Автоматизация информационных технологий создания цифровых графических документов со слабо формализованным описанием объектов

Ю.Г. Васин, Л.И. Лебедев

Центр информатики и интеллектуальных информационных технологий Института информационных технологий, математики и механики Нижегородского государственного университета им. Н.И. Лобачевского 603005, Россия, Нижний Новгород, ул. Ульянова, 10, ЦИИТ ИИТММ ННГУ. E-mail: ya.vasinyuri@yandex.ru, lebedev@pmk.unn.ru

Аннотация

В работе описываются методы повышения эффективности технологии создания цифровых графических документов (ГД) на основе двухкритериальных алгоритмов распознавания с самообучением, способов их распараллеливания, а также автоматизации интерактивных процедур редактирования и присвоения кодов классификации автоматически построенным эталонам. Полученные результаты демонстрируется на примере оцифровки изображения реальных документов.

1. ВВЕДЕНИЕ

В настоящее время актуальной остается проблема создания электронных архивов большеформатных графических документов (топографических и морских навигационных карт, конструкторской документации, чертежей, схем и др.). При этом возникает необходимость перевода с графических изображений и бумажных носителей в цифровой вид, создание цифровых графических документов (ГД) в терминах соответствующей проблемной области. Данный процесс является крайне трудоемким. С целью автоматизации технологии ввода ГД в последние годы предлагается использование методов распознавания с учителем. Однако многие большеформатные графические документы выполнены ручным способом со слабо формализованным начертанием объектов. В связи с этим крайне сложно сформировать набор эталонов для систем распознавания с учителем, что приводит к низкому уровню распознавания объектов исходного изображения.

2. ПОСТАНОВКА ЗАДАЧИ

В работе с целью дальнейшего повышения эффективности технологий создания цифровых ГД предлагается использование разработанных методов распознавания с самообучением и в результате замены базовых наборов эталонов, сформированным в результате обучения с учителем по множеству исходных документов, совокупностью эталонов, порожденных объектами данного ГД.

3. МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ

Распознавание объектов на основе вычисления оценок сходства предлагается осуществлять корреляционно- экстремальным контурным методом (КЭКМ) [1]. В основу КЭКМ положено вычисление оценки близости ε_m по

описаниям w = (x, y) объекта O и w = (x, y) эталона E, которые задаются посредством векторной (контурной) модели представления информации:

$$\varepsilon_m = Dw - R^2 / Dw ,$$

 $\stackrel{e}{Dw}$, Dw - дисперсии эталона и объекта соответственно, а R - величина, вычисленная по значениям смешанных корреляционных моментов:

$$R^2 = Sn^2 + Cs^2,$$

$$Sn = cov(x, y) - cov(y, x),$$

$$e \qquad e$$

$$Cs = cov(x, x) + cov(y, y).$$

Оценка близости ε_m корректна только для согласованных описаний контуров. В общем случае она зависит от положения начальной точки Q описания контура объекта $\varepsilon_m(Q)$. Задача нахождения согласованных описаний сводится к решению оптимизационной задачи вида

$$\varepsilon_{\min} = \min_{Q \in O} \varepsilon_m(Q)$$

Для решения этой задачи применяются эффективные по быстродействию метод относительных смещений и метод парабол [2-4]. В результате, КЭКМ инвариантен не только относительно ортогональных преобразований и масштабирования, но также и к циклическим описаниям контуров, что обеспечивает наиболее полный состав объектов в классах эквивалентностей. Методы распознавания на базе КЭКМ в режиме самообучения с автоматическим пополнением эталонов на основе описаний неопознанных объектов были реализованы в технологиях создания цифровых графических документов [4]. Таким образом, после работы КЭКМ в режиме самообучения на выходе будут сформированы два файла: файл эталонов и файл для параметрического описания распознанных объектов, представляющий совокупность записей постоянной длины. Каждая запись включает в себя данные, необходимые для восстановления объекта, в том числе ссылку на эталон с которым получено наибольшее значение оценки сходства. Эффективность предлагаемой технологии во многом определяется быстродействием алгоритма распознавания КЭКМ с самообучением. Один из основных подходов увеличения быстродействия заключается в распараллеливании потоков данных. Известно, что сложность вычисления оценки сходства с использованием КЭКМ пропорциональна числу точек в описаниях эталона и объекта. В связи с этим для обеспечения равномерной загрузки ядер очередной эталон, получаемый при распознавании с самообучением, необходимо отнести к потоку, в котором суммарное количество точек в описаниях эталонов этой группы является наименьшим.

В целях повышения качества распознавания объектов на базе КЭКМ реализована возможность использования дополнительного критерия оценки сходства. Поэтому, при распознавании объектов на базе КЭКМ предусмотрена возможность использования дополнительной оценки δ

544 Васин Ю. Г., Лебедев Л. И,

для расстояния Хаусдорфа d_H , вычисляемого по описаниям контуров исходного O и восстановленного объекта

$$d_{H} = \max \left\{ \sup_{w \in O} \inf_{\tilde{w} \in \tilde{O}} \left\| w - \tilde{w} \right\|, \sup_{\tilde{w} \in \tilde{O}} \inf_{w \in O} \left\| w - \tilde{w} \right\| \right\}$$

Метод нахождения величины d предусматривает вычисление этого расстояния по вспомогательным описаниям исходного и восстановленного объектов, для которых была получена минимальная оценка близости ε min том случае, если значение $\varepsilon \leq \lambda$, то есть когда оценка min близости ε не будет превосходить заданный порог λ . Если в этом случае $\ d_H > \delta$, то рассматриваемый объект вносится в список эталонов. Так как в этот момент на всех ядрах процессора вычисления завершены, то алгоритм нахождения величины d в целях увеличения быстро- Hдействия также распараллеливается. Суть алгоритма распараллеливания здесь состоит в следующем. Вычисляются расстояния r между узловыми точками $\hat{w}_i \in O$ и

 $\stackrel{e}{\hat{w}}_{\stackrel{.}{i}}\in \stackrel{.}{O}$, $\,i=1,2,...,n$, вспомогательных описаний контуров объекта и эталона $\begin{array}{c} r_i = \left\| \hat{w}_i = \hat{w}_i \right\| \end{array}$. Если $\begin{array}{c} e \\ i \end{array} > \delta$, то оба от-

резка, прилежащих к l-тому узлу, заносятся в соответствующий набор данных. Далее, аналогичным образом, полученного набора отрезков. В совокупности распарал-

осуществляется распараллеливание на уровне потоков для леливание алгоритма распознавания позволяет при удвоении числа ядер увеличить быстродействие до 1.8 раз.

В результате решения задачи распознавания с самообучением все объекты разбиваются на классы эквивалентностей. Далее требуется классам эквивалентностей присвоить соответствующий идентификатор [7]. В соответствии с предлагаемой технологией присвоение идентификаторов осуществляется в интерактивном режиме при визуализации и просмотре эталонов. С целью оптимизации временных затрат на этапе интерактивной идентификации совокупности выделенных эталонов были разработаны алгоритмы логической фильтрации, позволяющие автоматически осуществлять исключение эталонов, явно не относящихся к классам распознаваемых объектов (шумовые точки, объекты, не удовлетворяющие заданным критериям по размерам и др.). Для множества оставшихся эталонов разработаны методы их кластеризации на подмножества в целях одновременного присвоения меток всем элементам, входящих в полученное подмножество. Для решения кластер- анализа эталоны представлялись в при-

знаковом пространстве. В качестве компонент c_i^{\dagger} признакового пространства R_n были использованы оценки

близости эталонов E^{J} с базовым эталоном B при различных циклических заданиях начальной точки описания контура $E^j: c_i^j = \varepsilon_m(E^j, B, s_i = i \cdot \Delta S)$, $\Delta S = S^b / n$, S^b длина базового контура. Получение этих оценок близости не требует дополнительных вычислительных затрат, так

как они в обязательном порядке находятся при согласова-

нии описаний в методе относительных смещений [5,6]. Для обеспечения инвариантности относительно положения на контуре начальной точки описания в качестве первого признака пространства R_n путем циклических сдвигов выбирается компонента с наименьшим значением оценки близости. Само решение задачи кластер-анализа в пространстве $\stackrel{*}{R_n}$ осуществлялось с использование метрик Евклида (χ) и Чебышева (γ) . Для построения очередного кластера выбирался непомеченный эталон с наибольшим числом распознанных по нему объектов. Описание этого эталона в признаковом пространстве $\stackrel{\leftarrow}{R_n}$ берется в качестве центра кластера. Элементами кластера первого уровня будут эталоны из числа непомеченных, описание которых в пространстве R_n^* с учетом визуальной идентификации удовлетворяет условиям: $\left\| \begin{matrix} k* & j \\ c & -c \end{matrix} \right\| < \chi \quad , \quad \left| \begin{matrix} k* & j \\ c & -c \end{matrix} \right| < \gamma \quad , \quad \forall i \in \overline{1,n} \; . \;$ Далее по описаниям в пространстве R_n эталонов кластера первого

уровня формируются новые центры множеств и определяются эталоны второго уровня, удовлетворяющие тем же условиям и которые не являются элементами множеств, как предыдущего уровня, так и уже ранее сформированных множеств рассматриваемого уровня. Этот процесс заканчивается, если на текущем уровне не будет выделено элементов кластера следующего уровня. Таким образом, кластер будет состоять из совокупности множеств всех уровней и представлять собой планарный граф с древовидной структурой без петель и самопересечений. Поро-

 k^* k^* говые величины χ и γ приближенно можно оценить следующим образом. Рассмотрим согласованные с $b \ k^* \ j$ базовым эталоном $E \$ описания эталонов $E \$ и $E \$ (следует отметить, что описания всех эталонов центрированы). Преобразуем описание контура E^J в соответствии с параметрами его оптимального наложения на контур E^* . Учитывая инвариантность оценок близости к ОПМ, k^* j величины c и c после этих преобразований не изменятся. Полученные описания эталонов будем рассматривать как точки в некотором пространстве (2), в котором по осям откладываются значения компонент точек контуров. Тогда $\begin{matrix} k^* & j \\ c_i & \text{и} & c_i \end{matrix}$ это длины сторон треугольника, образованного этими точками. Отсюда, их разность меньше третьей стороны, приближенно являющейся k^* j k^* j оценкой близости $\varepsilon_m(E^-,E^-)$ эталонов E^- и E^- . Для эталонов, принадлежащих одному классу, максимальное

допустимое значение равное $\varepsilon_m(\stackrel{k^*}{E},\stackrel{j}{E})$ и будет величиной γ . Далее, если допустить, что величины $\left| egin{array}{c} k^* & J \\ c_i & -c_i \end{array} \right|$ на отрезке $\left| \ 0, \gamma \ \right|$ подчиняются некоторому k*

закону распределения, то значение порога χ также легко оценить.

В результате для интерактивной идентификации нужно предъявлять не отдельные эталоны, а кластеры, которых в разы меньше, что позволяет существенно снизить временные затраты на создание цифровых документов.

Для формирования сложных объектов (надписи, отметки глубин, структурированные линейные объекты и т. д.), состоящих из последовательности распознанных дискретных и линейных объектов, реализован режим автоматической сборки таких элементов содержания документа [7]. Еще одной возможностью снижения временных затрат является автоматический анализ большеформатных объектов. Часть этих объектов представляют собой составные объекты, образованные в результате прилипания дискретных объектов к линейным. В этом случае решение задачи разделения слипшихся линейных и дискретных объектов осуществляется на основе перехода к сегментно-узловой модели или применения методов распознавания составных объектов на базе КЭКМ [9-11].

4. ЗАКЛЮЧЕНИЕ

Выбор эталонов на основе методов распознавания КЭКМ с самообучением позволило существенно повысить достоверность распознавания, а методы автоматизации повысить эффективность интерактивных процедур. В итоге при оцифровке планшетов гидрографической съемки в зависимости от качества документа было получено снижение временных затрат в 10-20 раз.

Работа выполнена при поддержке Российского Научного Фонда, проект № 16-11-00068.

Список литературы

- Васин Ю.Г., Лебедев Л.И., Пучкова О.В. Контурные корреляционно-экстремальные методы обнаружения и совмещения объектов видеоинформации./Автоматизация обработки сложной графической информации: Межвуз. темат. сб. науч. тр./Под ред. Ю.Г. Васина.- Горьков. гос. ун-т, Горький, 1987. С.97-112.
- 2. Васин Ю.Г., Лебедев Л.И. Задача нахождения согласованных описаний в корреляционно-экстремальных контурных методах распознавания. //Математические методы распознавания образов (ММРО-15): 15-ая Всеросс. конф.: Сборник докладов. / М.: Изд-во ООО «МАКС Пресс», 2011. С.342-345.
- Vasin Yu.G., Lebedev L.I. The problem of obtaining coherent contour descriptions in the calculation of similarity estimates. //8th Open German-Russian Workshop "Pattern recognition and image understanding" (OGRW-8-2011): Workshop Proceedings. 2011. P. 324-327.
- Vasin Yu.G., Lebedev L.I. An effective format for representing graphic information // Pattern Recognition and Image Analysis, 2012, Vol. 22, No. 2, pp. 393–398. © Pleiades Publishing, Ltd., 2012.
- Lebedev L.I., Vasin Yu.G. Optimization of the representation structure and complexity in the development of an intelligent format for graphic images information // Pattern Recognition and Image Analysis, 2014, Vol. 24, No. 4, pp. 530–534. © Pleiades Publishing, Ltd., 2014.
- Лебедев Л.И. Корреляционно экстремальные контурные методы распознавания. Теоретические основы: Учебное пособие./ Нижний Новгород, Изд-во Нижегородского государственного университета, 2013. 113 с. ISBN 978-5-91326-308-7.

- Vasin Yu.G, Lebedev L.I. Automation methods for technologies to produce digital graphic documents with weakly formalized description of objects // The 11-th International Conference "Pattern recognition and image analysis: new information technologies" (PRIA-11-2013). September 23-28, 2013. Conference proceedings, Samara: IPSI RAS, 2013. Vol. I. P.342-344.
- 8. Васин Ю.Г., Лебедев Л.И., Морозов В.А. Модификация двухуровневого алгоритма распознавания последовательностей графических изображений. //Математические методы распознавания образов (ММРО-10): 10-ая Всеросс. конф.: Тез.докл. / М.: Издво «АЛЕВ-В», 2001. С.176-179.
- Васин Ю.Г., Лебедев Л.И. Распознавание составных объектов изображения на базе структурного и корреляционно-экстремальных методов. //Математические методы распознавания образов (ММРО-13): 13-ая Всеросс. конф.: Сборник докладов. / М.: Изд-во ООО «МАКС Пресс», 2007. С.285-288.
- Vasin Yu.G, Gromov V.P. Structural analysis of raster images // The 11-th International Conference "Pattern recognition and image analysis: new information technologies" (PRIA-11-2013). September 23-28, 2013. Conference proceedings, Samara: IPSI RAS, 2013. Vol. I. P.338-341.