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Computer-aided early diagnosis of Alzheimer’s Disease (AD) and its prodromal form, Mild Cognitive Impairment
(MCI), has been the subject of extensive research in recent years. Some recent studies have shown promising results in the
AD and MCI determination using structural and functional Magnetic Resonance Imaging (sMRI, fMRI), Positron Emission
Tomography (PET) and Diffusion Tensor Imaging (DTI) modalities.

This paper reviews the major trends in automatic classification methods such as feature extraction based methods as well
as deep learning approaches in medical image analysis applied to the field of Alzheimer's Disease diagnostics. Different
fusion methodologies to combine heterogeneous image modalities to improve classification scores are also considered.
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1. Introduction

Alzheimer’s Disease (AD) is the most common
type of dementia. Dementia refers to diseases that are
characterized by a loss of memory or other cognitive
impairments, and is caused by nerve cells degenera-
tion in the brain.

Structural Magnetic Resonance Imaging (sMRI)
and amyloid-Positron Emission Tomography
(amyloid-PET) have been added in the newly pro-
posed criteria for the predementia phase of the dis-
ease [1]. Other modalities as diffusion MRI (DTI)
and functional MRI measured at rest (fMRI) are not
yet used in these definitions. However, AD subjects
also present modification on these two modalities as
well [2, 3].

Since AD-related neurodegeneration is associated
with gray matter atrophy, most previous works were
focused on volumetric approaches that are based on
comparison of anatomical brain structures assuming
one-to-one correspondence between subjects. The
wide-spread voxel-based morphometry (VBM) [4] is
an automatic volumetric method for studying the dif-
ferences in local concentrations of white and gray mat-
ter and comparison of brain structures of the subjects
to test with reference normal control (NC) brains.
Tensor-based morphometry (TBM) [5] was proposed
to identify local structural changes from the gradients
of deformations fields when matching tested brain and
the reference healthy NC. Object-based morphome-
try (OBM) [6] was introduced for shape analysis of
anatomical structures.

In general, the automatic classification on brain
images of different modalities can be applied to the
whole brain [7–10], or performed using the domain
knowledge on specific regions of interest (ROIs).
Concerning AD, hippocampal structural changes are
strongly correlated to the severity of disease [11]. The

changes in such regions are considered as AD biomark-
ers.

Advances in computer vision and content-based
image retrieval research make penetrate the so-called
feature-based methods into classification approaches
for (AD) detection[12–14]. The reason for this is in
inter-subject variability, which is difficult to handle in
VBM. On the contrary, the quantity of local features
which can be extracted form the brain scans together
with captured particularities of the image signal al-
lowed an efficient classification with lower computa-
tional workload [14]. The obtained feature vectors
are classified using machine learning algorithms.

Lately with the development of neural networks
the feature-based approach became less popular and
is gradually replaced with convolutional neural net-
works of different architectures.

The goal of the present paper is to give a substan-
tial overview of these recent trends in classification of
different brain imaging modalities in the problem of
computer-aided diagnostics of Alzheimer disease and
its prodromal stage, i.e. mild cognition impairment
(MCI).

The paper is organized as follows. In Section 2
we will overview the main feature-based approaches
and in Section 3 we will compare different approaches
based on using neural networks. Particular attention
will be paid in each case to fusion of modalities. All
reviewed approaches are compared in Table 1. Section
4 concludes our review.

2. Feature-based classification

Feature-based classification can be performed on
images of different modalities. Here we compare and
discuss the usage of sMRI, DTI and sMRI fusion with
other modalities.
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sMRI In previous joint work [13], Ahmed et al. com-
puted local features on sMRI scans in hippocampus
and posterior cingulate cortex (PCC) structures of the
brain. The originality of the work consisted in the us-
age of Gauss-Laguerre Circular Harmonic Functions
(GL-CHFs) instead of traditional SIFT and SURF de-
scriptors [15, 16]. CHFs perform image decomposition
on the orthonormal functional basis, which allows cap-
turing local directions of the image signal and inter-
mediate frequencies. It is similar to Fourier decompo-
sition, but is more appropriate in case of smooth con-
trasts of MRI modality. For each projection of each
ROI a signature vector was calculated using a bag-of-
visual-words model (BoVWM) with a low-dimensional
dictionary with 300 clusters. This led to the total
signature length of 1800 per image. Principal compo-
nent analysis was then applied to reduce the signature
length to 278. The signatures then were classified us-
ing SVM with RBF kernel and 10-fold cross-validation
and reached the accuracy level of 0.838, 0.695, 0.621
for AD/NC, NC/MCI and AD/MCI binary classifica-
tion problems accordingly.

DTI This modality is probably the most recent to
be used for AD classification tasks. Both Mean Diffu-
sivity (MD) and Fractional Anisotropy (FA) maps are
being explored for this purpose. In [17] the authors
acquired DTI images of 15 AD patients, 15 MCI pa-
tients, and 15 healthy volunteers (NC). After the pre-
processing steps the FA map, which is an indicator of
brain connectivity, was calculated. The authors con-
sidered 41 Brodmann areas, calculated the connectiv-
ity matrices for this areas and generated a connectiv-
ity graph with corresponding 41 nodes. Two nodes
corresponding to Brodmann areas are marked with
an edge if there is at least one fiber connecting them.
Then the graph is described with the vector of fea-
tures, calculated for each node and characterizing the
connectivity of the node neighborhood. Totally each
patient is characterized by 451 feature. The vectors
were reduced to the size of 430 and 110 using ANOVA-
based feature selection approach. All vectors were
classified with the ensemble of classifiers (Logistic re-
gression, Random Forest, Gaussian native Bayes, 1-
nearest neighbor, SVM) using 5-fold cross-validation.
The authors have achieved the 0.8, 0.833, 0.7 accuracy
levels for AD/NC, AD/MCI and MCI/NC accordingly
on their custom database.

Another methodology is described in [18]. The au-
thors use the fractional anisotropy (FA) and mode
of anisotropy (MO) values of DTI scans of 50 pa-
tients from the LONI Image Data Archive (https:
//ida.loni.usc.edu). After non-linear registra-
tion to the standard FA map, the authors calculate
the skeleton of the mean FA image as well as MO and
perform the second step of registration. After that a
Relief feature algorithm is performed on all voxels of
the image, relevant ones are used for 10-cross valida-

tion training the SVM classifier with RBF kernel. The
declared accuracy is 0.986 and 0.977 for classification
AD/MCI, AD/NC accordingly.

Data fusion In [19] authors use a fusion of sMRI and
PET images together with canonical correlation anal-
ysis (CCA). After preprocessing and aligning images
of 2 modalities given the covariance data of sMRI and
PET image they find the projection matrices by max-
imizing the correlation between projected features.
Here X1 ∈ Rd×n, X2 ∈ Rd×n

are the d-dimentional sMRI and PET features of n
samples,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
is a covariance matrix,

(B1, B2) = arg max
(B1,B2)

BT
1 Σ12B2√

BT
1 Σ11B1

√
BT

2 Σ22B2

are the projection matrices and
Z1 = BT

1 X1, Z2 = BT
2 X2

are the resulting projections. The authors con-
struct the united data representation for each patient:

F = [X1;X2;Z1;Z2] ∈ R4d×n

and calculate SIFT descriptors. This descriptors
are used to form the BoVW model, the classification
is performed using SVM. The achieved accuracy is
0.969, 0.866 and for classifying AD/NC and MCI/NC
accordingly.

Ahmed et al. in [14] demonstrated the efficiency of
using the amount of cerebrospinal fluid (CSF) in the
hippocampal area calculated by an adaptive Otsu’s
thresholding method as an additional feature for AD
diagnostics. In [12] they further improved the re-
sult of [13] by combining visual features derived from
sMRI and DTI MD maps with a multiple kernel learn-
ing scheme (MKL). Similar to [13] they selected hip-
pocampus ROIs on the axial, saggital and coronal
projections and described them using Gauss-Laguerre
Harmonic Functions (GL-CHFs). These features are
clustered into 250 and 150 clusters for sMRI and MD
DTI modalities and encoded using the BoVW model.
Thus they got three sets of features: BoVW histogram
for sMRI, BoVW histogram for MD DTI and CSF
features. The obtained vectors are classified using
MKL approach based on SVM. The achieved accu-
racy is 0.902, 0.794, 0.766 for AD/NC, MCI/NC and
AD/MCI classification.

3. Classification with neural networks

Deep neural networks (DNN) and specifically con-
volutional NN have become popular now due to their
good generalization capacity and available GPU Hard-
ware needed for parameter optimization. Their main
drawback for AD classification is the small amount
of available training data and also a low resolution
of input images when the ROIs are considered. This
problem can be eliminated in several ways: i) by using
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shallow networks with relatively small number of neu-
rons, ii) applying transfer learning from an existing
trained network or iii) pretraining some of the layers
of the network.

Forming shallow networks kills the idea of deep
learning to recognize structures at different scales and
reduces the generalization ability of the network, so
this methodology has not often been used since re-
cently, despite it has shown decent results [20].

One way to enlarge the dataset is to use domain-
dependent data augmentation. In case of medical im-
ages this often comes down to mirror flipping, small-
magnitude translations and weak gaussian blurring
[20].

Autoencoders The idea of pretraining some of the
layers in the network is easily implemented with au-
toencodedrs (AE) or in image processing tasks more
often with convolutional autoencoders (CAE). Au-
toencoder consists of an input layer, hidden layer and
an output layer, where the input and output layers
have the same number of units (Fig.1). Given the in-
put vector x ∈ Rn autoencoder maps it to the hidden
representation h:

h = f(Wx+ b),

where W ∈ Rp×n, b ∈ Rp, n is the number of in-
put units, p is the number of hidden units, f is an
encoder function e.g. sigmoid. After that the hidden
representation h is mapped back to x̃ ∈ Rn:

x̂ = g(Ŵh+ b̂),

where Ŵ ∈ Rn×p, b ∈ Rn, g is the identity func-
tion. The weights and biases are found by gradient
methods to minimize the cost function:

J(W, b) =
1

N

N∑
i=1

1

2
||x̂(i) − x(i)||2,

whereN is the number of inputs.

Figure 1. Architecture of autoencoder

The overcompleted hidden layer is used to make
the autoencoder extracting features.

Introducing spatial constraints with convolutions
easily alignes the model of autoencoder to the con-
volutional autoencoder (CAE) and 3D convolutional
autoencoder (3D-CAE).

In [8] authors added a sparsity constraint to pre-
vent hidden layers of autoencoder from learning the
identity function. They use 3D convolutions on the
both sMRI and PET modalities and train the autoen-
coder on random 5×5×5 image patches. Maxpooling,
fully-connected and softmax layers were applied after
autoencoding. Mixing data of sMRI and PET modali-
ties is performed at FC layer. The use of autoencoders
allowed the authors to increase the classification accu-
racy by 4-6% and leads to the level of 0.91 for AD/NC
classification.

Nearly the same approach with sparse 3D autoen-
coder was used in [9] to classify sMRI images into 3
categories (AD/MCI/NC). The proposed network ar-
chitecture is shown in Fig.2. Larger obtained dataset
and more accurate network parameters configuration
allowed the authors to reach the accuracy of 0.954,
0.868 and 0.921 in AD/NC, AD/MCI and NC/MCI
determination accordingly.

Figure 2. Typical CNN architecture with CAE
pretraining.

The authors of [7] extended the idea of applying
autoencoders. They proposed using three stacked 3D
convolutional autoencoders instead of only one. Two
fully-connected layers before the softmax were used
for a progressive dimension reduction. The usage of
stacked 3D CAE allowed the authors to achieve one
of the best accuracy level: 0.993, 1, 0.942 for AD/NC,
AD/MCI and MCI/NC classification on sMRI images
only.

Transfer Learning Transfer learning is considered as
the transfer of knowledge from one learned task to a
new task in machine learning. In the context of neural
networks, it is transferring learned features of a pre-
trained network to a new problem. Glozman and Liba
in [21] used the widely known AlexNet [22], pretrained
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on the ImageNet benchmark and fine-tuned the last
3 fully-connected layers (Fig.3). The main problem
of transfer learning is the necessity to transform the
available data so that it corresponds to the network in-
put. In [21] the authors created several 3-channel 2D
images from the 3D input of sMRI and PET images by
choosing central and nearby slices from axial, coronal
and saggital projections. They then interpolated the
slices to the size 227× 227 compatible with AlexNet.
Naturally one network was used for each projection.
To augment the source data only mirror flipping was
applied. This transfer learning based approach al-
lowed the authors to reach 0.665 and 0.488 accuracy
on 2-way (AD/NC) and 3-way (AD/MCI/NC) classi-
fications accordingly on a subset of ADNI database.

Figure 3. AlexNet architecture. Includes 5 convolutional
layers and 3 fully-connected layers.

2D convolutional neural networks In [23], [24], [25]
the authors compared the classification of structural
and functional MRI images using the LeNet-5 archi-
tecture by transforming the source 3D and 4D (in case
of MRI) data to a batch of 2D images. LeNet-5 con-
sists of two convolutional and two fully-connected lay-
ers. The reached level of accuracy for 2-class classi-
fication (AD/NC) was 0.988 for sMRI and 0.999 for
fMRI images.

Billones et al. proposed in [10] to use a modified
16-layered VGG network [26] to classify sMRI images.
The key feature of this paper was to use 2D convo-
lutional network to classify each slice of source data
separately. The authors selected 20 central slices for
each image and the final score was calculated as the
output of the last softmax layer of the network. The
accuracy of each slice among all images was also stud-
ied, 17 slices were selected as representative, 3 slices
(the first and two last slices in the image sequence)
demonstrated lower level of accuracy. All in all au-
thors reached a very good accuracy level: 0.983, 0.939,
0.917 for AD/NC, AD/MCI and MCI/NC classifica-
tion.

In [20] Aderghal et al. used 3 central slices in
each projection of a hippocampal ROI. The netwoerk
architecture represented three 2D convolutional net-
works (one network per projection) that were joined in
the last fully-connected layer. The reached accuracy

for AD/NC, AD/MCI and MCI/NC classification is
0.914, 0.695 and 0.656 accordingly.

Other networks A new approach was proposed in
[27]. Shi et al. used a deep polinomial network to ana-
lyze sMRI and PET images. It differes from classical
CNNs by non-linearity of operations. The building
block of the architecture is shown in Fig.4. Here, ni

represents a layer of nodes, (+) means a layer of nodes
that calculate the weighted sum n(z) =

∑
i wizi,

all other nodes compute n(z1, z2) =
∑

i wi(z1)i(z2)i.
These blocks were combined into a deep network, the
input layers were fed with the average intensity of the
93 ROIs selected on sMRI and PET brain images.

Figure 4. An example of a DPN module.

This architecture allowed the authors to reach very
good level of accuracy: 0.971, 0.872 for AD/NC,
MCI/NC classification. The used algorithm also
demonstrated a good level of accuracy (0.789) for
MCI-C/MCI-NC determination, where MCI-C stands
for MCI patients that lately converted to AD and
MCI-NC stands for MCI patient that were not con-
verted.

In [28] the authors compared the residual and
plain 3D convolutional neural networks for sMRI im-
age classification. Here the authors examined the
four binary classification tasks AD/LMCI/EMCI/NC,
where LMCI and EMCI stands for the late and early
MCI stages accordingly. Both networks demonstrated
nearly the same performance level, the best figures be-
ing obtained for AD/NC classification 0.79-0.8.

In [29] Suk et al. try to combine two different
methods: sparse regression and convolutional neural
networks. The authors got different sparse represen-
tations of the 93 ROIs of the sMRI data by varying
the sparse control parameter, which allowed them to
produce different sets of selected features. Each repre-
sentation is a vector, so the result of generating mul-
tiple representations can be treated as a matrix. This
matrix is then fed to the convolutional neural network
with 2 convolutional layers and 2 fully-connected lay-
ers. This approach led to the classification accuracy
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	 Algorithm Methodology Modalities Content Data (size) Accuracy
AD/NC AD/MCI MCI/NC

Magnin et al. [6] Volumetric sMRI Full brain custom (38) 0.945 - -
Ahmed et al. [13] Feature-based sMRI 2 ROIs ADNI (509) 0.838 0.695 0.621
Ebadi et al. [17] Feature-based DTI Full brain custom (34) 0.8 0.833 0.7
Lee et al. [18] Feature-based DTI Full brain LONI (141) 0.977 0977 -
Lei et al. [19] Feature-based sMRI + PET Full brain ADNI (398) 0.969 - 0.866
Ahmed et al. [14] Feature-based sMRI + DTI 1 ROI ADNI (203) 0.902 0.766 0.794
Vu et al. [8] NN-based sMRI + PET Full brain ADNI (203) 0.91 - -
Payan and Montana [9] NN-based sMRI Full brain ADNI (2265) 0.993 1 0.942
Glozman and Liba [21] NN-based sMRI + PET Full brain ADNI (1370) 0.665 - -
Sarraf et al. [23] NN-based sMRI, fMRI Full brain ADNI (302) 0.988, 0.999 - -
Billones et al. [10] NN-based sMRI Full brain ADNI (900) 0.983 0.939 0.917
Aderghal et al. [20] NN-based sMRI 1 ROI ADNI (815) 0.914 0.695 0.656
Shi et al. [27] NN-based sMRI + PET Full brain ADNI (202) 0.971 - 0.872
Korolev et al. [28] NN-based sMRI Full brain ADNI (231) 0.79-0.8 - -
Suk et al. [29] NN-based sMRI 93 ROIs ADNI (805) 0.903 - 0.742

Table 1. Comparison of different classification methods.

level of 0.903 and 0.742 for AD/NC and MCI/NC clas-
sification.

4. Discussion and Conclusion

As it can be seen from the Table 1 relatively
new feature-based and neural network-based meth-
ods demonstrate very good level of performance com-
pared to the classical volumetric methods that are per-
formed manually by medical experts.

It should be mentioned, that the direct compar-
ison of the reviewed algorithms for Alzheimer’s dis-
ease diagnostics is impossible. The proposed results
were obtained using images from several databases
and in different quantities (see Table 1). Moreover
different classification problems were challenged: al-
though most papers focus on the 3-class AD/MCI/NC
binary classification, some of them consider only 2-
class AD/NC classification [8, 23–25] and even 4-class
AD/eMCI/lMCI/NC classification [28]. Also [10, 29]
deserve special attention as the authors try to solve
a problem in demand of prediction of Alzheimer con-
verters.

This review allows the community of researchers
working on AD classification problems to position
their approach and design more efficient classification
schemes.
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