
GPU-optimized Ray-tracing for Constructive Solid Geometry Scenes

 Denis Bogolepov
1
, Danila Ulyanov

1,2
, Vadim Turlapov

2

1
OpenCASCADE SAS,

2
University of Nizhniy Novgorod

{denis.bogolepov, danila.ulyanov}@opencascade.com, vadim.turlapov@cs.vmk.unn.ru

Abstract

A novel GPU-optimized CSG ray tracing approach is proposed

that is fast and accurate and achieves real-time frame rates for

complex CSG models. The algorithm is suitable for primitives

defined by tessellation either analytically, has no limitations on

the number of CSG primitives and produces the image in single

pass. We also propose two-pass procedure for transforming the

input tree into spatially coherent and well-balanced form. With

these optimizations, the algorithm becomes compute-bound and

scales well with additional GPU power (in contrast to multi-pass

CSG algorithms). Through various experiments, we show that our

solution allows interactive rendering of scenes with more than a

million CSG primitives on consumer graphics cards, and as far as

we know, this is the fastest general CSG algorithm.

Keywords: Constructive solid geometry, rendering, ray-tracing,

GPU, optimization.

1. INTRODUCTION

Constructive Solid Geometry (CSG) is a technique for combining

simple 3D primitives to create a new complicated object using the

Boolean operations union, intersection, and subtraction. The (sets

of) 3D primitives involved in each operation and the sequence of

operations create a so-called CSG tree. Thus, CSG tree is a binary

tree with leaf nodes as primitives and interior nodes as Boolean

operations. CSG is often used as a pivotal modeling approach in

CAD/CAM/CAE applications. CSG representations are concise,

always valid (define a solid object or the empty set), and easily

parameterized and edited. Finally, CSG provides high geometry

accuracy and often has no alternatives in such areas as physical

simulations (e.g., Monte Carlo transport for electrons, photons,

protons and ions). However, actual computation of the geometry

resulting from a CSG expression can be a slow process, which is

often unacceptable for interactive scene editing.

The main contribution of this paper is the novel GPU-optimized

CSG ray tracing algorithm, as well as the efficient procedure for

transforming an input CSG tree into spatially coherent and well-

balanced form. Our solution achieves high frame rates, can be

easily integrated into existing ray tracing engines and, as we show

in our experiments, outperforms previously available approaches.

2. PREVIOUS WORK

In general, there are two basic approaches to render a CSG model.

The first one is based on pre-computing of the boundary of a CSG

shape which can be tessellated and rendered using conventional

graphics methods. Because evaluation of boundary is extremely

expensive, these algorithms are mainly limited to static models

and do not allow interactive scene editing. The second approach

involves so-called image-based algorithms which generate just an

image of CSG model without computation of full geometry. Most

of these algorithms are designed for graphics hardware and based

on multi-pass, view-specific techniques making extensive use of

depth and stencil buffers. Here, the widely used algorithms are

Goldfeather algorithm [1, 2] and Sequenced Convex Subtraction

(SCS) [3]. The first one handles arbitrary CSG primitives, while

the second one supports convex primitives only. However, none

of these algorithms is capable of rendering CSG shapes directly.

Instead, an input CSG tree should be transformed into a sum-of-

products (or normal) form that can lead to exponential growth of

CSG operations and limits scalability and performance.

An alternative approach has been proposed in the later work [4].

The so-called Blister algorithm does not require conversion to the

sum-of-products form. Instead, an input Boolean combination is

converted into the Blist form containing each primitive only once.

To render a CSG shape, Blister uses peeling technique to produce

layers of the entire primitive set in depth order. Each peel is then

classified according to its CSG expression and then combined.

The above algorithms can achieve interactivity for CSG shapes of

medium complexity (thousands of primitives). However, all these

techniques use many rendering passes, and hence are bandwidth

limited. For many years, GPU memory bandwidth grows slower

than compute performance, resulting in a data transfer bottleneck

for many GPU accelerated applications. A completely different

approach was adopted in [5]. Here, an attempt has been made to

distribute calculations between a CPU and a GPU by performing

decomposition of input CSG tree on a CPU and ray tracing of its

simple parts on a GPU. This approach has proven to be effective

for simple CSG models (hundreds of primitives). Whereas more

complex shapes require subdivision into a larger number of parts

which leads to a huge number of draw calls and low performance.

Ray tracing of entire CSG tree is possible and used quite widely.

The ray is broken into intervals corresponding to the intersected

primitives. After that the Boolean operations are applied to find

out the first interval that is actually inside the CSG object. Since

each ray must be intersected with all primitives, this approach can

be extremely expensive. Moreover, it is poorly suited for a GPU,

because it is impossible to store a huge number of intervals for

thousands of rays simultaneously. However, the implementation

of interval CSG ray tracer on a GPU is still possible as shown in

[6]. Anyway, this approach tends to be limited by the number of

primitives and maximum depth complexity.

A quite different approach based on single-hit ray tracing (finding

only nearest intersection) has been proposed in [7]. The algorithm

uses a concept of state machine to calculate the intersection with a

CSG model. The only limitation is that the basic CSG primitives

should be closed (can be relaxed to handle orientable surfaces),

non-self-intersecting and have consistently oriented normals. This

elegant idea makes it quite easy to integrate CSG rendering into

existing ray tracing systems. Although the paper does not contain

any practical experiments, it seems to be a good basis for a GPU

algorithm and inspired our work. In the remainder of this section,

we outline the main steps of Kensler’s algorithm and point out

some inaccuracies in the original state tables.

26-я Международная конференция (GraphiCon2016), Россия, Нижний Новгород, 19–23 сентября 2016 г. 26th
International Conference (GraphiCon2016), Russia, Nizhny Novgorod, September 19–23, 2016

490 D. Bogolepov et al.

Let T be a CSG tree, and let L(T) and R(T) be the left and right

sub-tree of T. To find the nearest intersection of ray R and tree T

the ray is shot at sub-trees L(T) and R(T), and then the intersection

with the each sub-tree is classified as one of entering, exiting or

missing it. Based upon the combination of these classifications,

one of several actions is taken: (a) returning a hit; (b) returning a

miss; (c) changing the starting point of ray R for one of sub-trees

and then shooting this ray again, classifying next intersection. In

latter case, the state machine enters a new loop.

Table 1: State tables for Boolean operations.

 Enter R(T) Exit R(T) Miss R(T)

Enter L(T) RetLIfCloser
RetRIfCloser

RetRIfCloser
LoopL

RetL

Exit L(T) RetLIfCloser
LoopR

LoopLIfCloser
LoopRIfCloser

RetL

Miss L(T) RetR RetR Miss

 Enter R(T) Exit R(T) Miss R(T)

Enter L(T) LoopLIfCloser
LoopRIfCloser

RetLIfCloser
LoopR

Miss

Exit L(T)
RetRIfCloser

LoopL
RetLIfCloser
RetRIfCloser

Miss

Miss L(T) Miss Miss Miss

\ Enter R(T) Exit R(T) Miss R(T)

Enter L(T) RetLIfCloser
LoopR

LoopLIfCloser
LoopRIfCloser

RetL

Exit L(T)
RetLIfCloser
RetRIfCloser
FlipNormR

RetRIfCloser
FlipNormR

LoopL
RetL

Miss L(T) Miss Miss Miss

Kensler proposed 3 state tables (one for each Boolean operation)

needed to ray trace a CSG object. Here, we provide refined state

tables allowing correct visualization in all cases (see Table 1). The

pseudo code of this algorithm can be written as follow:

function INTERSECT(node, min) { CSG node to traverse and ray offset }
 minL ← min
 minR ← min
 (tL,NL) ← INTERSECT(L(node), minL) { intersect ray with sub-trees }
 (tR,NR) ← INTERSECT(R(node), minR)
 hitL ← CLASSIFYHIT(tL, NL) { classify intersection points }

 hitR ← CLASSIFYHIT(tR, NR) { hit types: enter, exit, miss }
 while true do
 actions ← StateTable[hitL, hitR]
 if Miss ∈ actions then
 return miss
 if RetL ∈ actions or (RetLIfCloser ∈ actions and tL ≤ tR) then
 return (tL, NL)
 if RetR ∈ actions or (RetRIfCloser ∈ actions and tR ≤ tL) then
 if FlipNormR ∈ actions then
 NR ← −NR
 return (tR, NR)
 else
 if LoopL ∈ actions or (LoopLIfCloser ∈ actions and tL ≤ tR) then
 minL ← tL
 (tL, NL) ← INTERSECT(L(node), minL)
 hitL ← CLASSIFYHIT(tL, NL)
 else
 if LoopR ∈ actions or (LoopRIfCloser ∈ actions and tR ≤ tL) then
 minR ← tR
 (tR, NR) ← INTERSECT(R(node), minR)
 hitR ← CLASSIFYHIT(tR, NR)
 else
 return miss

Figure 1: Recursive CSG intersection.

For more details, please refer to original paper [7]. The Kensler’s

algorithm is very poorly suited for a GPU, because it is recursive

and requires too large stack frame. However, its conversion to an

iterative form is not a trivial task demanding the identification of

general patterns and relationships in the whole set of execution

paths.

3. GPU-OPTIMIZED CSG RAY TRACING

As the main contribution, we propose an iterative version of CSG

ray tracing algorithm that uses minimal state and is optimized for

massively parallel architectures with limited per thread resources.

For that purpose, we define a high-level state machine managing

the execution of initial algorithm in an iterative way (Figure 2).

Figure 2: High-level pushdown automata.

The use of state tables for each Boolean operation is based on pre-

computed intersections with children of current CSG tree node.

Thus, all the states of high-level pushdown automata are divided

into two classes: (a) finding intersections with the child objects,

and (b) applying state tables for classification of hit points found.

The first class includes the states GotoLft (find intersection with

the left child), GotoRgh (find intersection with the right child), and

SaveLft (store intersection parameters with the left child and then

execute GotoRgh). The last state is needed because the processing

of the right sub-tree overwrites intersection parameters for the left

sub-tree, and thus they should be stored for later use. The second

class includes the following states: Classify (apply state tables),

LoadLft (load intersection parameters for the left sub-tree and then

execute Classify), LoadRgh (load intersection parameters for the

right sub-tree and then execute Classify). The pseudocode of the

transition between high-level states is shown in Figure 3.

tstart ← 0
node ← V { virtual root containing actual root at the left child }
(tL, NL) ← invalid
(tR, NR) ← invalid
PUSHSTATE(Classify)
state ← GotoLft { current state of high-level pushdown automata }
while true do
 if state ≡ SaveLft then
 PUSHHIT(tL, NL)
 tstart ← POPTIME()
 state ← GotoRgh
 if state ∈ {GotoLft, GotoRgh} then
 GOTO(tstart)
 if state ∈ {LoadLft, LoadRgh, Classify} then
 CLASSIFY()

Figure 3: Iterative CSG traversal.

Instead of direct handling of primitive normals we store just the

indices of CSG primitives (NL and NR variables). This modification

decreases the size of stack frame and provides more information at

the algorithm output (e.g. primitive indices can be used to access

materials). The GOTO() function (Figure 4) calculates intersection

points with left and right sub-trees, while the CLASSIFY() function

(Figure 5) performs classification of the points found in order to

detect the first hit with the actual CSG boundary. Note, that GOTO()

function enables the use of bounding boxes of CSG tree nodes to

improve the performance of intersection subroutine [8].

function GOTO(tstart)

 if state ≡ GotoLft then

 node ← L(node)

 else

 node ← R(node)

GPU-optimized Ray-tracing for Constructive Solid Geometry Scenes 491

 if node is Operation then { node is Boolean operation }

 traverseL ← INTERSECTBOX(L(node))

 traverseR ← INTERSECTBOX(R(node))

 if traverseL and L(node) is Primitive then { L is CSG primitive }

 (tL, NL) ← INTERSECT(L(node), tstart)
 traverseL ← FALSE
 if traverseR and R(node) is Primitive then { R is CSG primitive }

 (tR, NR) ← INTERSECT(R(node), tstart)
 traverseR ← FALSE
 if traverseL or traverseR then { traverse at least one child }

 if !traverseL then

 PUSHHIT(tL, L(node))

 PUSHSTATE(LoadLft)

 else if !traverseR then

 PUSHHIT(tR, R(node))

 PUSHSTATE(LoadRgh)

 else

 PUSHTIME(tstart)

 PUSHSTATE(LoadLft)

 PUSHSTATE(SaveLft)

 if traverseL then
 state ← GotoLft

 else
 state ← GotoRgh

 else
 state ← Classify
 else { node is CSG primitive }

 if state ≡ GotoLft then

 (tL, NL) = INTERSECT(node, tstart)

 else

 (tR, NR) = INTERSECT(node, tstart)
 state ← Compute
 GOTOPARENT(node)

Figure 4: GOTO() function to find intersections with sub-trees.

function CLASSIFY()

 if state ∈ {LoadLft, LoadRgh} then

 if state ≡ LoadLft then

 (tL, NL) ← POPHIT()

 else

 (tR, NR) ← POPHIT()

 hitL ← CLASSIFYHIT(tL, NL)

 hitR ← CLASSIFYHIT(tR, NR)

 actions ← StateTable[hitL, hitR]

 if RetL ∈ actions or

 (RetLIfCloser ∈ actions and tL ≤ tR) then

 (tR, NR) ← (tL, NL)

 state ← POPSTATE()

 GOTOPARENT(node)

 if RetR ∈ actions or

 (RetRIfCloser ∈ actions and tR < tL) then

 if FlipNormR ∈ actions then
 NR ← −NR
 (tL, NL) ← (tR, NR)

 state ← POPSTATE()

 GOTOPARENT(node)

 else if LoopL ∈ actions or

 (LoopLIfCloser ∈ actions and tL ≤ tR) then
 tstart ← tL
 PUSHHIT(tR, NR)

 PUSHSTATE(LoadRgh)
 state ← GotoLft
 else if LoopR ∈ actions or

 (LoopRIfCloser ∈ actions and tR < tL) then
 tstart ← tR
 PUSHHIT(tL, NL)

 PUSHSTATE(LoadLft)
 state ← GotoRgh

 else
 tR ← invalid
 state ← POPSTATE()

Figure 5: CLASSIFY() function to classify intersections found.

In our GLSL implementation, we use only two stacks for storing

the algorithm state. The first one is used for intersection times and

primitives indices (PUSHTIME and PUSHHIT functions), while the second

one is used for states (PUSHSTATE function).

4. OPTIMIZING CSG TREES

The rendering performance of our algorithm greatly depends on

the topology of input CSG tree. Unfortunately, the creation of a

balanced, unbalanced, or a perfect CSG tree depends generally on

the user. Thus, it is necessary to transform an input tree T into

equivalent well-balanced tree T of roughly the same size as T.

We propose an efficient pipeline for optimizing CSG trees that

runs in four phases: (a) converting the input tree T to a positive

form; (b) spatial optimization of tree topology; (c) minimizing

height of the tree; (d) reverse converting to a general form giving

the output tree T.

4.1 Converting to positive form

A CSG tree T is represented in the positive form using only  and

 operations and negation of leaf nodes. This conversion can be

easily done by applying the following transformations in a pre-

order traversal:

yxyx  , yxyx  , yxyx \

4.2 Spatial optimization

For optimal performance, the tightness bounds of CSG tree nodes

should be used which minimize the probability of ray intersection.

For this purpose, we propose the spatial optimization procedure

allowing minimizing the bounds of CSG nodes. Let us define

treelet as the collection of immediate descendants of the given

CSG tree node. Our optimization procedure is based on repeatedly

selecting of treelets consisting of nodes with the same Boolean

operation and their subsequent restructuring (in positive form, we

are free to change the order of treelet’s sub-nodes). Treelets are

constructed during a pre-order traversal of CSG tree by expanding

child nodes that have the same Boolean operation as the treelet

root. The resulting treelet is reorganized by means of surface area

heuristic widely used for building accelerating structures, such as

k-d tree or Bounding Volume Hierarchy (BVH). Thereafter, the

traversal of CSG tree continues with the outer treelet’s nodes.

The restructuring of each extracted treelet is based on the same

binned technique as is used for construction of BVH [9]. Binned

BVH is built over all treelet leaves bounded by axis-aligned boxes

pre-computed for the input tree T given in general form (without

negations).

4.3 Minimizing tree height

To reduce the traversal stack size we desire a well-balanced CSG

tree. Our next optimization stage is aimed to address this problem

by minimizing the height of CSG tree using local transformations.

At this stage, two types of treelets are considered. For brevity, let

us call the child node with a greater height (in the whole tree T)

the heavy child.

Figure 6: Optimizations of first (a) and second (b) type.

The first transformation is applied to treelets which have the same

Boolean operation ( or ) in root node N1 and its heavy child N2

a b

492 D. Bogolepov et al.

(see Figure 6a). Let T3 be a heavy child of the node N2. Obviously

if h(T3) > h(T1) + 1 it is beneficial to transpose these subtrees. As

with the rotations for binary search trees these result in elevating

subtree T3 and demoting subtree T1. Thus, the height of the treelet,

rooted at N1, is decreased by one.

The second transformation is applied when the operations in the

root node N1, its heavy child N2 and heavy grandchild N3 are

interleaved (“−−” or “−−”). Let us consider the case of

−− sequence (see Figure 6b). The treelet rooted at N1 can be

described by expression: T1  (T2  T3  T4) = (T1  T2)  (T1 

T3  T4). Let T4 be a heavy child of the node N3. Therefore, if

h(T4) > h(T1) + 2, then the normalization of the treelet N1 allows

reducing its height by 1. However, this operation also results in

duplication of the sub-tree T1. For this reason, we perform such

transformations only when optimizations of the first type have

been exhausted.

5. RESULTS AND DISCUSSION

For this study, all results have been measured using an NVIDIA

GeForce GTX 680, AMD Radeon HD 7870 and Intel HD 4000

GPUs in a 1280 × 720 window. The first scene (a) shows a CSG

model of the city at different scales (see Figure 7). In all cases the

whole city is modeled as a single CSG tree containing 3385, 343K

and 987K primitives correspondingly. Scene (b) demonstrates the

case with huge number of depth layers that is rather challenging

for other approaches. Number of holes in cheese model increases

from 500 to 8000, and then to 32000 resulting in a larger number

of overlapped primitives and greater depth complexity. The third

scene (c) contains a large number of satellites, each of which is

represented by a separate CSG tree. Our geometry representation

is based Geometry Description Markup Language (GDML) that

supports such basic primitives as parallelepiped, hexagonal prism,

second-order algebraic surfaces (like sphere, cylinder, cone), and

some high-order surfaces (torus). All the primitives are handled in

GLSL directly (without tessellation).

Figure 7: Test scene: City (a), Cheese (b), and Satellites (c).

For each GPU results are represented by two columns (see Table

2): left one corresponds to FPS without spatial optimization (−),

and the right one was obtained with enabled spatial optimization

(+). N/A markers show where the performance clearly cannot be

considered to be interactive.

Table 2: Measured performance (in FPS) and comparison

with OpenSG and IceSL [6].

Scene # Prims
Tree

Depth

Intel 4000 Radeon 7870 GTX 680

− + − + − + OpenSG IceSL

City

3385 14 7 7.5 50 60 51 57

343K 22 1.8 4.5 6.5 17 8 22

987K 24 2.3 7 6.7 18 8.3 21

Cheese

502 10 1.2 31 7.5 193 11.2 211 21 1.1

1002 11 0.4 17 4.6 110 5.8 128 6.5 0.3

8002 14 N/A 6.5 0.5 28 0.5 32 N/A N/A

32002 17 N/A 0.5 N/A 3.7 N/A 4 N/A N/A

Satellites
87.5K 7 5 9 26 67 29 65

1120K 7 2.8 4.5 8 18 7 15

The main factors affecting performance are the screen resolution

(as for over ray-tracing methods) and the number of primitives,

but it does not affect performance directly. We can easily render

scene (a) with more than 1 million CSG primitives while having

trouble with 32K primitives in scene (b). This is due to extensive

overlaps between the primitives in cheese model which force the

algorithm to iterate over the CSG subtrees intensively. However,

even in this stress scenario, we can show near linear performance

degradation depending on the primitive number and outperform

alternative solutions.

6. CONCLUSION

We proposed a GPU-optimized CSG rendering approach, which is

fast and accurate, and allows achieving real-time frame rates at

full-screen resolutions. Unlike alternative algorithms our solution

renders the model in single pass and does not impose restrictions

on the complexity of CSG tree being limited only by the amount

of GPU memory. We found that our implementation scales well

with increasing GPU clock speed, while the memory clock does

not affect performance. Thus, we can expect further performance

increase on next-gen GPUs.

7. REFERENCES

[1] Goldfeather, J., Monar, S., Turk, G., Fuchs, H. Near real-

time CSG rendering using tree normalization and geometric

pruning // IEEE CG&A. 1989. P. 20-28.

[2] Kirsch, F., Döllner, J. Rendering techniques for hardware-

accelerated image-based CSG // Journal of WSCG. 2004.

Vol. 12, No. 1-3, P. 269-276.

[3] Stewart, N., Leach, G., Sabu J. Linear-time CSG rendering

of intersected convex objects // Journal of WSCG. 2002. Vol.

10, No. 1-2, P. 437-444.

[4] Hable, J., Rossignac, J. Blister: GPU-based rendering of

Boolean combinations of free-form triangulated shapes //

ACM Trans. on Graph. 2005. Vol. 24, No. 3, P. 1024-1031.

[5] Romeiro, F., Velho, L., De Figueiredo L. H. Hardware-

assisted rendering of CSG models // SIBGRAPI'06. 2006. P.

139-146.

[6] Lefebvre, S., Grand-Est, L. I. N. IceSL: A GPU accelerated

CSG modeller and slicer // AEFA'13. 2013.

[7] Kensler A. Ray tracing CSG objects using single hit

intersections (http://xrt.wdfiles.com/local--files/doc%3Acsg/CSG.pdf).

[8] Cameron, S. Efficient bounds in constructive solid geometry

// IEEE CG&A. 1991. P. 68-74.

[9] Wald, I. On fast construction of SAH-based bounding

volume hierarchies // IEEE Symposium on Interactive Ray

Tracing. 2007. P. 33-40.

a

b

c

GPU-optimized Ray-tracing for Constructive Solid Geometry Scenes 493

http://xrt.wdfiles.com/local--files/doc%3Acsg/CSG.pdf

