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Abstract 

We present an image-based system for automatic modeling and 
interactive rendering of 3D objects. We describe our contribution 
to image-based modeling and interactive multi-resolution rendering 
algorithms. Our representation is based on images with depths, 
which allow it to be compact and flexible, suitable for static and 
animated scenes, simplify streaming network transmission. The 
representation has been proposed and accepted into MPEG-4 AFX 
(Animated Framework eXtension). 

Keywords: Image-based rendering, Image-based modeling, 
MPEG-4, Depth Images, Splatting. 

1. INTRODUCTION 

This paper describes a representation and a set of algorithms for 
image-based modeling and interactive rendering of high-quality 3D 
objects with precomputed illumination.  

Recent multimedia applications demand visualization of 3D models 
with high quality in network environment, on different client 
devices, including mobile. Polygonal meshes are not well suited for 
this task due to redundancy of connectivity information in some 
cases and complex level-of-detail, compression, progressive 
transmission algorithms. Image-based graphics could present a 
solution for these problems. We have developed a framework that 
utilizes novel image-based and point-based techniques to obtain 
high-resolution 3D object representation based on images with 
depth. The framework is capable to process the data, make editing 
operations if necessary, deliver the model through the network, 
and render it in real-time.  

The concept of using images to decrease rendering complexity and 
capture precomputed illumination is well known in graphics. 
Image-based rendering techniques proved their viability in different 
tasks. Images were used in image caching algorithms ([1]) as a 
replacement for rendering of distant geometry. In order to extend 
image-based concept to handling objects situated near the 
observer, several approaches were made on extending images with 
corresponding depth information [2]. Image-based rendering 
methods with image warping approaches were used for interactive 
browsing ([3], [4]). LDIs ([3])  (Layered Depth Images) were 
introduced in order to solve reconstruction problem in case of 
multiple reference images by pre-warping all initial samples into 
multi-valued depth map corresponding to single projection of 3D 
object. LDI allows keeping all parts of the surface, including 
invisible from the reference viewpoints.  

Light-field methods ([14]) can produce high-quality rendering, but 
require a lot of reference images, which restricts the use of such 
techniques to non-animated objects with limited sizes.  

The recent trend is to use point-based primitives instead of images. 
Point primitive has lower computational cost than triangle, 
therefore the use of points especially effective in complex scenes 

([5], [6], [7], [8]). An important advantage is that points are more 
convenient for graphics pipeline and supported by hardware on 
most platforms.  

Our framework obtains object appearance and geometry 
information using several renderings of the object from different 
viewpoints in off-line rendering package (e.g. Discreet 3DS 
MAX). We prepare and save the information in several depth 
images using z-buffer. We place several cameras around the 
possible view directions of the model and produce high-quality 
renderings from each camera. Resulting data is a set of color 
images with depth - so-called DIBR (Depth-Image Based 
Representation). This raw data is processed to prepare object 
description suitable for real-time rendering. We eliminate 
redundant samples with cleanup procedure; apply special 
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Figure 1: (a) Overview of the system: modeling, preprocessing, 
and rendering stages. (b) Example of initial color and depth map. 

(c) After optimization (d) Rendering results. 
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processing to color images in order to allow lossy compression. 
Then we compress color maps with JPEG or wavelet-based 
algorithm. Transmission to client is done using MPEG-4 
mechanisms. Then model can be visualized in interactive mode 
using point-based algorithms and OpenGL-compliant hardware. 
Figure 1 shows the process as a whole. 

This paper is organized as follows. In the next section we describe 
model representation, developed for MPEG-4 AFX. The following 
sections describe various stages of the process. In Section 3 we 
describe modeling, preprocessing, and compression of the data. 
Rendering algorithms are described in Section 4. In Section 5 we 
give experimental results for objects in DIBR format. Conclusion is 
given in Section 5. 

2. REPRESENTATION 

We represent each object in the scene by a set of reference images, 
which cover visible surface of the object. Each reference image is 
accompanied by additional information about geometry (depth 
image) and camera parameters. Common camera parameters are 
used: position, orientation, field of view, near and far clipping 
planes. In case of orthographic camera width and height of camera 
view field are stored. Each pixel in gray-scale depth image 
represents a projection of some part of object surface. Pixels with 
intensity 0 are considered transparent - i.e. representing holes in 
the object. Reference images can be stored in different formats, 
including ones that can be progressively transmitted over network 
(e.g. with wavelet compression).  

Each depth image contains its part of original model. Several depth 
images combined together represent a 3d object. There are no 
restrictions on sizes, position and orientation of reference images.  

Static version of our representation is directly obtained from range 
data or off-line renderings and can be visualized either immediately 
or after applying optimization techniques. 

Also we introduce animated version that consists of two streams: 
color stream and depth stream. Animated object therefore is 
represented as a set of synchronized color and depth streams. This 
representation is useful for 3d movie-like applications [9]. 
Animated image-based representation has numerous advantages 
over traditional key-frame animation, especially on complex 
scenes: no limitations on animation type, complexity-independent 
rendering, and small size due to highly effective MPEG-4 video 
compression algorithms. 

Flexibility and simplicity of our representation, support for 
animated data, allowed it to be accepted into MPEG-4 AFX ([9], 
[10], [11]) as a part of Depth-Image Based Representation 
proposal [12]. 

3. DATA AQUISITION AND MODELING 

To create a model we have to obtain several images with depth 
containing different views of the object. The images of real world 
objects can be acquired by range scanning hardware or produced 
as an output of shape reconstruction techniques. 

Synthetic objects can also be efficiently modeled with image-based 
representations. The images of the model can be created using off-
line 3d modeling and rendering systems.  

To create the DIBR model we should place a set of reference 
cameras around the model in 3D rendering system. For each 
reference camera the image together with Z-buffer snapshot is 

produced. The number of cameras and their orientation depend on 
the shape of the object and on field of application. Our system 
allows automatic and manual positioning of cameras. In manual 
mode user can freely tune number and positions of cameras. 
Resulting object will be a union of all samples visible from all 
cameras. The process of automatic camera positioning arranges 
pre-defined number of cameras (usually 6, 12, or 24) evenly in 
space of possible viewing directions. In order to increase model 
quality and capture some internal details, that are not visible from 
cameras in a standard camera configuration, more cameras can be 
added manually. The versatility of DIBR allows placing several 
cameras with different resolution and orientation to capture 
separate object parts with different sampling rate.  

In practice this stage usually requires little user effort, because 
approximation of the model can be obtained with automatic 
camera positioning, and then refined in one-two steps, if necessary. 
User is free to select desired resolution of images, therefore to 
control quality of the model. Usually 6 to 8 cameras represent the 
model of an object with 256x256 (low quality) to 1024x1024 (high 
quality) images. 

Because each reference camera observes only a part of object 
surface, several depth maps are required to form a complete 
model. In this case samples reconstructed from the different depth 
maps may almost coincide in space. These samples capture the 
same point on the surface of the object. Such redundant samples 
cause several problems: increased size of the model, rendering 
artifacts due to reconstruction rounding errors and color 
inconsistency of samples from different depth maps. To overcome 
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Figure 2: Example of depth map cleaning. (a) – ‘Robot’ model 
rendered before clean. (b) – after clean. Note improved text 

sharpness. 
 



these problems we use novel algorithms described in the following 
sections. 

3.1 Redundancy elimination 
The task of redundancy elimination stage is to minimize the 
number of object surface samples duplicated in different depth 
maps. The sample is considered redundant if there is another 
sample or set of samples capturing the same part of surface with 
higher quality. Here we describe our algorithm for detecting such 
samples. It is applicable for depth maps created with orthographic 
cameras.  

For each pixel of each depth map we restore the corresponding 3D 
sample position and compute a set of additional attributes: index of 
source depth map, position (x,y) in this map, sample size, normal 
vector, and so-called 'rating'. Rating characterizes the sampling 
quality at a given point in a given depth map. For the pixel in the 
depth map its rating is inverse proportional to corresponding 
surface sample area:  
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where pN  is a normal to camera viewing plane,
sN is a surface 

normal at the given sample, and
pA  is a the maximum projected 

area of the splat. (·) is vector dot-product). 

All samples located close enough to each other in 3D (i.e. those 
representing, effectively, the same 3D sample) are compared by 
their respective rating. One sample with the highest rating is kept 
and others are removed from their depth maps. To eliminate a 
redundant sample the corresponding pixels made black in the depth 
map. We also consider cases when sizes of samples are too 
different that one sample entirely covers another. In this case we 
remove large samples that contain smaller ones. 

The result of this procedure is non-redundant representation, 
where each sample of the object surface is captured by only one 
map. Results show that cleanup procedure leads to reduction of 
model size and increase of rendering quality (see Figure 2). 
Rendering is also faster due to smaller number of samples need to 
be processed (see Table 1). 

3.2 Compression 
Before transmission to a client machine, color and depth images 
should be compressed in order to decrease download time.  Lossy 
image compression methods offer much higher compression ratio 
compared to lossless algorithms without sacrificing much in image 
quality. But pixel colors are changed after lossy compression. 

These changes are barely noticeable for a human observer but 
break color consistency condition for DIBR models that result in 
noticeable rendering artifacts. 

We propose the solution called color dilation. The main idea is to 
change the background color near object silhouette in color map, 
without modification of the depth map. Actual samples are 
identified by non-empty pixels of the depth map, so geometry will 
be the same after dilation. The new colors are calculated depending 
on the compression scheme (block-based for JPEG, continuous for 
wavelet) and on colors of the neighboring object silhouette pixels. 
During the compression border pixels are mixed with colors of 
updated background. Due to color dilation difference of pixel 
colors before and after compression is much lower (see Figure 1).  

4. RENDERING 

Our visualization software uses OpenGL to render the scene at 
interactive rates. We deal with an animation frame-by-frame. 
Before rendering a frame, we select a desired quality of the depth 
maps. We choose the quality of a depth map proportionally to the 
visible size of its bounding box. Image is resampled and 3D 
positions of all samples are restored. Then data is projected onto 
the viewing plane and the final image is reconstructed. Resampling 
of the reference depth image allows to maintain desired frame rate. 

We implemented two reconstruction methods based on splatting 
[13] idea. First reconstruction method uses GL_POINTS as 
rendering primitive. This approach is fast, but the quality depends 
on precision of point size calculation. Point size calculation is 
implemented using hardware shaders. This allowed us to precisely 
calculate size of each point depending on distance to the viewer 
and camera parameters. We approximate required parameters by 
estimating projected sizes of several reference points. 

Further improvement of quality is achieved by the second scheme, 
using more complex splatting. Instead of uniformly colored disc 
splats, it uses discs with Gaussian intensity distribution. In order to 
archive correct blending of nearby points, we use two-pass 
rendering [7]. This method allows achieving higher quality, but it is 
near two-times slower due to multi-pass rendering of each frame. 

An advantage of our approach is simple level of detail control by 
resizing of each image to some needed extent. In our 
implementation this is done at client size after downloading of the 
image in full size. Using MPEG-4 backchannel this resizing can be 
done by server, thus greatly saving bandwidth.  

 
                                (a)                                                                      (b)                                                                   (c) 

Figure 3: Dilation of image color for JPEG compression. (a) Initial depth image after cleaning (holes correspond to removed redundant 
pixels). (b) Color image correspond to the depth map - the holes will produce visible artifacts after JPEG compression. (c) Dilated image - 

holes were filled by nearby colors, color changes become smoother. 



5. RESULTS 

We implemented and tested DIBR framework on various 3D 
models with different shapes and complexity. Sizes and processing 
time for several models in DIBR format is present in Table 1. The 
result of interactive rendering for different models is shown in 
Figure 4.   Tests were performed on Intel Pentium IV 1500Mhz 
with NVidia GeForce3 TI 200 accelerator. Rendering was done 
into 1024x1024 window. The quality and speed of rendering is 
quite good for various rendering shapes. 

6. CONCLUSION 

In this paper we presented an image-based system, which main 
purpose is modeling and rendering of 3D models in image-based 
format, which has been accepted into MPEG-4 AFX. The 
representation is based on images with depth and has static and 
animated versions. We contribute a set of optimization techniques, 
which allow storing the model with high compression ratio and 
rendering it in real-time with high quality. 
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 Hamburger Robot T-Rex 

Number of textures   6    6   12  

Number of samples   237 412   411 723   
452 462 

Uncompressed raw size   7,5mb   7,5mb   15mb  

Compressed raw size (png)   1,09mb   1,66mb   2,68mb 

Texture dims   512   512   512 

Raw rendering speed   29 fps  17 fps  16 fps 

Preprocessing time (m:s)   00:06   00:07   00:31 

Optimized number of 
samples  

 191 988   293 889   
312 780 

Dilated compressed size 
(png, jpg)  

 279k   436k   735k 

Optimized rendering speed 
(point, gauss)  

 35(13)   23(11)   23(12) 

Table 1: Storage requirements, preprocessing and rendering time 
for DIBR models. 
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Figure 4: Interactive rendering of DIBR models. (a) Hamburger 
(b) Robot (c) T-Rex 


