Realistic Graphics

GraphiCon 2017

A concept for database oriented 3D graphics engine infrastructure

V.A. Frolov!2, V.S. Sangarov?, V.A. Galaktionov'
1Keldysh Institute of Applied Mathematics (Russian Academy of Sciences), Moscow, Russia;
2Moscow State University, Moscow, Russia;
3Gubkin russian state university of oil and gas, Moscow, Russia

Integration layer between digital content creation software (DCCS) and rendering software in a form of specialized
database is proposed in this paper. In our approach, we focus on providing fast 3D-scene updates, ability to work with large
digital assets (not fitting into memory), importing and exporting arbitrary parameters, serialization, convenient debugging
tools and distributed rendering. Such database can be used as means to integrate different rendering engines with DCCS

and also to transfer data between different DCCS.

Keywords: software architecture, rendering, process interoperation.

1. Introduction

Fast growth of computing power in the past 20 years
gave rise to new research and industrial fields. Data
volumes have grown from megabytes to gigabytes and
performance has raised from megaflops to teraflops. But
it’s not only about the numbers, more important is how
it influences interaction with the user. As technology
matures, it generally becomes more accessible and friendly
for the users. This also holds true for digital content
creation. Since rendering is inevitably tied with such
applications, rendering engines’ developers need to answer
the challenges created by the need to improve user
experience. In our work we aim to answer these challenges
with a database oriented approach to rendering engine
infrastructure design.

1.1. Modern digital
requirements

content creation process

1. Interactivity of digital content creation process
(WYSIWYG paradigm). Working in the interactive and
non-interactive modes can be thought of as editing a
text document in MS Word and in IATEX. The latter has
certain advantages, however, creating a document in
MS Word is faster.

2. No restrictions on memory. The whole 3D scene may
not fit into RAM of a single computer, but content
creation process and rendering (at the very least in
preview mode) should not have delays [1].

3. Parameters variability and extensibility of both DCCS
and rendering systems. Different projects may require
different computer graphics algorithms to be used (like
for hair and fur). It’s quite common for post-production
studios to create their own rendering plugins both for
DCCS and renderers [2].

4. Serialization, import and export. Artists reuse variety
of digital assets from their previous works or content
repositories and therefore it’s necessary to import and
export everything. Moreover, in the visual effects and
animation industry pipeline content needs to be passed
between different software back and forth [3, 4].

5. Debugging and testing. While working on complex
projects it is almost inevitable for some errors and bugs
to appear. Some of these errors appear only for a certain
order of actions and thus can be hard to reproduce.

To isolate and fix these errors, it’s important to track
changes in the scene.

6. Distributed rendering [4] and explicit transfer of
changes. Changes made in the DCCS should be visible
as the same for every other computer participating in
rendering. It’s unacceptable to send the whole scene
over the network, we need to track and transfer changes
only.

2. Previous work

2.1. Wavefront OBJ, Filmbox FBX and others

The most basic way to transfer digital content between
applications is to use binary or text files with strictly
defined format. For example, simple but limited OBJ file
format [5] or more complex and flexible FBX [6]. In the
case of strictly defined file formats there’s always a trade-
off between flexibility and complexity. The problem is that
it’s impossible to predict what features DCCS or rendering
engine developers will need in the future - what parameters
would materials have, will there be new forms of geometry
and light sources, etc.

2.2. OpenCollada and Alembic

OpenCollada is a step forward compared to rigid file
formats. The main difference is that OpenCollada defines
only the standard for storing objects (called «<COLLADA)
in XML [7] and allows developers to add new parameters.
It’s possible since OpenCollada is an open source project
and uses XML descriptions both for DCCS and rendering
engine. More recent format with similar ideology is
Alembic, presented on SIGGRAPH in 2011 [8]. The main
focus of Alembic is to efficiently store complex animation
- key framed or a product of any kind of simulation (fluid,
cloth, etc.). However, support for materials in Alembic is
still not available [9], so one needs to use additional file
formats like MaterialX [10] to transfer such data.

2.3. Limitations of «just files»

In the best case, only 2 or 3 of the requirements
for modern digital content creation can be met with
common file formats (most likely parameters variability,
serialization and debugging/testing). To move forward
there needs to be a way for working with large scenes,
tracking and logging changes, and, most importantly,

28

24-28 September 2017, Perm, Russia

GraphiCon 2017

Peanucmuunas epaghuxa

prompt transfer of changes between different software
(without rewriting the whole file).

2.4. DRAM and DLL plugins

The opposite of using files for the integration purpose
is to transfer data structures through memory or shared
memory via serialization as in [11]. Dynamic Loading
Library (DLL) plugins closely integrated with DCCS
are worth mentioning specifically. These plugins usually
directly call virtual functions of DCCS and thus don’t
import anything. For example, rendering plugin can call
a function called Shade for material evaluation. While
possessing all of the advantages of being closely integrated,
such approach limits the performance, scalability and does
not guarantee correctness. You can never be sure that
function Shade is implemented sufficiently effective and
that it does what render developers want it to do. Moreover,
this type of interaction between rendering system and
DCCS strongly depends on DCCS in question [12] and that
in turn complicates debugging process and integration into
any other DCCS.

Both of these approaches, that we just described,
are simple and usually provide sufficient performance.
However, they can meet only two requirements -
interactivity and parameters’ variability.

2.5. SDB

The comprehensive explanation of some of the
requirements we listed in the beginning of our paper can
be found in [4]. Relying on their experience, authors of
[4] conclude that rendering engine should exist in the
form of an API to the Scene Database (SDB) and describe
functionality of such database. The implementation was
not specified thus leaving an open space for future research.

2.6. USD

Universal Scene Description (USD) developed by Pixar
was revealed to the public in 2016 [3]. This technology was
primarily designed to address issues arising when different
artists work on digital content for a big project like an
animated feature film. USD assumes that digital content
is created by different people in different applications.

Basically, USD is represented by a set of files in a
JSON-like format which are organized together by the
means of references and compositions. For example, a
composition of a location scene and a scene with animated
character. This approach allows group of artists to work
efficiently and simultaneously on a film shot components
which are called layers and can be combined into a final
result or reused in other shots. The resulting hierarchy of
digital content created in various software allows tracking
the history of scene creation and making several versions
of the whole scene or it’s components. Also, by using
references and delayed loading USD makes it possible to
work with large scenes [3].

While USD satisfies a lot of requirements mentioned
in the beginning of this article, it’s difficult to use this
technology directly as an integration layer with rendering

system. The main problem is the absence of mechanism
for fast updates. USD does not use global identifiers for
objects and with every change one needs to recursively
check all of the file hierarchy. Moreover, the fact that any
file can be overwritten complicates the implementation
of distributed rendering, since some of the scene files on
different rendering nodes can have different versions.

2.7. Multiverse

Product called Multeverse being developed by J-Cube
[13] was initially designed to tackle the problem of loading
large scenes (alembic files in particular) and working with
them in Autodesk Maya. To achieve this Multiverse takes
over the job of loading and otherwise accessing geometry
from the editor and implements delayed loading. The scene
data is streamed directly into the rendering system or
into OpenGL-based interactive viewport of the editor (i.e.
Maya).

The downside of this approach is that Multiverse
becomes too closely integrated with DCCS and
reimplements many of it’s functions. If system like
Multiverse is already integrated with a certain DCCS
then it could be used as integration layer between the
DCCS in question and a rendering system. Otherwise,
amount of work required to integrate Multiverse with a
DCCS can be tenfold more than any other integration
approach. Currently, Multiverse is available only for Maya
and Katana, and does not support 3Ds Max, Blender or any
of the CAD/CAM systems like Rhino or CATIA.

2.8. Bunsen

Project Bunsen being developed by The Foundry [14] is
a cloud-based software for assembling the final scene from
different digital assets which supports import from various
DCC and CAD/CAM software.

Bunsen provides users with the ability to process
imported data in the most suitable for the task at
hand way through a data processing node graph. The
nodes in this graph can perform variety of operations
such as converting splines into polygons, polygon mesh
optimization, materials assignment, applying level-of-
detail (LOD) techniques. If any of the assets used in a
particular scene is changed, user needs to re-export it.
Bunsen will recognize that one of the asset files has
changed and will reload it and execute all nodes dependent
on that asset again. The scene data is then prepared and
streamed into selected imaging software — interactive or
«offline» renderer.

Since Bunsen is in the stage of active development,
many details about it are not yet known to the public [14].
Nevertheless, the announcement of such system shows that
there’s a demand for novel integration solutions oriented on
user-friendliness and emerging technologies as we pointed
out in the begging of this paper.

3. Suggested approach

Our concept can be thought of as a hybrid of object
oriented database and a version control system, (like Git or

24-28 cenmsaobpa 2017, Ilepms, Poccus

29

Realistic Graphics

GraphiCon 2017

Subversion) with no-overwrite strategy of making changes.
We believe that between the Editor and the rendering
engine should exist special API. This API needs to fulfil
the requirements listed in the beginning of the article in a
simple and transparent manner (Fig. 1).

Fig. 1. Our intermediate layer (API) treats 3D content
creation like working with source code — make changes
and explicitly commit them.

A single state of the scene is a single XML file
called «state_001.xml» in some directory «myscene». This
file references several text or binary files in subdirectory
«datay (usually geometry and textures). The internal
XML structure is subdivided into «library» and «scenesy.
The library contains references to all external files in
subdirectory «data» and describes materials, lights and
camera. A single scene is just a list of geometry instances.
Instance is a reference to geometry object with custom
transformation matrix and material remap list (if one
should have instances with different materials).

Neither XML files, nor geometry or textures (thinking
of them as external files in subdirectory «data») should be
actually saved to the hard drive. When the Editor passes
them to the render, they are transferred through Operating
System (OS) shared memory (Fig. 2). We will discuss
this issue more specifically when we talk about «Virtual
Buffery.

H
i

i All objectsin XML i~ &

obj5 obj6

Fig. 2. New or changed objects are always placed in the
OS shared memory cache.

3.1. Making changes

A distinctive feature of the proposed technology is
explicit tracking and recording the changes. Our API has
3 methods for each object (geometry, material, light and
others) — Create, Open and Close (like files in OS).
Create method makes an empty object. The pair of Open
/ Close allows to change the object. When user code (from
the Editor side) calls Open for some existing object, the
copy of the object’s XML parameters will be automatically
created. Next, user can work with this copy, changing its

XML parameters in RAM via pugixml [15]. When the
work is finished C'lose method should be called. From this
point on, the new state of the object is considered as «ready
to commity, but it is still stored as a separate copy (Fig. 3,
right).

]

ey,
.....
.....
..................

Fig. 3. User of our API can only change an XML copy of
an object (right). After «commit» this copy will replace
original XML description (left) and form new state file.

We can say that if the current state of the object is stored
in the file «state_001.xml», then the new state of the object
is stored in a separate file «change_001.xml» (Fig. 1). All
these files do not need to be saved to the hard drive — they
can be stored in RAM in some dynamic structures (used
by the pugixml library in our case). The user may change
any number of any objects (including changing one object
several times). The file «change_001.xml» will contain
only last changes for these objects. Thus it is important
to note that file «change_001.xml» will not contain any
information about objects that were not actually changed.

Finally, the Editor calls Commit to pass the new
scene state to the renderer engine. The C'ommit operation
creates file «state_002.xml» in which old objects from
«state_001.xml» are replaced by their copies from
«change_001.xml». It should be clarified that during the
execution of the Commit operation, only new, modified
objects and their XML nodes will be passed to the renderer
to update their states inside render engine. Thus, the new
render state will be consistent with file «state_002.xml»,
however, the state file itself is not analyzed. It should
be mentioned that it does not matter in which order user
changes objects. After Commit operation has been called,
the API will pass all changes to the render in a fixed, well-
known order. Thus the rendering engine developers may
rely on fixed and well-known sequence of calls from our
APL

3.2. Virtual Buffer

To handle big data (geometry and textures) we use a
concept of virtual append-buffer with infinite size. The
buffer can append linear data blocks to its end. But only
last NV Megabytes are put into RAM. The rest of the buffer
is flushed to a hard drive as a set of chunks — binary files
in data subdirectory (Fig. 2). It should be outlined that
any new or changed object is always appended to the end
of the buffer. This is due to the no-overwrite strategy. If
you need to change a texture placed in «chunk_036.biny,
you’ll have to create a copy of this texture and place it
into «chunk_037.bin». The XML description will change
the reference from 36 chunk to 37, but both chunks will
exist in the buffer «until the end of time». This way we can

30

24-28 September 2017, Perm, Russia

GraphiCon 2017

Peanucmuunas epaghuxa

be sure that most of the objects that user works with are
placed in RAM. For common execution scenario any object
that was flushed to a hard drive (in the green rectangle in
Fig. 2) may only be in 2 states inside renderer. First state:
this object has already been passed to the renderer and has
valid state inside of it. Second: the object will not be passed
to the renderer at all since it is not needed anymore (details
further).

3.3. Why no-overwrite

We use no-overwrite strategy due to support for
network rendering. Allowing to overwrite any file would
create a possibility that on one machine this file will have
an old state, and on the other a new one. No-overwrite
strategy guarantees this can never happen. If the texture
file is not on the local machine, it means that the file
has not been transferred to this machine yet (and then the
renderer waits for the transfer of this file), or it would not
be transferred, because the system has a new state for the
same texture. In the latter case, the renderer must go to the
next state of the scene and wait for the new file of the same
texture to be transferred and ignore the old one.

4. Results and discussion

The API is integrated with a freeware rendering system
Hydra Renderer and two DCC applications — 3ds Max and
Fabric Engine. The suggested concept of DCC application
and renderer integration meets all of the requirements
that we listed in the beginning of the paper. Among the
drawbacks of the proposed approach, one can note an
obvious overrun of disk memory caused by the need to
store complete copies of different versions of the same
object. Nevertheless, effective network transfer of such
copies is possible (for example, by using paged memory
for virtual buffer and COW [16] for each page) but wasn’t
considered by us.

It should be noted that in the proposed approach the
rollback to some previous system state in most cases
is equivalent to loading this state «from scratch», — a
complete analysis of some file «state_N.xml» and loading
most of the needed (i.e. we don’t have to scan the whole
virtual buffer and can load only necessary chunks) data for
geometry and textures from the hard drive.

5. Acknowledgments

This work is sponsored by RFBR 16-31-60048
«mol_a_dk» and 16-01-00552.

6. References

[1] Ingo Wald Andreas Dietrich and Phlipp Slusallek.
An Interactive Out-of-Core Rendering Framework
for Visualizing Massively Complex Models. //
Eurographics Symposium on Rendering (2004).

[2] Marsel Khadiyev. Ornatrix mentalRay shaders. //
third party plugin for mental ray for hairs.

[3] Pixar USD. URL: https://graphics.pixar.com/usd/
docs/index.html.

[4] Khodulev A.B., Kopylov E.A., Zdanov D.D.
Requirements to the Scene Data Base // Proc. 8th
International Conference on Computer Graphics and
Visualization, Moscow, 1998, p. 189-195.

[5S] Wavefront obj file format. URL: https:
//len.wikipedia.org/wiki/Wavefront .obj file.

[6] Autodesk FBX format. URL: https:/www.
autodesk.com/products/fbx/overview.

[7] OpenCollada. URL: http://www.opencollada.org.

[8] Siggraph 2011, Alembic talk.

[9] Alembic. URL: http://www.alembic.io/.

[10] MaterialX An XML standard for export and import
a shader graph. URL: http://www.materialx.org/.

[11] Hepssomn H.b., Henuco E.FO. O0bektHO-
OpPHEHTHpPOBaHHas WH(PACTPYKTypa CHCTEM
xommnbloTepHoil rpaduku // Graphi’Con 2007,
Poccusa, MI'Y urons 23-27, 2007, c. 289-292.

[12] Bapnamsua b.X., Bono6o#i A.T"., Illarmmpo JI.3. Ilo-
CTPOCHUE PEATTUCTUYHBIX H300paKeHU B CHCTEMaX
ABTOMATH3MPOBAHHOTO Npoektuposanus // ['padu-
xoH 2013, 16-20 centsdps 2013 rona, ¢.148-151.

[13] Multiverse. URL: http://multi-verse.io/.

[14] Adam Glick, George Matos. Scalable Enterprise
Visualization, GPU Technology Conference 2017.

[15] Arseny Kapoulkine. A light-weight C++ XML
processing library. URL: http://pugixml.org.

[16] Bovet, Daniel Pierre; Cesati, Marco. Understanding
the Linux Kernel. / O’Reilly Media, Inc. p. 295.
2002.

24-28 cenmsaobpa 2017, Ilepms, Poccus

31

https://graphics.pixar.com/usd/docs/index.html
https://graphics.pixar.com/usd/docs/index.html
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.autodesk.com/products/fbx/overview
https://www.autodesk.com/products/fbx/overview
http://www.opencollada.org
http://www.alembic.io/
http://www.materialx.org/
http://multi-verse.io/
http://pugixml.org

