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Abstract 

This paper deals with the study of fitting a set of unorganized 

points to a polygonal surface. This problem usually arises when 

comparing two data sets specified in two different co-ordinate 

systems. The developed approach uses Principal Component 

Analysis (PCA) and Stretched grid method (SGM) to substitute a 

non-linear problem solution with several linear steps. The squared 

distance (SD) is a general criterion to control the process of 

convergence of a set of points to a target surface. The described 

numerical experiment concerns the remote measurement of a 

large-scale aerial in the form of a frame with a parabolic shape. 

The experiment shows that the fitting process of a point cloud to a 

target surface converges in several linear steps. The method is 

applicable to the geometry measurement of large-scale objects 

remotely. 

Keywords: Non-contact measurement, point clouds comparison, 

computer visualization  

1. INTRODUCTION

The geometry measurement of large-scale objects in the industry 

is very acute. This problem reduces to the comparison a 3D point 

set given by remote measurement to a continuous theoretical 

surface. We can classify it as a point-to-surface (PTS) problem. 

Usually one can treat such comparison as superposition that 

requires not less than three reference points. However, reference 

points can be either unknown or meaningless for some classes of 

product. In this case, the problem comes to a comparison of two 

geometric objects in 3D space according to a given criterion of 

optimality. That is, the unknown parameters of the 3D 

transformation such as translation and rotation are a subject to be 

found according to objects optimal matching. 

All the algorithms of two 3D sets comparison can be classified in 

the following way: 

1. ICP- algorithm (iterative closest point algorithm). The basis of

ICP-algorithm is the assumption that two objects have common 

area where they coincide well enough. It means that in the 

common, for both of them, area each point of one object has a 

corresponding point of another object. The basics of the ICP-

algorithm were described in work [1]. The main disadvantages of 

ICP-algorithm are the following:  

- the computational complexity of the closest points finding is 

O(mN1 N2) where m - number of iterations, N1- number of the first 

object points, N2 - number of the second object points [2]; 

- strong dependence on the given initial approximation; 

- strong dependence on the density of point clouds; 

- the method requires the existence of a large overlap region 

where the points of one cloud correspond to the points of another 

cloud.  

Recently, many variants of the original ICP approach have been 

proposed, the most important of which are the following:  

- work [3] describes the genetic algorithm of finding the most 

successful initial approximation which is input data to ICP-

algorithm;  

- work [4] is also dedicated to the ICP-algorithm modification 

based on the k-d trees, which allows minimization of the 

computational complexity to O(mN1 logN2);  

- in works [5], [6] algorithms to improve the accuracy and 

reliability of the ICP-algorithm by imposing certain restrictions of 

the input data are proposed. 

2. Methods based on curvature maps.

This class of methods requires the knowledge of the curvature of 

the surface given by the point cloud. The algorithm was described 

in work [7]. The disadvantage of this method is a strong 

dependence on the point cloud density because it affects the 

accuracy of the curvature calculation. 

3. Other methods.

Work [8] describes the algorithm that does not require the 

approach of initial data. This algorithm can use a free-form 

surface; however, it has a very low speed. 

The authors of work [9] improved the method of the steepest 

descent optimization. The disadvantage of the approach is the 

quadratic computational complexity. 

Delaunay triangulation algorithm in combination with Nelder-

Mead method are described in works [4] and [10]. The algorithm 

assumes that the surfaces are single-valued. This algorithm as 

well as ICP-algorithm depends on the given initial approximation. 

The authors of [11] proposed the algorithm based on the least 

square method. The algorithm requirement is that point clouds 

have a significant overlap area. 

In work [12] the algorithm based on step by step geometric 

transformation of the point cloud is formulated. The disadvantage 

of this algorithm is the lack of mathematical rigorousness. 

Nowadays there are two trends in the surface superpose problem 

solution. The first group of methods limits the initial data 

therefore they work fast. The second group is more general but 

has a large computational complexity. Hence, we need more 

algorithms for the comparison of two data sets. 

2. INITIAL BACKGROUND

The initial assumption is that there are two sets: P:Pi(xi,yi,zi) - 

point cloud and Σ a continuous 3D surface (see Fig.1) specified 

on a bounded domain DR2. It is required to find such Ωopt

transformation amongst all possible Ω 3D transformations so that 

the set Ωopt(P) could be closest to the surface Σ according to the 

given distance function ρ. That is 
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where ρ(Σ,X) - the distance function from the point X to the 

surface Σ. 

Figure 1:  Two data sets 

Once the two sets are specified with respect to two different 

origins we need such transformation of one of them as ‘rigid 

body’ so that to ensure the satisfaction of the eqn (1). Such 3D 

transformation is defined by six parameters: the components of 

the translation vector Δxc,Δyc,Δzc (here C is the geometry center 

of relocatable set) and three rotation angles φx, φy, φz,. The 

numerical solution of this non-linear problem by usual 

optimization approaches is very complicated for various reasons, 

namely: 

 In general, it is difficult to fit two sets even approximately.

Hence, it is impossible to find the initial values of

Δxc,Δyc,Δzc, φx, φy, φz. It forces us to take them with

maximum values that makes the computing process slow

down.

 The surface cannot be simply single coherent that increases

the number of constraints in the optimization problem.

 Often the surface does not have analytical representation, so

its derivatives are unknown or do not exist. That makes it

impossible to use efficient numerical algorithms based on the

function derivatives.

 The computation time depends on value N (the number of

points in P set). Therefore, the computing process becomes

very slow when the dense of the point set grows significantly.

We propose a new approach that consists of two stages and the 

first of them is Principal Component Analysis (PCA). We apply 

PCA to so-called ‘rough fit’ that actually is the approximate 

initial fit of two sets. The second stage is the precise fit based on 

Stretched grid method (SGM) that allows accurate fitting of two 

sets according to minimum SD criterion in 1-4 linear steps. We 

demonstrate this approach based on parabolic aerial where Σ –

analytic aerial surface, P – source point cloud obtained by 

measuring with standard electronic tacheometer «Trimble-M3» 

[13]. 

3. ROUGH FIT

PCA is often used to map data on a new orthonormal basis in the 

direction of the largest variance [14]. The largest eigenvector of 

the covariance matrix always points to the direction of the largest 

variance of the data. 

In our case, the first data set is the point cloud and the second is 

the continuous surface, therefore, we should represent the surface 

by another point cloud as well. Further procedure follows the 

scheme described in work [15]. If the covariance matrix of two 

point clouds differs from the identity matrix, a rough fit can be 

obtained by simply aligning the eigenvectors of their covariance 

matrices. This alignment is obtained in the following way: first, 

the two point clouds are centered such that the origins of their 

final bases coincide. The centering of the point cloud simply 

corresponds to subtracting the centroid coordinates from each of 

the point coordinates. The centroid of the point cloud corresponds 

to the average coordinate and is thus obtained by dividing the sum 

of all point-coordinates by the number of points in the point 

cloud. Since the rough fit based on PCA simply aligns the 

directions in which the point clouds vary the most, the second 

step consists of calculating the covariance matrix of each point 

cloud. The covariance matrix is an orthogonal 3 × 3 matrix, the 

diagonal values of which represent the variances while the off-

diagonal values represent the covariance. Third, the eigenvectors 

of both covariance matrices are calculated. The largest 

eigenvector is a vector in the direction of the largest variance of 

the 3D point cloud, and therefore represents the point cloud’s 

rotation. Further, let A be the covariance matrix, let v be an 

eigenvector of this matrix, and let λ be the corresponding 

eigenvalue. The problem of eigenvalues decomposition is then 

defined as 

Ax = λx, (2) 

and further reduces to 

x(A − λI) = 0. (3) 

It is clear that (3) only has a non-zero solution if A − λI is 

singular, and consequently if its determinant equals to zero 

det(A − λI) = 0. (4) 

The eigenvalues can simply be obtained by solving (4), whereas 

the corresponding eigenvectors are obtained by substituting the 

eigenvalues into (2). Once the eigenvectors are known for each 

point cloud, the fit is achieved by aligning these vectors. Then, let 

us assume that matrix TΣ represents the transformation that would 

align the largest eigenvector of the target point cloud related to 

the surface Σ with the X-axis. Now, let us suppose that matrix TP 

represent the transformation that would align the largest 

eigenvector of the source point cloud P with the X-axis as well. 

Finally, we can align the source point cloud with the target point 

cloud easily if we take into account coincidence of both principal 

component systems (Xpr, Ypr, Zpr) of source and target point 

clouds (see Fig.2). 

Figure 2:  Two data sets in common principal component system 
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Unfortunately, we cannot always determine the direction of 

collinear principal component axes uniquely with PCA (see 

Fig.2). Therefore, we correct their directions in this issue 

manually by rotating the source point cloud about axes Xpr, Ypr, 

Zpr consequently to meet the minimum of SD criterion. In our 

sample, we rotate the point cloud about Xpr axis (see Fig. 3.) 

Figure 3: The rough fit of two data sets in common principal 

system 

The rough fit cannot obtain real minimum solution according to 

the SD criterion therefore the next stage is the precise fit. 

4. PRECISE FIT

The precise fit stage is based on SGM. SGM described in work 

[16] is a numerical technique for finding approximate solutions of 

various mathematical and engineering problems that can be 

related to an elastic grid behavior. In our case, we apply SGM to 

drag in the source point cloud as a ‘rigid body’ to the target 

surface by the set of elastic springs. Each elastic spring for our 

cloud connects the nearest neighbor point on the target surface qi 

of each point pi in the source point cloud (see Fig. 4). We find the 

neighbor point on the target surface by normal projection of the 

source point onto the target surface. This approach is similar to 

ICP point-to-point technique described in [15] but is much easier 

and has another physical meaning. 

Figure 4: The scheme of the precise fit 

The aim of the precise fit is to find functions Δxc,Δyc,Δzc, φx, φy, 

φz that obtain the minimum to exp (1). If we apply classical 

motion equation, we should further resolve non-linear equation 

system consisted of transcendental functions. Fortunately, we can 

take into account linear dependence of displacement of points on 

the cloud rotation as a rigid body. 

Taking into account the ‘rigid body’ rotation of point cloud due to 

precise fit, we can write the displacement of an arbitrary point pi 

as follows 
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where Δxi,Δyi,Δzi – displacements of an arbitrary point i; 

         Δxi,Δyi,Δzi – displacements of point j; 

          Δxc,Δyc,Δzc - displacements of the point cloud centroid. 

We can calculate the components of the normalized matrix B for 

an arbitrary point of the cloud as a rotation matrix about the unit 

vector ),,( wvus


 at the angle θ (see Fig. 4) by the following 

expressions 
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Here 
j

i

L
L

F  , where Li, Lj – vectors to points i and j 

respectively from the point cloud centroid. 

Due to exp (5) we can calculate the displacement of each point in 

the point cloud if we know the displacement of single point 

number j only. 

The further step is to write the expression for the potential energy 

of entire connecting lines between the cloud points and the 

springs including (Fig. 4) that takes the following form 





n

m

mRD
1

2 ,  (7) 

where n - total number of springs, 

Rm - the length of spring number m,

D - an arbitrary constant (D = 1 in our case). 

Then, let us suppose that co-ordinate vector {X} of all the points 

of the cloud is associated with a final cloud position, when the 

source cloud is fit to the target surface and the vector {X}' is 

associated with an initial point cloud position. Thus, vector {X} 

will look in the following way 

},{}{}{ / XXX   (8) 

where {X} - vector of the co-ordinate increment of entire points. 

To determine vector {X} we should derive function (9) by 

incrementing vector {X} with form (10) taken into account, i.e. 
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where k – number of current point, 

t - number of current co-ordinate. 

After transformations using exps (5), (7), (8), (9) and keeping all 

lengths Lij constant (see Fig.4) we can obtain the following linear 

equation system 6×6 

K·Δx = Q, (10) 

where vector Δx has only 6 unknown components to be found, 

namely Δxj, Δyj, Δzj, Δxc, Δyc, Δzc.  

Using exp (5) we can calculate the displacements of entire points 

of the cloud. The final fit of two sets is presented in Fig.5. 

Figure 5: The final fit of two data sets. 

5. CONCLUSION

In spite of linear nature of the precise fit, the process needs some 

iterations to converge because of some disparity of two sets after 

rough fit. Table 1 shows the matching error of SD against the 

number of iterations.  

Table 1: The process convergence 

Iterations Relative Error of SD,% Time, sec 

2 4.045 4.64 

8 1.5257 18.30 

17 0.0984 46.72 

20 0.0107 55.00 

29 0.0064 85.55 

As we can see, the process meets minimum SD criterion very 

quickly. The final error (about 0.01%) means that the fit precision 

is about 1-2 mm for the aerial with about 30m of overall 

dimension. 
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