
Realistic Graphics GraphiCon 2017

32 24–28 September 2017, Perm, Russia

Comparison of hierarchies for occlusion culling based on occlusion
queries

V.I. Gonakhchyan

pusheax@ispras.ru
Ivannikov Institute for System Programming of the RAS, Moscow, Russia

Efficient interactive rendering of large datasets still poses a problem. Widely used algorithm frustum culling is too conservative
and leaves a lot of hidden objects in view. Occlusion culling with hardware occlusion queries is an effective technique of culling of
hidden objects inside view. In the paper, we perform the comparative analysis of popular indexing techniques in conformity to
occlusion culling.

Keywords: Occlusion culling, occlusion query, opengl draw call.

1. Introduction
Occlusion culling algorithms remove occluded objects to

enhance frame buffer composition speed. In the paper, object is
defined as a mesh that can be rendered using one draw call.
Two categories of invisible objects are illustrated in fig. 1:
occluded objects and objects beyond camera frustum. Frustum
culling quickly discards objects beyond camera frustum but
leaves occluded objects inside the camera. We consider the
algorithm to find occluded objects. The goal of this paper is to
analyze how different hierarchies for scene organization affect
occlusion culling and rendering performance.

Occlusion culling algorithms are described in-depth in
seminal papers [2][5]. We are interested in online algorithms
based on hardware occlusion queries that are widespread today.

Some of the previous algorithms were implemented using
OpenGL 2 which is using the immediate rendering mode [10].
In immediate mode all of the geometry is sent each frame
resulting in CPU-GPU bandwidth bottleneck and driver
overhead caused by excessive number of commands in driver
queue. Display lists were used to compile multiple rendering
commands once and reduce driver overhead. OpenGL 3
introduced retained rendering mode and immediate mode
techniques such as display lists were deprecated and later
removed from specification. It raised the question of effective
use of object indexing techniques in modern OpenGL.
Previously developers had to worry about the amount of
geometry passed to GPU. Now developers have to think about
driver overhead and state changes as well [18]. In this paper, we
analyze performance considerations when using different
hierarchies in retained rendering mode.

Although Vulkan API is out of the scope of this paper, it
was shown that it gives a better multithreaded performance by
utilizing all of the cores of CPU for rendering [3]. It is still
based on the same hardware and using retained rendering mode
so all of the results in the paper stand.

Hardware occlusion query is GPU technique to find visible
faces of a polyhedron [6]. Visibility check stops when the first
visible face is found. Checking query result in the frame queries
were sent is a blocking function call and it causes CPU
starvation. Visibility query result is available without noticeable
delay in the next frame because by that time all draw calls
required for query execution were sent. So visibility
information in given frame is based on the previous frame.

Space coherency is a relationship between nodes in which
one node's visibility determines the visibility of other nodes.
For example, if building is invisible then objects inside building
are also invisible. Time coherency determines visibility in the
future by visibility at given time. For example, if object is
visible in the given frame then we can consider it visible some
number of frames and avoid sending expensive queries.

Fig. 1. Different types of culled objects. Frustum culled objects

are depicted as triangles. Occluded objects are depicted as
rectangles.

2. Previous work
Greene et al. introduced occlusion culling algorithm based

on hierarchical z-buffer [7]. Z-buffer is stored as pyramid
structure. Z-buffer is divided into 4 components, each one
having maximum z value in its region. The process is repeated
until pixels are reached. Z-pyramid allows for quick triangle
culling by comparing minimum z value of triangle and z value
in the corresponding region. This method can be implemented
in hardware and software. Software implementation requires
expensive rasterisation and pyramid structure updates on CPU.
In hardware implementation (ATI Hyper-Z) triangles still have
to be transformed and rasterized on GPU which does not
replace quick method for geometry culling with a hierarchical
structure.

Bittner et al. considered ways for optimal usage of
occlusion queries for hierarchical scenes based on extension
NV_occlusion_query [1]. Previous frame visibility results are
used in the next frames. Main performance problems come
from CPU starvation and GPU starvation. Visibility results are
checked in the next frame to remove CPU starvation.
Previously visible objects are rendered at the beginning of the
current frame to remove GPU starvation. Authors used kD-tree
constructed according to the surface-area heuristic [11].
Visibility queries are sent for leaf nodes and results are
propagated to upper hierarchy levels.

Guthe et al. observed that in many cases visibility queries
make performance worse than frustum culling, proposed
probability criterion to minimize the number of queries,
performance model which helps to avoid queries when
rasterisation is cheaper [9]. Mattausch et al. suggested further
ways of minimizing the number of queries like sending one
query for group [12]. Authors used p-hbvo (polygon-based
hierarchical bounding volume decomposition) [13], which is

GraphiCon 2017 Реалистичная графика

24–28 сентября 2017, Пермь, Россия 33

well-suited for static scenes and expensive to maintain for
dynamic scenes.

Software rasterisation and visibility checks can be used
instead of hardware occlusion queries [4]. First, triangles of
significant occluders are rendered on CPU, hierarchical z-buffer
of specified resolution is created. Then bounding boxes of
objects or hierarchy nodes are rasterized to determine their
visibility against created z-buffer. This helps to avoid expensive
occlusion query read-back but requires occluder selection that is
best done manually. Also, occluder rasterisation can be
expensive and low level-of-detail models give only approximate
results.

Scene preprocessing can be effectively applied to static
scenes. Teller et al. proposed to use BSP tree with
decomposition along axes for architectural scenes [17].
Achieved hierarchy corresponds to room structure in a building.
Visibility information is stored as the graph with rooms and
portals. Room visibility can be determined by rasterizing
portals. However, that graph is expensive to compute and works
effectively only for static scenes. Commercial solution Umbra
computes voxel representation of a scene [14]. Empty voxels
serve as portals between different parts of a scene. Software
rasterisation of portals determines the visibility of parts of a
scene. That algorithm effectively finds occluded objects for
static 3d scenes and is widely used in video games.

Greene introduced image space algorithm based on
precomputed occlusion masks [8]. As input, it takes a list of
polygons in front-to-back order. It recursively subdivides image
space into quadtree until visibility of polygon can be
determined for each quadrant. Main advantages of this approach
are small memory requirements and no pixel overwrites.
However, it requires special hardware to implement efficiently.
Zhang et al. proposed visibility culling based on hierarchical
occlusion maps, which is better suited for modern hardware
[19]. It constructs occlusion map hierarchy by rendering chosen
occluders and then traverses bounding volume hierarchy of the
model database to perform visibility culling. The algorithm
allows for approximate visibility when opacity threshold is set
to value lower than one. The main disadvantage of the
algorithm is the sophisticated process of occluder selection
which favors large objects with small polygon count for faster
construction of occlusion map hierarchy.

3. Occlusion culling algorithm
Hierarchical occlusion culling algorithm in this paper is

based on Coherent hierarchical culling [1]. Although our
implementation does not include query batching, tight bounding
volumes, probabilistic estimation of visibility, it allows
comparing benefits and limitations of different subdivision
hierarchies.

Pseudocode of the algorithm:
function RenderFrame(rootNode, frustum,
queries, sentNodes)
 PerformFrustumCulling(frustum,rootNode)

 for i in 0..queries.size-1
 vis <- GetQueryResult(queries[i])
 SetNodeCulled(sentNodes[i],vis == 0)
 end for
 PropagateVisibilityUpHierarchy()

 nodes <- GetVisibleNodesInFrustum()
 for n in nodes
 for inst in n
 if !InstRendered(inst)
 Render(inst)
 SetInstRendered(inst)
 end for

 end for

 sentNodes <- GetLeafNodesInFrustum()
 for i in 0..sentNodes.size-1
 SendQuery(queries[i],sentNodes[i]
 .boundingBox)
 end for

end function

Function "RenderFrame" renders one frame. Function
"PerformFrustumCulling" recursively sets frustum culled bit for
every node outside the frustum. First for loop checks visibility
results of occlusion queries sent in the previous frame. Second
for loop renders objects of visible nodes in the frustum. Last for
loop sends queries for all leaf nodes in the frustum.

During the first frame, all objects inside frustum are
rendered, and all hierarchy leafs inside frustum are queried.
During the second frame, query results are checked, and only
visible objects are rendered. Hierarchy leafs inside frustum are
queried each frame. We propagate visibility up the hierarchy to
optimize performance of hierarchy traversal. Space
decomposition hierarchies allow multiple nodes per object.
Rendered state of each instance is stored in bit array to make
sure that all objects are rendered only once.

Frame buffer composition time for a large number of
objects can be approximated by the formula:

𝑇!"#$% = 𝑇!!!"# + 𝑇!"#$"! + 𝑇!"#$%#& ,

where 𝑇!!!"# — time it takes to check query results,
𝑇!"#$"! — time to render visible objects,
𝑇!"#!"#$ — time it takes to send queries for leafs nodes

inside frustum.
When the number of queries is small 𝑇!"#$"! is the

bottleneck. When the number of queries is large 𝑇!"#$%#& +
𝑇!!!"# is the bottleneck. Let's rewrite the formula by expanding
the terms:

𝑇!"#$% = 𝑐!𝑁! + 𝑐!𝑁!"# + 𝑐!𝑁! ,

where 𝑁! — number of queries (leaf nodes inside frustum),
𝑁!"# — number of visible objects inside the frustum. 𝑁!"#

is the function of camera position and hierarchy height for the
given object distribution.

Let's consider a common case where a scene is indexed by
octree and camera is positioned outside the scene. In the worst
case, three sides of the bounding box of the scene are visible.
Assuming that objects are distributed uniformly across the
bounding box of the scene, the number of objects per octree leaf
equals 𝑁!"!#$/2!", where 𝑁!"!#$ is the total number of objects
in the scene, ℎ is octree height. Then the number of visible
objects approximately equals 3𝑁!"!#$/2!. We get the formula
for frame duration that depends only on octree height and
constants:

𝑇!"#$% = (𝑐! + 𝑐!)2!" + 𝑐!3𝑁!"!#$2!!.
Optimal octree height for given scenario is !

!
log!

!!"!#$!!
!!!!!

.
For example, for dataset 1 calculated octree height ℎ = 4 gives
the best performance in practice because dataset 1 can be
described by that theoretical model.

LBVH and BVH SAH perform better on scenes where the
density of objects is uneven. Better clustering helps to lower the
number of queries to get visible objects inside the frustum.

4. Hierarchies

4.1 Octree
Octree is uniform space decomposition structure that uses

three axis-perpendicular planes to simultaneously split the
scene's bounding box into eight regions at each step [15]. When
object's bounding box intersects the splitting plane, it is either

Realistic Graphics GraphiCon 2017

34 24–28 September 2017, Perm, Russia

assigned to the internal node (single reference octree) or
propagated below and assigned to multiple leaf nodes (multiple
reference octree). Storing geometry in leafs increases clustering
quality and as a result reduces number of visible objects. The
downside is the increased number of occlusion queries, which
are sent for every leaf in the frustum. We performed rendering
performance comparison to find out which technique is more
effective. Dataset 1 is small enough that GPU can handle
rendering and queries quite efficiently (fig. 2). As a result,
multiple reference octree gives the best time because of
efficient clustering. Many objects intersect upper levels of
octree resulting in redundant draw calls in case of single
reference octree. Dataset 2 has non-uniform object distribution
where several planes occupy half of the scene. It produced a lot
of redundant leaf nodes and occlusion queries that degraded
performance when storing objects in leafs. Dataset 3 has many
buildings with tightly packed objects inside buildings. Even
though the number of objects is large, it can be very efficiently
subdivided requiring only small number of nodes. Overall,
multiple reference octree provides the most efficient occlusion
culling of large architectural scenes.

Fig. 2. Average frame rendering time for single and multiple

reference octrees.
When rendering a visible node, contained object is skipped

if it was already rendered in the current frame. Out of all
hierarchical structures considered in the paper, octree gives the
least effective clustering because of wasted space without any
objects. Octree allows dynamic scenes because visibility results
of octree nodes can be used for subsequent frames as they have
fixed position in space. Also, it does not need to be rebalanced
as other space decomposition hierarchies like kd-tree.
Maximum octree level can be restricted depending on GPU
performance.

4.2 LBVH
LBVH is primitive space decomposition hierarchy that is

based on sorting along space filling curve [15]. All centers of
object bounding boxes are sorted along Z space filling curve
and grouped hierarchically from bottom to top [16]. LBVH
achieves tighter clustering than octree and as a result less
number of occlusion queries. Estimating the number of queries
is simple because the number of leafs is determined at the start
of the construction. LBVH cannot handle dynamic scenes
because moving objects make occlusion queries for previously
constructed LBVH useless in the current frame.

4.3 BVH
BVH with surface area heuristic for choosing the splitting

plane to minimize the number of ray and bounding box
intersection tests was developed for ray tracing, but it also gives
efficient clustering of primitives for occlusion culling [13][15].
BVH construction is a top-down recursive process; on each
step, we create two axis aligned bounding boxes. Triangles are
sorted by the longest scene dimension and splitting plane with
minimum cost is taken according to surface area heuristic.

Because of top-down construction, BVH SAH sometimes
creates clusters that cannot be subdivided into two nodes. We

try to subdivide such cluster for each axis in order, and in case
of failure leave it as a leaf node.

We compare rendering performance when using BVH SAH
for storing three types of primitives: objects, subdivided
objects, triangles. Object is set of triangles that can be rendered
with one draw call. Subdivided object is an object that was
subdivided into multiple objects to achieve better triangle
clustering. Storing each triangle as an object generates
hierarchy with the best clustering. For rendering efficiency,
large number of triangles is stored in a leaf node, render state
changes are avoided when encountering triangles of the same
object. Storing triangles in BVH gives many additional draw
calls creating a CPU bottleneck (fig. 3). Storing subdivided
objects gives much faster performance. However, clustering
efficiency increase is not enough to cover for additional draw
calls for considered datasets using simple shader. Let's consider
the difference in rendering time of dataset 1 for objects (8.7ms)
and subdivided objects (45.6ms). Even though object
subdivision helped to lower average number of query calls 𝑁!
from 192 to 171, it raised the average number of draw calls
𝑁!"# from 4546 to 19452 (tests were conducted for
𝑏𝑣ℎ ℎ𝑒𝑖𝑔ℎ𝑡 = 10).

Fig. 3. Average frame rendering time for different types of

primitive clusters when using occlusion culling on BVH SAH.

5. Performance comparison

5.1 Datasets
For rendering performance comparison we took three large

datasets (figs. 4–6):
1. Dataset 1: 5,012,582 triangles, 50,521 objects.

Building is tightly packed with objects having
small variation in size.

2. Dataset 2: 10,827,713 triangles, 71,961 objects.
Scene has many relatively large objects, half of
the scene's volume is occupied by several planes.

3. Dataset 3: 10,154,304 triangles, 221,796 objects.
Artificial test scene with 36 buildings. Each
building has cluster of objects that can be culled
after rendering exterior consisting of small
number of objects.

0ms	
100ms	
200ms	
300ms	
400ms	
500ms	

Single	
reference	
octree	

Mul7ple	
reference	
octree	 0ms	

500ms	
1,000ms	
1,500ms	
2,000ms	
2,500ms	
3,000ms	

Triangles	

Subdivided	
objects	

Objects	

GraphiCon 2017 Реалистичная графика

24–28 сентября 2017, Пермь, Россия 35

Fig. 4. Dataset 1 – architectural scene with 5 million triangles.

Fig. 5. Dataset 2 – architectural scene with 10.8 million

triangles.

Fig. 6. Artificial test scene with buildings with 10.2 million

triangles.
5.2 Clustering
Let's calculate the average number of rendered objects to

compare object clustering efficiency of considered hierarchies
for occlusion culling. Better object clustering should result in
fewer visible nodes and fewer draw calls. During tests, we fixed
the number of leafs for all hierarchies. BVH has the most
efficient clustering of objects (fig. 7). It could be better but top-
down subdivision process leads to the scenario where relatively
long objects are gathered in a node and cannot be subdivided
efficiently. In dataset 2 we encountered clusters with 40–70
objects where subdivision by any axis produced singleton.
Algorithm based on octree issues more draw calls when space
decomposition gives bounding volumes with a lot of empty
space. Octree is more efficient for dataset 1 because it has very
little empty space. It gives worst clustering in spacious dataset 3
because it cannot decompose it as efficiently using fixed
number of leafs.

Fig. 7. Average number of rendered objects during scene

walkthrough for considered hierarchies.
5.3 Frame rendering
All scene geometry is uploaded once at the beginning,

shader with one directional light is used. Test results were
produced on the system: AMD FX 8320 Processor, 24GB
DDR3 RAM, AMD Radeon HD 6770 1GB.

Camera walkthrough is performed diagonally from the
lower left to the upper right corner of a scene. Average and
maximum frame rendering times are measured along the
camera path (figs. 8, 9). Fig. 8 shows average rendering
performance of all considered hierarchies on three datasets.
Octree showed the fastest time for dataset 1 because it produced
the best clustering (fig. 7). It performed better than expected for
dataset 3 because most of the objects can be culled with
relatively small number of queries. Dataset 2 was problematic
for all hierarchies because it has most of the objects in one
building. For efficient rendering careful balance of draw calls
and occlusion queries is required. BVH SAH showed the fastest
time because of efficient clustering. LBVH is close in
performance to BVH SAH for all datasets.

Occlusion culling may give worse performance than
frustum culling when GPU can efficiently render all of the
objects inside the frustum. However, frustum culling shows
worst performance on datasets 2 and 3 because of the large
number of visible objects inside the frustum. Note that
occlusion culling algorithm in the paper is not state-of-the-art
and can be improved further to reduce the number of queries
using visibility prediction and multiqueries [9][12].

Fig. 8. Comparison of average frame rendering times for all

datasets and hierarchies.

0	

5000	

10000	

15000	

20000	

25000	

Dataset	
1	

Dataset	
2	

Dataset	
3	

Octree	

LBVH	

BVH	

0ms	
100ms	
200ms	
300ms	
400ms	
500ms	
600ms	

Dataset	
1	

Dataset	
2	

Dataset	
3	

Octree	

LBVH	

BVH	

Realistic Graphics GraphiCon 2017

36 24–28 September 2017, Perm, Russia

Fig. 9. Comparison of maximum frame rendering times for all

datasets and hierarchies.

6. Conclusion
We performed the comparison of frame rendering

performance when using different types of primitives and found
that using objects instead of subdivided objects is more
effective (fig. 3).

Octree efficiently handles datasets where most of the
scene's volume is occupied by objects (fig. 7, dataset 1).
Although storing objects in interior nodes of octree helps to
select large objects and get better performance (fig. 2, dataset
2), storing objects in leafs is overall more effective and can be
used to determine the number of leafs by scene's volume.

BVH SAH gives the most effective clustering of objects
(fig. 7), and it positively affects frame rendering time (fig. 8).
LBVH is close in performance to BVH SAH. Also, it is faster
to construct, and bottom-up construction is better suited to get
the optimal number of leafs.

7. References
[1] Bittner, J. et al, 2004. Coherent hierarchical culling:

Hardware occlusion queries made useful. In Computer
Graphics Forum, Vol. 23, No.3, pp. 615–624.

[2] Bittner, J. and Wonka, P., 2003. Visibility in computer
graphics. Environment and Planning B: Planning and
Design, Vol. 30, No.5, pp.729–755.

[3] Blackert, A., 2016. Evaluation of multi-threading in
Vulkan.

[4] Chandrasekaran C. et al, 2013–2016. Software Occlusion
Culling. https://software.intel.com/en-us/articles/.

[5] Cohen-Or D. et al, 2003. A survey of visibility for
walkthrough applications. IEEE Transactions on
Visualization and Computer Graphic,Vol. 9, No. 3, pp.
412–431.

[6] GLAPI/glBeginQuery.
https://www.opengl.org/wiki/GLAPI/glBeginQuery.

[7] Greene, N. et al, 1993. Hierarchical Z-buffer visibility.
Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. ACM.

[8] Greene, N., 1996. Hierarchical polygon tiling with
coverage masks. Proceedings of the 23rd annual
conference on Computer graphics and interactive
techniques. pp. 65–74.

[9] Guthe, M. et al, 2006. Near Optimal Hierarchical Culling:
Performance Driven Use of Hardware Occlusion Queries.
In Eurographics Symposium on Rendering. pp. 207–214.

[10] Legacy OpenGL - OpenGL Wiki.
https://www.khronos.org/opengl/wiki/Legacy_OpenGL.

[11] Macdonald, J. D., Booth, K. S., 1990. Heuristics for ray
tracing using space subdivision. Visual Computer, Vol. 6,
No. 6, pp. 153–165.

[12] Mattausch, O. et al, 2008. CHC++: Coherent Hierarchical
Culling Revisited. EUROGRAPHICS, Vol. 27, No. 3.

[13] Meissner, M. et al, 2001. Generation of Decomposition
Hierarchies for Efficient Occlusion Culling of Large
Polygonal Models. In Vision, Modeling, and Visualization,
Vol. 1, pp. 225–232.

[14] Next Generation Occlusion Culling.
http://www.gamasutra.com/view/feature/164660/sponsore
d_feature_next_generation_.php?print=1.

[15] Pharr, M. et al, 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

[16] Samet, H., 2006. Foundations of multidimensional and
metric data structures. Morgan Kaufmann.

[17] Teller, S., Sequin, C., 1991. Visibility preprocessing for
interactive walkthroughs. Computer Graphics (Proceedings
of SIGGRAPH 91), Vol. 25, No. 4, pp. 61–69.

[18] Wloka, M., 2003. Batch, batch, batch: What does it really
mean. Presentation at game developers conference.

[19] Zhang, H. et al, 1997. Visibility culling using hierarchical
occlusion maps. Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. pp. 77–
88.

About the authors
Gonakhchyan Vyacheslav Igorevich, junior researcher at

the department of System integration and multi-disciplinary
collaborative environments of Ivannikov Institute for System
Programming of the RAS. His email is pusheax@ispras.ru.

0ms	

500ms	

1,000ms	

1,500ms	

2,000ms	

Dataset	
1	

Dataset	
2	

Dataset	
3	

Octree	

LBVH	

BVH	

Frustum	
Culling	

