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We present an open-source, extensible software which assists in the development of CAD geometric algorithms based on Boundary 
Representation data structures. The software is coupled with OpenCascade library which is an open-source geometric modeling 
kernel offering a broad range of modeling operations for the development of multi-purpose CAD systems and utilities. The new 
software serves as a framework for constructing geometric modeling algorithms. We provide several examples of geometric utilities 
developed with the help of the present framework. Furthermore, our software offers some advanced facilities for inspection of 
geometric and topological structures of existing CAD parts which can be imported from any popular CAD system. 
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1. Introduction 
Research and development in geometric modeling field for 

Computer-Aided Design is hardly possible without specialized 
tools for visualization and analysis of geometry defined in 
Boundary Representation (B-Rep) form. In this paper, we 
present an open-source software which assists in handling a 
certain amount of common geometric issues. The software is 
based on the OpenCascade library as it is the only currently 
available open-source geometric modeling kernel. Another 
reason to use OpenCascade is that the data structures of the 
library are compatible with ISO 10303-42 (STEP). The latter 
fact brings a certain level of generality to the present approach. 
The similar kind of software is known to exist for other 
geometric kernels. However, other kernels are closed-source 
and are not readily available for an unrestricted academic and 
commercial use. 

The remainder of this paper is organized as follows. Section 
2 describes the motivations for starting yet another open-source 
project and lists the problems the project should be able to 
solve. Section 3 provides an overview of similar existing tools. 
Section 4 describes B-Rep inspection facilities of the new 
software. Section 5 examines how to use the software as a 
framework for prototyping new CAD-oriented algorithms. 
Section 5 concludes with several examples illustrating some 
real use cases where the software has been successfully used as 
a prototyping framework. Section 6 outlines our plans for future 
work. 

2. Motivations 
There are two primary motivations behind the idea to start 

yet another free and open-source (FOSS) software project 
dealing with CAD geometry algorithms. The first reason is the 
lack of freely available inspection utilities for Boundary 
Representation (B-Rep) geometry. It is widely recognized that a 
better visualization of a problem leads to a better understanding 
of the underlying science (see [Jern 1989]). The traditional 
visualization engines for Boundary Representation models are 
CAD systems. However, such systems do not allow for an easy 
inspection of boundary elements and their geometries. The 
existing visualization engines are primarily designed for end 
users and not for developers, although advanced CAD systems 
may offer comprehensive development kits in addition to 
mainstream software. The second motivation for starting this 
FOSS project is to allow for the so-called reproducibility of 
research results which is similar to the motivation behind the 
popular open-source MeshLab project presented by [Cignoni et 
al. 2008]. Our software simplifies prototyping new CAD 

modeling algorithms and renders the results of the research 
group’s work readily available for academic and engineering 
communities. Availability of the research results in the form of 
software prototypes is a key to solving the technology transfer 
problem raised by [Brown 1982]. 

Inspection of geometric and topological structures is of 
crucial importance when developing or profiling geometric 
modeling algorithms, such as Boolean Operations, fillets, 
offsets, etc. During such tedious working sessions, a lot of 
common questions may arise. Some of them are as follows: a) 
what is the host geometry (curve or surface type) of a particular 
edge or a face? b) what are the topological and geometric 
orientations of the geometric primitives? c) what is the 
topological structure of the model? d) how to find a particular 
boundary element in the model? e) what is the quality of a 
curve or a surface parameterization? f) is it necessary to repair 
the working geometry and how to do that? Answering these and 
many other similar geometric questions often requires laborious 
manual work. In this paper, we introduce a software which 
assists in geometric analysis and substantially reduces the 
efforts needed to “debug CAD model”. 

In addition to its inspection functions, the software can also 
serve as a framework for the development of geometric 
modeling algorithms. The software provides STEP-compliant 
geometric and topological primitives. These primitives are 
rendered using a set of readily available VTK pipelines. An 
algorithm which is developed within the framework of our 
system may benefit from the convenience interfaces which 
facilitate error reporting and graphical dumps (similar in nature 
to the commonly used textual diagnostic outputs). Therefore, 
the software establishes a framework for implementing 
multipurpose geometric tools for Computer-Aided Design 
applications. The software permitted to develop several CAD 
algorithms including some commercial ones. 

Furthermore, it was discovered that the developed 
inspection and prototyping facilities are helpful in teaching the 
basic CAD concepts. According to [Rossignac 2004], CAD 
learners suffer from the unavailability of simplistic and intuitive 
models of the concepts they have to deal with during the 
education process. For example, students and even experienced 
engineers often confront such common problem as a misleading 
visual appearance of a CAD model. The geometry may look 
visually perfect, but contain a variety of internal quality 
phenomena, including wild or irregular parametrization of 
curves and surfaces, presence of redundant topological 
primitives, large tolerance gaps, and overlaps, etc. The first 
stage is to explain that what is displayed on the screen is not the 
real definition of a CAD part (What You See is NOT What You 
Get). This is exactly where a boundary representation 
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inspection utility can be advantageous. In this regard, the 
present software contributes to the education-driven research in 
CAD as formulated by [Rossignac 2004]. 

Finally, the efficient development of geometric modeling 
algorithms involves some mathematical abstractions which 
cannot be visualized directly in the modeling space. Such 
abstractions include adjacency graphs for boundary elements, 
parametric domains of faces, level sets of objective functions 
being optimized, etc. The visualization of such abstract data 
often gives a useful insight in a problematic situation where a 
human imagination may fail to recognize the cause of a 
problem. As mentioned by [Zenkin 1991], a system providing 
such cognitive visualization facilities is the so called 
“brainware” because it assists humans in their creative process. 

3. Related work 
Among the available frameworks for geometry processing, 

it is worth mentioning MeshLab (see [Cignoni et al. 2008]) and 
OpenFlipper (see [Mobius and Kobbelt 2012]) software tools. 
Both systems were designed with the similar motivation to 
make the development of geometric algorithms more efficient, 
and to bridge the gap between academic researchers and 
industry. Our framework pursues the same goals, but focuses on 
precise CAD instead of polyhedral geometry. Although 
OpenFlipper provides a generic architecture which applies to 
curved geometry, it does not use a full-featured embedded CAD 
kernel. Therefore, the development of precise CAD algorithms 
will be problematic in such systems. 

[Averbukh et al. 2015] presented a framework for deriving 
specialized systems for cognitive visualization. The cognitive 
visualization tools facilitate the investigation of subtle 
algorithmic problems, and even the creation of new knowledge. 
According to [Brooks 1996], such systems serve as 
“intelligence amplification” tools. The ability to visualize 
information which does not correspond to any real object but 
represents some abstract or multi-dimensional data is of great 
importance for the efficient and thoughtful development of 
geometric algorithms. 

In practice, CAD systems and specialized CAD tools are 
often used for the development of geometric algorithms. These 
systems provide extensible frameworks which can be exploited 
by software developers and researchers. Data communication 
between an algorithm and a CAD system can be either direct 
(an algorithm calls the corresponding API of a system) or 
indirect with the use of exchange file formats (e.g. STEP). In 
the latter case, a geometric algorithm maintains a certain level 
of independence, as it can be used in a CAD-neutral 
environment. CAD software which integrates a newly 
developed geometric algorithm should offer sufficient 
functionality which is sometimes rather advanced. For example, 
[Lee et al. 2005] base their experiments on a commercial 
platform which provides enough functionality to prepare CAD 
models for the engineering analysis. Likewise, [Seo et al. 2005] 
base their algorithm on Parasolid kernel which offers an 
advanced face removal operator. These examples illustrate that 
a particular technology can be essential to conduct research in a 
specific field. 

The alternative approach consists in developing technology-
neutral algorithms which communicate with an underlying 
geometric kernel using an abstract interface. Researchers have 
made several attempts to create such interface. Probably the 
most remarkable one is Djinn interface proposed by [Armstrong 
et al. 2002]. The Djinn interface eliminates dependency on the 
underlying geometric kernel. Moreover, it unifies representation 
of a geometric model with the use of the concept of cellular 

topology. According to [Stroud and Nagy 2011], Djinn’s 
authors aimed to create a standard interface which could be 
used to share applications between researchers and to 
demonstrate research applications within a commercial 
environment. The existence of such interface could lead to a 
closer collaboration between researchers and industry. 
Therefore, Djinn contributes to solving the technology transfer 
problem raised by [Brown 1982]. Unfortunately, the concept of 
Djinn does not take into account commercial considerations. 
Indeed, software vendors prefer to have a code that is closely 
tied to their system. According to [Stroud and Nagy 2011], 
having Djinn interface in a CAD system would allow 
researchers to add new functions to a CAD system, such as 
feature recognition, analysis or manufacturing code. However, 
to develop a software system which is fully compliant with 
Djinn is a challenge. 

We have chosen another approach which is essentially 
technology-dependent. At the same time, the employed 
technology (OpenCascade) is open-sourced and readily 
available for anyone from academia or industry. Moreover, this 
modeling kernel is known to provide only a small subset of 
functionality which is available in commercial libraries such as 
ACIS or Parasolid. Therefore, any algorithm based on 
OpenCascade can be transmitted to another library, at least in 
principle. From this point of view, OpenCascade-based 
algorithms can be considered as prototypes for exchange 
between academia and industry. 

 
Fig. 1. The general view of the software. The desktop is 

composed of three viewers: part viewer, face domain viewer 
and host geometry viewer. 

OpenCascade library provides its own prototyping 
framework called Draw Test Harness (or simply Draw). 
Although our software is not as multi-purpose as Draw, there 
are several advantages which make it more practical than Draw 
in some cases. First of all, it offers a combined layout of three 
principal geometric viewers, as shown in Figure 1. These 
viewers are interactive and do not require any console inputs 
like Draw. Among other features are explicit indexation of 
topological elements, availability of graph models, curvature 
maps and combs for geometric analysis, convexity analysis for 
edges, developer-oriented visualization and many other utilities 
which are not readily available in Draw. 

4. Inspection facilities 
For the three-dimensional visualization, VTK library by 

[Schroeder et al. 2006] was employed. The architecture of 
visualization pipelines offered by VTK allows for a clear 
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distinction between the data transformation before rendering 
and the rendering itself. Another remarkable advantage of VTK 
is a broad set of available visualization features which are 
commonly used by many scientists and software engineers all 
over the world. 

4.1 B-Rep inspection 
According to [Corney and Lim 2001], although different 

geometric kernels have their subtleties in B-Rep realization, 
there is one consensus that emerged earlier on. The well-turned 
idea was to separate geometric definitions of boundary elements 
from the information about how these elements are connected. 
This idea which divorces topology from geometry is presented 
in any commercial multi-purpose CAD geometric kernel. 

 
Fig. 2. Non-manifold edges (dark-red color) in a model 

composed of four boxes sharing their faces. 

The visualization facilities for B-Rep structures introduced 
in our software are not unique. Similar techniques for insightful 
rendering of boundary representation structures are described 
by [Corney and Lim 2001]. When designing a visualization 
system, it is first necessary to define how boundary 
representation structures of a particular modeling kernel are 
implemented. Modern libraries have to deal with both manifold 
and non-manifold objects. OpenCascade, as well as ACIS, 
utilize OBJECT/CO-OBJECT (e.g. EDGE/CO-EDGE) data 
structure which is capable of representing non-manifold models 
(Figure 2). 

4.2 Adjacency graphs 
According to [Corney and Lim 2001], the great value of 

graphs in geometric modeling comes from their ability to 
represent the connectivity between geometric elements. The 
Scheme AIDE utility of ACIS allows for a visualization of 
different graphs including vertex-edge and face adjacency 
graphs. 

In our software, two graphs can be visualized for a CAD 
part: the topology graph (Figure 3), which provides full 
information on how topological elements are nested into each 
other, and the attributed adjacency graph (Figure 4) 
representing adjacency relations between individual faces as 
explained by [Joshi and Chang 1988]. Both graphs give insight 
into the internal organization of the topological structure of a 
particular part (which is not visible without specialized 
inspection tools). 

 

Fig. 3. Topology graph of a simple box model. Different 
colors are used to distinguish between different types of 

topological elements (compounds, solids, shells, faces, etc.). 

Both graphs are synchronized with the part viewer which 
allows for easy searching of the face of interest in the 
topological structure of the model. 

 

Fig. 4. Attributed adjacency graph of ANC101 model. The 
nodes correspond to faces; the arcs represent adjacency 

relations. 

Graph representations are especially useful in algorithms 
which involve analysis of the connection between boundary 
elements of a model. Such information is fully used in feature 
recognition scenarios to extract the engineering semantics of a 
model. Other applications are model simplification for CAE, 
local operations (see [Fahlbusch and Roser 1995] for 
introduction), etc. 

4.3 Geometry analysis 
As mentioned by [Greiner et al. 1995], visualization is the 

indispensable tool for controlling the quality of geometric 
objects including their differential and aesthetic properties. A 
shaded display is usually insufficient to draw a conclusion on 
the quality of a modeling result. Therefore, additional 
techniques such as curvature maps (Figure 5), or isoparametric 
wireframe views are employed to detect surface irregularities. 
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Fig. 5. Mean (on the left) and Gaussian (on the right) 
curvature maps for a B-spline blade surface. 

5. Prototyping framework 
According to [Mobius et al. 2013], researchers tend to 

confine their development efforts to implementing the 
algorithmic core and to spend less time on software 
engineering. Therefore, the authors of the OpenFlipper 
framework have implemented a set of common operations for 
data processing, visualization, I/O and many other components, 
including data structures, which are constantly and vainly re-
invented by researchers and software engineers. Having all such 
components readily available allows developers to implement 
their innovative ideas in a rapid and goal-oriented way. Our 
main driving force was the idea to create new software, which 
will provide a similar framework for CAD-oriented research. 

5.1 General architecture 
Our software is designed to operate with a single CAD part. 

This restriction simplifies the general architecture of the 
software, thus allowing it to operate as a test bench for a single 
part geometry. The software is also capable of working with 
meshes and point clouds at the basic level. The framework 
provides such commonly used features as hierarchical 
organization of data objects, open/save in binary format, 
undo/redo, multi-purpose 3D and 2D viewers, etc.  

Compared to MeshLab or OpenFlipper utilities which offer 
a plugin mechanism for software extension, we use a more 
straightforward prototyping approach. Our software provides a 
collection of components, including data structures, basic 
algorithms, visualization pipelines and typical GUI controls. A 
minimalistic application is provided to put these components 
together and to enable interactive B-Rep inspection. Every new 
algorithm being implemented within the framework should be 
supplied with its own independent executable. A prototype 
developer is free to choose particular GUI controls and to 
configure their communication. Such flexibility comes at a 
price. The developer is forced to write some sort of non-
scientific code to bring everything together. 

5.2 Use cases 
In the following paragraphs, we present several use cases 

where our system helped to facilitate coding and debugging. 
Some of the mentioned algorithms were integrated into 
commercial software. 

5.2.1 Feature recognition 

Feature recognition allows to recover the semantics of a 
geometric model when the information about its features is 
unavailable. Feature recognition is a primary application for 
model inspection utilities, including edge and face indexation, 
edge convexity analysis (Figure 6), traversing adjacency graphs, 
etc. This sort of functionality has found a broad use in 
manufacturing planning where such features as holes, pockets, 
and bosses are detected in an input 3D model. 

 

Fig. 6. Visualization of convex (green) and concave (red) 
edges for ANC101 model. 

Figure 7 illustrates a sheet metal part (which was imported 
from a STEP file without the information on features) before 
and after recognition. 

 

Fig. 7. The sheet metal part imported from STEP file (on 
the left) and feature recognition result (on the right) shown in 

different colors depending on the feature type. 

In sheet metal manufacturing, the information about 
features can be used for fabrication cost estimation, validation 
of design by unfolding, preparation of 2D drawings, etc. 

 
Fig. 8. Flattening graph for a sheet metal part. Each node 

corresponds to a flange being unfolded to a flat pattern. 

The prototyping system has not only helped to perform an 
interactive inspection of sheet metal features, but has also 
assisted in the construction of explicit unfolding graphs (Figure 
8). Such graphs provide information about the order of 
flattening and transformations associated with every flange. 

5.2.2 As-built reconstruction 

The present framework is used in research and development 
for automated reconstruction of CAD models from three-
dimensional point clouds and meshes. We use VTK to visualize 
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massive point clouds and to let users interactively operate on 
their portions for segmentation and surface fitting. One example 
is the as-built reconstruction of industrial pipelines from laser-
scan data (Figure 9). 

 
Fig. 9. The initial point cloud (on the left) and the extracted 

cylindrical primitives (on the right). 

5.2.3 Contour capture 

Contour capture algorithm is a variation of non-solid 
Boolean operation used to extract a certain piece of the two-
dimensional (shell) model. The user interactively constructs a 
closed contour which follows the input geometry with a 
prescribed tolerance. The resulting polyline is then smoothed 
out using a dedicated reapproximation technique. Once the 
contour is smoothed, it can be then imprinted on the model by 
projection. At the last stage, the piece of geometry limited by 
the imprinted contour is extracted (Figure 10). Like any 
Boolean operation, this algorithm consists of several internal 
stages which can be implemented and tested separately. To 
facilitate the maintenance of this algorithm, we have used the 
novel framework which allowed to save a significant amount of 
time on debugging. 

 

Fig. 10. Manually specified contour to capture (closed loop 
of line segments) and the result of capturing algorithm. 

6. Conclusion and further work 
The present software is available online at 

http://www.analysissitus.org. In future versions, we are 
planning to add new inspection facilities, i.e. to check fairness 
of curves and surfaces following the ideas presented in 
[Burchard et al. 1994], [Greiner et al. 1995], [Hagen et al. 
1995], [Sapidis and Koras 1997] and other works. 
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