
GraphiCon 2017 Геометрическое моделирование. Компьютерная графика в образовании

24–28 сентября 2017, Пермь, Россия 323

CAD model inspection utility and prototyping framework based on
OpenCascade

S. Slyadnev, A. Malyshev, V. Turlapov

sergey.slyadnev@gmail.com|al.s.malyshev@rambler.ru|vadim.turlapov@itmm.unn.ru
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

We present an open-source, extensible software which assists in the development of CAD geometric algorithms based on Boundary
Representation data structures. The software is coupled with OpenCascade library which is an open-source geometric modeling
kernel offering a broad range of modeling operations for the development of multi-purpose CAD systems and utilities. The new
software serves as a framework for constructing geometric modeling algorithms. We provide several examples of geometric utilities
developed with the help of the present framework. Furthermore, our software offers some advanced facilities for inspection of
geometric and topological structures of existing CAD parts which can be imported from any popular CAD system.

Keywords: CAD, geometric modeling, boundary representation, OpenCascade, VTK, software framework, cognitive visualization.

1. Introduction
Research and development in geometric modeling field for

Computer-Aided Design is hardly possible without specialized
tools for visualization and analysis of geometry defined in
Boundary Representation (B-Rep) form. In this paper, we
present an open-source software which assists in handling a
certain amount of common geometric issues. The software is
based on the OpenCascade library as it is the only currently
available open-source geometric modeling kernel. Another
reason to use OpenCascade is that the data structures of the
library are compatible with ISO 10303-42 (STEP). The latter
fact brings a certain level of generality to the present approach.
The similar kind of software is known to exist for other
geometric kernels. However, other kernels are closed-source
and are not readily available for an unrestricted academic and
commercial use.

The remainder of this paper is organized as follows. Section
2 describes the motivations for starting yet another open-source
project and lists the problems the project should be able to
solve. Section 3 provides an overview of similar existing tools.
Section 4 describes B-Rep inspection facilities of the new
software. Section 5 examines how to use the software as a
framework for prototyping new CAD-oriented algorithms.
Section 5 concludes with several examples illustrating some
real use cases where the software has been successfully used as
a prototyping framework. Section 6 outlines our plans for future
work.

2. Motivations
There are two primary motivations behind the idea to start

yet another free and open-source (FOSS) software project
dealing with CAD geometry algorithms. The first reason is the
lack of freely available inspection utilities for Boundary
Representation (B-Rep) geometry. It is widely recognized that a
better visualization of a problem leads to a better understanding
of the underlying science (see [Jern 1989]). The traditional
visualization engines for Boundary Representation models are
CAD systems. However, such systems do not allow for an easy
inspection of boundary elements and their geometries. The
existing visualization engines are primarily designed for end
users and not for developers, although advanced CAD systems
may offer comprehensive development kits in addition to
mainstream software. The second motivation for starting this
FOSS project is to allow for the so-called reproducibility of
research results which is similar to the motivation behind the
popular open-source MeshLab project presented by [Cignoni et
al. 2008]. Our software simplifies prototyping new CAD

modeling algorithms and renders the results of the research
group’s work readily available for academic and engineering
communities. Availability of the research results in the form of
software prototypes is a key to solving the technology transfer
problem raised by [Brown 1982].

Inspection of geometric and topological structures is of
crucial importance when developing or profiling geometric
modeling algorithms, such as Boolean Operations, fillets,
offsets, etc. During such tedious working sessions, a lot of
common questions may arise. Some of them are as follows: a)
what is the host geometry (curve or surface type) of a particular
edge or a face? b) what are the topological and geometric
orientations of the geometric primitives? c) what is the
topological structure of the model? d) how to find a particular
boundary element in the model? e) what is the quality of a
curve or a surface parameterization? f) is it necessary to repair
the working geometry and how to do that? Answering these and
many other similar geometric questions often requires laborious
manual work. In this paper, we introduce a software which
assists in geometric analysis and substantially reduces the
efforts needed to “debug CAD model”.

In addition to its inspection functions, the software can also
serve as a framework for the development of geometric
modeling algorithms. The software provides STEP-compliant
geometric and topological primitives. These primitives are
rendered using a set of readily available VTK pipelines. An
algorithm which is developed within the framework of our
system may benefit from the convenience interfaces which
facilitate error reporting and graphical dumps (similar in nature
to the commonly used textual diagnostic outputs). Therefore,
the software establishes a framework for implementing
multipurpose geometric tools for Computer-Aided Design
applications. The software permitted to develop several CAD
algorithms including some commercial ones.

Furthermore, it was discovered that the developed
inspection and prototyping facilities are helpful in teaching the
basic CAD concepts. According to [Rossignac 2004], CAD
learners suffer from the unavailability of simplistic and intuitive
models of the concepts they have to deal with during the
education process. For example, students and even experienced
engineers often confront such common problem as a misleading
visual appearance of a CAD model. The geometry may look
visually perfect, but contain a variety of internal quality
phenomena, including wild or irregular parametrization of
curves and surfaces, presence of redundant topological
primitives, large tolerance gaps, and overlaps, etc. The first
stage is to explain that what is displayed on the screen is not the
real definition of a CAD part (What You See is NOT What You
Get). This is exactly where a boundary representation

Geometric Modeling. Computer Graphics in Education GraphiCon 2017

324 24–28 September 2017, Perm, Russia

inspection utility can be advantageous. In this regard, the
present software contributes to the education-driven research in
CAD as formulated by [Rossignac 2004].

Finally, the efficient development of geometric modeling
algorithms involves some mathematical abstractions which
cannot be visualized directly in the modeling space. Such
abstractions include adjacency graphs for boundary elements,
parametric domains of faces, level sets of objective functions
being optimized, etc. The visualization of such abstract data
often gives a useful insight in a problematic situation where a
human imagination may fail to recognize the cause of a
problem. As mentioned by [Zenkin 1991], a system providing
such cognitive visualization facilities is the so called
“brainware” because it assists humans in their creative process.

3. Related work
Among the available frameworks for geometry processing,

it is worth mentioning MeshLab (see [Cignoni et al. 2008]) and
OpenFlipper (see [Mobius and Kobbelt 2012]) software tools.
Both systems were designed with the similar motivation to
make the development of geometric algorithms more efficient,
and to bridge the gap between academic researchers and
industry. Our framework pursues the same goals, but focuses on
precise CAD instead of polyhedral geometry. Although
OpenFlipper provides a generic architecture which applies to
curved geometry, it does not use a full-featured embedded CAD
kernel. Therefore, the development of precise CAD algorithms
will be problematic in such systems.

[Averbukh et al. 2015] presented a framework for deriving
specialized systems for cognitive visualization. The cognitive
visualization tools facilitate the investigation of subtle
algorithmic problems, and even the creation of new knowledge.
According to [Brooks 1996], such systems serve as
“intelligence amplification” tools. The ability to visualize
information which does not correspond to any real object but
represents some abstract or multi-dimensional data is of great
importance for the efficient and thoughtful development of
geometric algorithms.

In practice, CAD systems and specialized CAD tools are
often used for the development of geometric algorithms. These
systems provide extensible frameworks which can be exploited
by software developers and researchers. Data communication
between an algorithm and a CAD system can be either direct
(an algorithm calls the corresponding API of a system) or
indirect with the use of exchange file formats (e.g. STEP). In
the latter case, a geometric algorithm maintains a certain level
of independence, as it can be used in a CAD-neutral
environment. CAD software which integrates a newly
developed geometric algorithm should offer sufficient
functionality which is sometimes rather advanced. For example,
[Lee et al. 2005] base their experiments on a commercial
platform which provides enough functionality to prepare CAD
models for the engineering analysis. Likewise, [Seo et al. 2005]
base their algorithm on Parasolid kernel which offers an
advanced face removal operator. These examples illustrate that
a particular technology can be essential to conduct research in a
specific field.

The alternative approach consists in developing technology-
neutral algorithms which communicate with an underlying
geometric kernel using an abstract interface. Researchers have
made several attempts to create such interface. Probably the
most remarkable one is Djinn interface proposed by [Armstrong
et al. 2002]. The Djinn interface eliminates dependency on the
underlying geometric kernel. Moreover, it unifies representation
of a geometric model with the use of the concept of cellular

topology. According to [Stroud and Nagy 2011], Djinn’s
authors aimed to create a standard interface which could be
used to share applications between researchers and to
demonstrate research applications within a commercial
environment. The existence of such interface could lead to a
closer collaboration between researchers and industry.
Therefore, Djinn contributes to solving the technology transfer
problem raised by [Brown 1982]. Unfortunately, the concept of
Djinn does not take into account commercial considerations.
Indeed, software vendors prefer to have a code that is closely
tied to their system. According to [Stroud and Nagy 2011],
having Djinn interface in a CAD system would allow
researchers to add new functions to a CAD system, such as
feature recognition, analysis or manufacturing code. However,
to develop a software system which is fully compliant with
Djinn is a challenge.

We have chosen another approach which is essentially
technology-dependent. At the same time, the employed
technology (OpenCascade) is open-sourced and readily
available for anyone from academia or industry. Moreover, this
modeling kernel is known to provide only a small subset of
functionality which is available in commercial libraries such as
ACIS or Parasolid. Therefore, any algorithm based on
OpenCascade can be transmitted to another library, at least in
principle. From this point of view, OpenCascade-based
algorithms can be considered as prototypes for exchange
between academia and industry.

Fig. 1. The general view of the software. The desktop is

composed of three viewers: part viewer, face domain viewer
and host geometry viewer.

OpenCascade library provides its own prototyping
framework called Draw Test Harness (or simply Draw).
Although our software is not as multi-purpose as Draw, there
are several advantages which make it more practical than Draw
in some cases. First of all, it offers a combined layout of three
principal geometric viewers, as shown in Figure 1. These
viewers are interactive and do not require any console inputs
like Draw. Among other features are explicit indexation of
topological elements, availability of graph models, curvature
maps and combs for geometric analysis, convexity analysis for
edges, developer-oriented visualization and many other utilities
which are not readily available in Draw.

4. Inspection facilities
For the three-dimensional visualization, VTK library by

[Schroeder et al. 2006] was employed. The architecture of
visualization pipelines offered by VTK allows for a clear

GraphiCon 2017 Геометрическое моделирование. Компьютерная графика в образовании

24–28 сентября 2017, Пермь, Россия 325

distinction between the data transformation before rendering
and the rendering itself. Another remarkable advantage of VTK
is a broad set of available visualization features which are
commonly used by many scientists and software engineers all
over the world.

4.1 B-Rep inspection
According to [Corney and Lim 2001], although different

geometric kernels have their subtleties in B-Rep realization,
there is one consensus that emerged earlier on. The well-turned
idea was to separate geometric definitions of boundary elements
from the information about how these elements are connected.
This idea which divorces topology from geometry is presented
in any commercial multi-purpose CAD geometric kernel.

Fig. 2. Non-manifold edges (dark-red color) in a model

composed of four boxes sharing their faces.

The visualization facilities for B-Rep structures introduced
in our software are not unique. Similar techniques for insightful
rendering of boundary representation structures are described
by [Corney and Lim 2001]. When designing a visualization
system, it is first necessary to define how boundary
representation structures of a particular modeling kernel are
implemented. Modern libraries have to deal with both manifold
and non-manifold objects. OpenCascade, as well as ACIS,
utilize OBJECT/CO-OBJECT (e.g. EDGE/CO-EDGE) data
structure which is capable of representing non-manifold models
(Figure 2).

4.2 Adjacency graphs
According to [Corney and Lim 2001], the great value of

graphs in geometric modeling comes from their ability to
represent the connectivity between geometric elements. The
Scheme AIDE utility of ACIS allows for a visualization of
different graphs including vertex-edge and face adjacency
graphs.

In our software, two graphs can be visualized for a CAD
part: the topology graph (Figure 3), which provides full
information on how topological elements are nested into each
other, and the attributed adjacency graph (Figure 4)
representing adjacency relations between individual faces as
explained by [Joshi and Chang 1988]. Both graphs give insight
into the internal organization of the topological structure of a
particular part (which is not visible without specialized
inspection tools).

Fig. 3. Topology graph of a simple box model. Different
colors are used to distinguish between different types of

topological elements (compounds, solids, shells, faces, etc.).

Both graphs are synchronized with the part viewer which
allows for easy searching of the face of interest in the
topological structure of the model.

Fig. 4. Attributed adjacency graph of ANC101 model. The
nodes correspond to faces; the arcs represent adjacency

relations.

Graph representations are especially useful in algorithms
which involve analysis of the connection between boundary
elements of a model. Such information is fully used in feature
recognition scenarios to extract the engineering semantics of a
model. Other applications are model simplification for CAE,
local operations (see [Fahlbusch and Roser 1995] for
introduction), etc.

4.3 Geometry analysis
As mentioned by [Greiner et al. 1995], visualization is the

indispensable tool for controlling the quality of geometric
objects including their differential and aesthetic properties. A
shaded display is usually insufficient to draw a conclusion on
the quality of a modeling result. Therefore, additional
techniques such as curvature maps (Figure 5), or isoparametric
wireframe views are employed to detect surface irregularities.

Geometric Modeling. Computer Graphics in Education GraphiCon 2017

326 24–28 September 2017, Perm, Russia

Fig. 5. Mean (on the left) and Gaussian (on the right)
curvature maps for a B-spline blade surface.

5. Prototyping framework
According to [Mobius et al. 2013], researchers tend to

confine their development efforts to implementing the
algorithmic core and to spend less time on software
engineering. Therefore, the authors of the OpenFlipper
framework have implemented a set of common operations for
data processing, visualization, I/O and many other components,
including data structures, which are constantly and vainly re-
invented by researchers and software engineers. Having all such
components readily available allows developers to implement
their innovative ideas in a rapid and goal-oriented way. Our
main driving force was the idea to create new software, which
will provide a similar framework for CAD-oriented research.

5.1 General architecture
Our software is designed to operate with a single CAD part.

This restriction simplifies the general architecture of the
software, thus allowing it to operate as a test bench for a single
part geometry. The software is also capable of working with
meshes and point clouds at the basic level. The framework
provides such commonly used features as hierarchical
organization of data objects, open/save in binary format,
undo/redo, multi-purpose 3D and 2D viewers, etc.

Compared to MeshLab or OpenFlipper utilities which offer
a plugin mechanism for software extension, we use a more
straightforward prototyping approach. Our software provides a
collection of components, including data structures, basic
algorithms, visualization pipelines and typical GUI controls. A
minimalistic application is provided to put these components
together and to enable interactive B-Rep inspection. Every new
algorithm being implemented within the framework should be
supplied with its own independent executable. A prototype
developer is free to choose particular GUI controls and to
configure their communication. Such flexibility comes at a
price. The developer is forced to write some sort of non-
scientific code to bring everything together.

5.2 Use cases
In the following paragraphs, we present several use cases

where our system helped to facilitate coding and debugging.
Some of the mentioned algorithms were integrated into
commercial software.

5.2.1 Feature recognition

Feature recognition allows to recover the semantics of a
geometric model when the information about its features is
unavailable. Feature recognition is a primary application for
model inspection utilities, including edge and face indexation,
edge convexity analysis (Figure 6), traversing adjacency graphs,
etc. This sort of functionality has found a broad use in
manufacturing planning where such features as holes, pockets,
and bosses are detected in an input 3D model.

Fig. 6. Visualization of convex (green) and concave (red)
edges for ANC101 model.

Figure 7 illustrates a sheet metal part (which was imported
from a STEP file without the information on features) before
and after recognition.

Fig. 7. The sheet metal part imported from STEP file (on
the left) and feature recognition result (on the right) shown in

different colors depending on the feature type.

In sheet metal manufacturing, the information about
features can be used for fabrication cost estimation, validation
of design by unfolding, preparation of 2D drawings, etc.

Fig. 8. Flattening graph for a sheet metal part. Each node

corresponds to a flange being unfolded to a flat pattern.

The prototyping system has not only helped to perform an
interactive inspection of sheet metal features, but has also
assisted in the construction of explicit unfolding graphs (Figure
8). Such graphs provide information about the order of
flattening and transformations associated with every flange.

5.2.2 As-built reconstruction

The present framework is used in research and development
for automated reconstruction of CAD models from three-
dimensional point clouds and meshes. We use VTK to visualize

GraphiCon 2017 Геометрическое моделирование. Компьютерная графика в образовании

24–28 сентября 2017, Пермь, Россия 327

massive point clouds and to let users interactively operate on
their portions for segmentation and surface fitting. One example
is the as-built reconstruction of industrial pipelines from laser-
scan data (Figure 9).

Fig. 9. The initial point cloud (on the left) and the extracted

cylindrical primitives (on the right).

5.2.3 Contour capture

Contour capture algorithm is a variation of non-solid
Boolean operation used to extract a certain piece of the two-
dimensional (shell) model. The user interactively constructs a
closed contour which follows the input geometry with a
prescribed tolerance. The resulting polyline is then smoothed
out using a dedicated reapproximation technique. Once the
contour is smoothed, it can be then imprinted on the model by
projection. At the last stage, the piece of geometry limited by
the imprinted contour is extracted (Figure 10). Like any
Boolean operation, this algorithm consists of several internal
stages which can be implemented and tested separately. To
facilitate the maintenance of this algorithm, we have used the
novel framework which allowed to save a significant amount of
time on debugging.

Fig. 10. Manually specified contour to capture (closed loop
of line segments) and the result of capturing algorithm.

6. Conclusion and further work
The present software is available online at

http://www.analysissitus.org. In future versions, we are
planning to add new inspection facilities, i.e. to check fairness
of curves and surfaces following the ideas presented in
[Burchard et al. 1994], [Greiner et al. 1995], [Hagen et al.
1995], [Sapidis and Koras 1997] and other works.

7. References
[1] Armstrong, C.G., Corney, J.R., Salmon, J.C., and

Cameron, S. 2002. Djinn. A Geometric Interface for Solid
Modelling.

[2] Averbukh, V.L., Bakhterev, M.O., Vasev, P.A., Manakov,
D. V, and Starodubtsev, I.S. 2015. Development of
approaches to realization of specialized visualization
systems. GraphiCon, 17–21.

[3] Brooks, F.P. 1996. Toolsmith II. Communications of the
ACM 39, 3, 61–68.

[4] Brown, C.M. 1982. PADL-2: A Technical Summary.
[5] Burchard, H.G., Ayers, J.A., Frey, W.H., and Sapidis, N.S.

1994. Approximation with Aesthetic Constraints.
Designing Fair Curves and Surfaces, 3–28.

[6] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., and Ranzuglia, G. 2008. MeshLab: an Open-

Source Mesh Processing Tool. Sixth Eurographics Italian
Chapter Conference, 129–136.

[7] Corney, J.R. and Lim, T. 2001. 3D Modelling with ACIS.
[8] Fahlbusch, K.-P. and Roser, T.D. 1995. HP PE /

SolidDesigner : Dynamic Modeling for Three-Dimensional
Computer-Aided Design. Hewlett-Packard Journal, 6–13.

[9] Greiner, G., Kolb, A., Pfeifle, R., Seidel, H., Encarna, M.,
and Klein, R. 1995. A Platform for Visualizing Curves and
Surfaces. Computer-Aided Design 27, 7, 559–566.

[10] Hagen, H., Hahmann, S., and Schreiber, T. 1995.
Visualization and computation of curvature behaviour of
freeform curves and surfaces. Computer-Aided Design 27,
7, 545–552.

[11] Jern, M. 1989. Visualization of Scientific Data. Proceeding
Advances in Computer Graphics V (Tutorials from
Eurographics'89 Conf.), 1–17.

[12] Joshi, S. and Chang, T.C. 1988. Graph-based heuristics for
recognition of machined features from a 3D solid model.
Computer-Aided Design 20, 2, 58–66.

[13] Lee, K., Armstrong, C., and Price, M. 2005. A small
feature suppression/unsuppression system for preparing B-
rep models for analysis. Proceedings of the 2005 1, 212,
113–124.

[14] Mobius, J. and Kobbelt, L. 2012. OpenFlipper: An open
source geometry processing and rendering framework.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 6920 LNCS, 488–500.

[15] Mobius, J., Kremer, M., and Kobbelt, L. 2013.
OpenFlipper - A highly modular framework for processing
and visualization of complex geometric models. 2013 6th
Workshop on Software Engineering and Architectures for
Realtime Interactive Systems, SEARIS 2013; Co-located
with the 2013 Virtual Reality Conference - Proceedings,
25–32.

[16] Rossignac, J. 2004. Education-driven research in CAD.
CAD Computer Aided Design 36, 14, 1461–1469.

[17] Sapidis, N.S. and Koras, G.D. 1997. Visualization of
curvature plots and evaluation of fairness: an analysis of
the effect of ‘scaling.’ Computer Aided Geometric Design
14, 96, 299–311.

[18] Seo, J., Song, Y., Kim, S., Lee, K., Choi, Y., and Chae, S.
2005. Wrap-around operation for multi-resolution CAD
model. Computer-Aided Design and Applications 2, 1-4,
67–76.

[19] Schroeder, W., Martin, K., Lorensen, B. 2006.
Visualization Toolkit: An Object-Oriented Approach to 3D
Graphics. Kitware, Colombia.

[20] Stroud, I. and Nagy, H. 2011. Solid Modelling and CAD
Systems: How to Survive a CAD System.

[21] Zenkin, A. 1991. Cognitive Computer Graphics.

About authors
Vadim Turlapov (vadim.turlapov@itmm.unn.ru): professor

of Computer Science, Lobachevsky Nizhny Novgorod
University.

Alexander Malyshev (al.s.malyshev@rambler.ru): PhD
student, Lobachevsky Nizhny Novgorod University.

Sergey Slyadnev (sergey.slyadnev@gmail.com): PhD
student, Lobachevsky Nizhny Novgorod University.

