell contains one representative vertex
and inside/outside classification values of the cell
corners [14]. PIC provides better memory efficiency
than other feature-preserving representations, because
Hermite data is not explicitly stored. Additionally,
since the positions of all representative vertices have
been precomputed, the dual contouring phase reduces
to polygon generation.
In our signed linear octree representation only
boundary leaf cells are stored which leads to further
memory savings. In practice, only a small subset of
all cells are boundary, with more cells being allocated
in regions with thin features or high curvatures.
In our implementation, each cell contains a 32-bit
Morton code, the position of the representative vertex,
quantized to three 8-bit values based on the cell’s
bounding box, and signs at the cell corners. The
resulting data structure can capture sharp features
in a space efficient manner and still have sufficient
precision due to hierarchical quantization.

3.4 Level Of Detail
Real-time rendering of large landscapes requires
a LOD system to allocate limited computational
resources for an optimal balance between performance
and visual quality.

3.4.1 LOD generation
To generate levels of detail for each block of the terrain
we follow the standard bottom-up approach [2]: we
sample the source data at the maximum resolution,
build a full-precision linear octree and then simplify
the resulting linear octree in-place, until the maximum
tree depth at the given LOD is reached.
This approach generates fairly good approximations
for low-frequency, coarse terrain, but is not very
suitable for models with fine geometrical features as it
distorts the original topology and causes thin features
to vanish at lower resolutions (which is a common
drawback of all clustering-based methods).

3.4.2 Crack-free triangulation
Dual-contouring each terrain block individually,
without considering its neighbours, leads to cracks
and gaps between adjacent blocks (see Fig.2, left).
Adaptive dual contouring offers the ability to generate
crack-free multiresolution meshes. To seamlessly
connect a terrain block to its neighbours, the octree
cells from neighboring blocks, which are face-adjacent
to the current block, must also be processed by the
contouring algorithm.
However, when later a neighbouring block is
triangulated, its triangles will overlap the existing ones



Polygonizing volumetric terrains 367

at the boundary between the two blocks, which will
cause Z-fighting in the seam region.
To prevent creation of duplicate polygons at block
boundaries it’s necessary to impose a strict block
traversal order and cull redundant edges [5] or modify
the dual contouring algorithm so that seam polygons
are created only if the corresponding edges belong to
different blocks. In the second strategy a linear octree
is built for a group of 2x2 blocks. Assuming that the
current block is located in the 0th octant, we gather
octree nodes from the seven adjacent blocks. Then we
create a linear octree for the whole group by inserting
a 3-bit octant index just below the depth bit into
each cell’s Morton code. During octree contouring we
create quads only if the corresponding four cells do
not belong to the same octant in the group (this can
be checked using bitwise operations on their Morton
codes).

Рис. 2: "Happy Buddha"divided into blocks with
different levels of details and then seamlessly joined
using our approach.

4. Implementation and results

The algorithms have been implemented in C++, using
Direct3D 11 as a graphics API. All the experiments
have been conducted on a machine running 64-bit
Windows 7, equipped with a 2.8 GHz quad-core
processor, 8 GiB RAM and AMD Radeon 6950.
The resolution of each terrain block is 323, although
it can be any power of two up to 512 due to the use of
the linear octree with 32-bit Morton codes (one octree
level is required for stitching), at the cost of slower
updates/surface extraction.

We don’t maintain any caches for storing the whole
terrain in memory. Instead, blocks are loaded as
needed without any run-time allocation. We use
Lightning Memory-Mapped Database (LMDB) [13]
for saving and reading terrain data. As LMDB doesn’t
support nested transactions, to seamlessly connect
a block to its neighbours the boundary cells from
adjacent blocks must be kept in memory. On average,
it takes approximately 3 ms to triangulate a single
block in the PIC format at full resolution.
Currently, LOD loading and triangulation happen in
the main thread which causes occasional stalls and
freezes during movement. To achieve a constant frame
rate, these tasks should be offloaded to a background
thread. In addition, popping artifacts are observed
during LOD changes.
Even when using adaptive dual contouring the
resulting mesh often contains excessive number of
triangles in large flat regions. To further reduce
triangle count, surface mesh simplification could be
applied.
Uniform partitioning scheme doesn’t scale to large
terrains. For example, the terrain in Fig.3 consists
of 16x16x8 blocks which results in about 2 million
triangles rendered at over 200 frames per second.
In all our experiments, the whole terrain could fit into
the main memory. The terrain shown in Fig.3 occupies
approximately 170 MiB on disk as an LMDB map file.
All levels of detail are stored as signed linear octrees
without any compression.

Рис. 3: Randomly generated 3D terrain with a custom
mesh.

5. Conclusion and future work

We have described an approach for representing
and real-time rendering of volumetric terrains. Our
approach combines a compact data structure for
storing levels of details and a modified adaptive
dual contouring algorithm. Levels of details are
stored as signed linear octrees which can be
directly triangulated by the contouring algorithm.



368 Shakaev V.

The algorithm can be viewed as a simple bottom-
up traversal of linear octrees and doesn’t have any
additional space overhead.
Our approach can be used for seamless out-of-
core isosurface extraction in general. We believe our
algorithm will perform well on GPU architectures.
Future avenues for research and improvement include:
algorithms for generating 2-manifold meshes, such as
adaptive DMC [5], topology-preserving simplification
for generating better LODs, compression of the signed
linear octrees using the properties of Morton codes,
support for multiple materials and strategies for
hiding LOD transitions.

Литература
[1] Benes B., Forsbach R. Layered data representation for

visual simulation of terrain erosion // In Computer
Graphics, Spring Conference, 2001, pp. 80–86.

[2] Ju T., Losasso F., Schaefer S., Warren J. Dual
Contouring of Hermite Data // ACM Transactions on
Graphics, 21(3), 2002, pp. 339–346.

[3] Lengyel, E. Voxel-Based Terrain for Real-Time Virtual
Simulations // PhD diss., University of California at
Davis, 2010.

[4] Lewiner, T., Mello, V., Peixoto, A., Pesco, S., Lopes,
H. Fast generation of pointerless octree duals //
Symposium on Geometry Processing 2010, Computer
Graphics Forum, vol. 29, 2010, pp. 1661–1669.

[5] Lobello R.U., Dupont F., Denis F. Out-of-core
adaptive iso-surface extraction from binary volume
data // Graphical Models 76 (6), 2014, pp. 593–608.

[6] Löffler F., Müller A., Schumann H. Real-time rendering
of stack-based terrains // In Proceedings of 16th
international workshop on Vision , Modeling, and
Visualization (VMV), 2011, pp. 161–168.

[7] Löffler F., Schumann H. Generating Smooth High-
Quality Isosurfaces for Interactive Modeling and
Visualization of Complex Terrains // In Proceedings
of 17th international workshop on Vision, Modeling,
and Visualization (VMV), 2012, pp. 79–86.

[8] Lorensen W., Cline H. Marching Cubes: a high
resolution 3D surface construction algorithm //
Computer Graphics (SIGGRAPH 87 Proceedings),
1987, pp. 163–169.

[9] Nielson G. Dual Marching Cubes // In Proceedings of
the conference on Visualization, 2004, pp. 489–96.

[10] Peytavie A., Galin E., Merillou S., Grosjean
J. Arches: a Framework for Modeling Complex
Terrains // Computer Graphics Forum (Proceedings
of Eurographics) 28 (2), 2009, pp. 457–467.

[11] Scholz M., Bender J., Dachsbacher C. Level of Detail
for Real-Time Volumetric Terrain Rendering // In
Proceedings of 18th international workshop on Vision,
Modeling, and Visualization (VMV), Vision, Modeling,
and Visualization, 2013, pp. 211–218.

[12] Scholz M., Bender J., Dachsbacher C. Real-Time
Isosurface Extraction With View-Dependent Level of
Detail and Applications // Computer Graphics Forum,
vol. 34, iss. 1, 2014, pp. 103–115.

[13] Symas Lightning Memory-mapped Database //
2016. https://symas.com/products/lightning-memory-
mapped-database/

[14] Zhang N., Qu H., Kaufman A. CSG operations
on point models with implicit connectivity // In
Proceedings of the Computer Graphics International,
2005, pp. 87–93.


