
A Framework for Depth Image-Based Modeling and Rendering

Alexey Ignatenko, Anton Konushin
Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia
ignatenko@graphics.cs.msu.su, ktosh@zmail.ru

Abstract

We present an image-based system for automatic modeling and
interactive rendering of 3D objects. We describe our contribution
to image-based modeling and interactive multi-resolution rendering
algorithms. Our representation is based on images with depths,
which allow it to be compact and flexible, suitable for static and
animated scenes, simplify streaming network transmission. The
representation has been proposed and accepted into MPEG-4 AFX
(Animated Framework eXtension).

Keywords: Image-based rendering, Image-based modeling,
MPEG-4, Depth Images, Splatting.

1. INTRODUCTION

This paper describes a representation and a set of algorithms for
image-based modeling and interactive rendering of high-quality 3D
objects with precomputed illumination.

Recent multimedia applications demand visualization of 3D models
with high quality in network environment, on different client
devices, including mobile. Polygonal meshes are not well suited for
this task due to redundancy of connectivity information in some
cases and complex level-of-detail, compression, progressive
transmission algorithms. Image-based graphics could present a
solution for these problems. We have developed a framework that
utilizes novel image-based and point-based techniques to obtain
high-resolution 3D object representation based on images with
depth. The framework is capable to process the data, make editing
operations if necessary, deliver the model through the network,
and render it in real-time.

The concept of using images to decrease rendering complexity and
capture precomputed illumination is well known in graphics.
Image-based rendering techniques proved their viability in different
tasks. Images were used in image caching algorithms ([1]) as a
replacement for rendering of distant geometry. In order to extend
image-based concept to handling objects situated near the
observer, several approaches were made on extending images with
corresponding depth information [2]. Image-based rendering
methods with image warping approaches were used for interactive
browsing ([3], [4]). LDIs ([3]) (Layered Depth Images) were
introduced in order to solve reconstruction problem in case of
multiple reference images by pre-warping all initial samples into
multi-valued depth map corresponding to single projection of 3D
object. LDI allows keeping all parts of the surface, including
invisible from the reference viewpoints.

Light-field methods ([14]) can produce high-quality rendering, but
require a lot of reference images, which restricts the use of such
techniques to non-animated objects with limited sizes.

The recent trend is to use point-based primitives instead of images.
Point primitive has lower computational cost than triangle,
therefore the use of points especially effective in complex scenes

([5], [6], [7], [8]). An important advantage is that points are more
convenient for graphics pipeline and supported by hardware on
most platforms.

Our framework obtains object appearance and geometry
information using several renderings of the object from different
viewpoints in off-line rendering package (e.g. Discreet 3DS
MAX). We prepare and save the information in several depth
images using z-buffer. We place several cameras around the
possible view directions of the model and produce high-quality
renderings from each camera. Resulting data is a set of color
images with depth - so-called DIBR (Depth-Image Based
Representation). This raw data is processed to prepare object
description suitable for real-time rendering. We eliminate
redundant samples with cleanup procedure; apply special

(a)

(b)

(c)

(d)

Figure 1: (a) Overview of the system: modeling, preprocessing,
and rendering stages. (b) Example of initial color and depth map.

(c) After optimization (d) Rendering results.

Geometry

Cameras
positioning

Off-line
rendering

Raw depth
maps

Redundancy
elimination

Image dilation

Compression

Optimized
depth maps

3D mipmap

Visibility
splatting

Reconstruction
and filtering

M
P

E
G

-4
 d

el
iv

er
y

Final image

Server (processing) Client (browsing)

processing to color images in order to allow lossy compression.
Then we compress color maps with JPEG or wavelet-based
algorithm. Transmission to client is done using MPEG-4
mechanisms. Then model can be visualized in interactive mode
using point-based algorithms and OpenGL-compliant hardware.
Figure 1 shows the process as a whole.

This paper is organized as follows. In the next section we describe
model representation, developed for MPEG-4 AFX. The following
sections describe various stages of the process. In Section 3 we
describe modeling, preprocessing, and compression of the data.
Rendering algorithms are described in Section 4. In Section 5 we
give experimental results for objects in DIBR format. Conclusion is
given in Section 5.

2. REPRESENTATION

We represent each object in the scene by a set of reference images,
which cover visible surface of the object. Each reference image is
accompanied by additional information about geometry (depth
image) and camera parameters. Common camera parameters are
used: position, orientation, field of view, near and far clipping
planes. In case of orthographic camera width and height of camera
view field are stored. Each pixel in gray-scale depth image
represents a projection of some part of object surface. Pixels with
intensity 0 are considered transparent - i.e. representing holes in
the object. Reference images can be stored in different formats,
including ones that can be progressively transmitted over network
(e.g. with wavelet compression).

Each depth image contains its part of original model. Several depth
images combined together represent a 3d object. There are no
restrictions on sizes, position and orientation of reference images.

Static version of our representation is directly obtained from range
data or off-line renderings and can be visualized either immediately
or after applying optimization techniques.

Also we introduce animated version that consists of two streams:
color stream and depth stream. Animated object therefore is
represented as a set of synchronized color and depth streams. This
representation is useful for 3d movie-like applications [9].
Animated image-based representation has numerous advantages
over traditional key-frame animation, especially on complex
scenes: no limitations on animation type, complexity-independent
rendering, and small size due to highly effective MPEG-4 video
compression algorithms.

Flexibility and simplicity of our representation, support for
animated data, allowed it to be accepted into MPEG-4 AFX ([9],
[10], [11]) as a part of Depth-Image Based Representation
proposal [12].

3. DATA AQUISITION AND MODELING

To create a model we have to obtain several images with depth
containing different views of the object. The images of real world
objects can be acquired by range scanning hardware or produced
as an output of shape reconstruction techniques.

Synthetic objects can also be efficiently modeled with image-based
representations. The images of the model can be created using off-
line 3d modeling and rendering systems.

To create the DIBR model we should place a set of reference
cameras around the model in 3D rendering system. For each
reference camera the image together with Z-buffer snapshot is

produced. The number of cameras and their orientation depend on
the shape of the object and on field of application. Our system
allows automatic and manual positioning of cameras. In manual
mode user can freely tune number and positions of cameras.
Resulting object will be a union of all samples visible from all
cameras. The process of automatic camera positioning arranges
pre-defined number of cameras (usually 6, 12, or 24) evenly in
space of possible viewing directions. In order to increase model
quality and capture some internal details, that are not visible from
cameras in a standard camera configuration, more cameras can be
added manually. The versatility of DIBR allows placing several
cameras with different resolution and orientation to capture
separate object parts with different sampling rate.

In practice this stage usually requires little user effort, because
approximation of the model can be obtained with automatic
camera positioning, and then refined in one-two steps, if necessary.
User is free to select desired resolution of images, therefore to
control quality of the model. Usually 6 to 8 cameras represent the
model of an object with 256x256 (low quality) to 1024x1024 (high
quality) images.

Because each reference camera observes only a part of object
surface, several depth maps are required to form a complete
model. In this case samples reconstructed from the different depth
maps may almost coincide in space. These samples capture the
same point on the surface of the object. Such redundant samples
cause several problems: increased size of the model, rendering
artifacts due to reconstruction rounding errors and color
inconsistency of samples from different depth maps. To overcome

(a)

(b)

Figure 2: Example of depth map cleaning. (a) – ‘Robot’ model
rendered before clean. (b) – after clean. Note improved text

sharpness.

these problems we use novel algorithms described in the following
sections.

3.1 Redundancy elimination
The task of redundancy elimination stage is to minimize the
number of object surface samples duplicated in different depth
maps. The sample is considered redundant if there is another
sample or set of samples capturing the same part of surface with
higher quality. Here we describe our algorithm for detecting such
samples. It is applicable for depth maps created with orthographic
cameras.

For each pixel of each depth map we restore the corresponding 3D
sample position and compute a set of additional attributes: index of
source depth map, position (x,y) in this map, sample size, normal
vector, and so-called 'rating'. Rating characterizes the sampling
quality at a given point in a given depth map. For the pixel in the
depth map its rating is inverse proportional to corresponding
surface sample area:

p

sp

A

NN
r

),(
=

where pN is a normal to camera viewing plane,
sN is a surface

normal at the given sample, and
pA is a the maximum projected

area of the splat. (·) is vector dot-product).

All samples located close enough to each other in 3D (i.e. those
representing, effectively, the same 3D sample) are compared by
their respective rating. One sample with the highest rating is kept
and others are removed from their depth maps. To eliminate a
redundant sample the corresponding pixels made black in the depth
map. We also consider cases when sizes of samples are too
different that one sample entirely covers another. In this case we
remove large samples that contain smaller ones.

The result of this procedure is non-redundant representation,
where each sample of the object surface is captured by only one
map. Results show that cleanup procedure leads to reduction of
model size and increase of rendering quality (see Figure 2).
Rendering is also faster due to smaller number of samples need to
be processed (see Table 1).

3.2 Compression
Before transmission to a client machine, color and depth images
should be compressed in order to decrease download time. Lossy
image compression methods offer much higher compression ratio
compared to lossless algorithms without sacrificing much in image
quality. But pixel colors are changed after lossy compression.

These changes are barely noticeable for a human observer but
break color consistency condition for DIBR models that result in
noticeable rendering artifacts.

We propose the solution called color dilation. The main idea is to
change the background color near object silhouette in color map,
without modification of the depth map. Actual samples are
identified by non-empty pixels of the depth map, so geometry will
be the same after dilation. The new colors are calculated depending
on the compression scheme (block-based for JPEG, continuous for
wavelet) and on colors of the neighboring object silhouette pixels.
During the compression border pixels are mixed with colors of
updated background. Due to color dilation difference of pixel
colors before and after compression is much lower (see Figure 1).

4. RENDERING

Our visualization software uses OpenGL to render the scene at
interactive rates. We deal with an animation frame-by-frame.
Before rendering a frame, we select a desired quality of the depth
maps. We choose the quality of a depth map proportionally to the
visible size of its bounding box. Image is resampled and 3D
positions of all samples are restored. Then data is projected onto
the viewing plane and the final image is reconstructed. Resampling
of the reference depth image allows to maintain desired frame rate.

We implemented two reconstruction methods based on splatting
[13] idea. First reconstruction method uses GL_POINTS as
rendering primitive. This approach is fast, but the quality depends
on precision of point size calculation. Point size calculation is
implemented using hardware shaders. This allowed us to precisely
calculate size of each point depending on distance to the viewer
and camera parameters. We approximate required parameters by
estimating projected sizes of several reference points.

Further improvement of quality is achieved by the second scheme,
using more complex splatting. Instead of uniformly colored disc
splats, it uses discs with Gaussian intensity distribution. In order to
archive correct blending of nearby points, we use two-pass
rendering [7]. This method allows achieving higher quality, but it is
near two-times slower due to multi-pass rendering of each frame.

An advantage of our approach is simple level of detail control by
resizing of each image to some needed extent. In our
implementation this is done at client size after downloading of the
image in full size. Using MPEG-4 backchannel this resizing can be
done by server, thus greatly saving bandwidth.

 (a) (b) (c)

Figure 3: Dilation of image color for JPEG compression. (a) Initial depth image after cleaning (holes correspond to removed redundant
pixels). (b) Color image correspond to the depth map - the holes will produce visible artifacts after JPEG compression. (c) Dilated image -

holes were filled by nearby colors, color changes become smoother.

5. RESULTS

We implemented and tested DIBR framework on various 3D
models with different shapes and complexity. Sizes and processing
time for several models in DIBR format is present in Table 1. The
result of interactive rendering for different models is shown in
Figure 4. Tests were performed on Intel Pentium IV 1500Mhz
with NVidia GeForce3 TI 200 accelerator. Rendering was done
into 1024x1024 window. The quality and speed of rendering is
quite good for various rendering shapes.

6. CONCLUSION

In this paper we presented an image-based system, which main
purpose is modeling and rendering of 3D models in image-based
format, which has been accepted into MPEG-4 AFX. The
representation is based on images with depth and has static and
animated versions. We contribute a set of optimization techniques,
which allow storing the model with high compression ratio and
rendering it in real-time with high quality.

7. REFERENCES

[1]J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder.
Hierarchical Image Caching for Accelerated Walkthroughs of
Complex Environments. SIGGRAPH '96 Proceedings, 1996.

[2] L. McMillan. An Image-based Approach to Three-Dimensional
Computer Graphics. Univ. of North Carolina, Computer Science,
Ph.D. Dissertation, 1997.

[3]J. Shade, S. Gortler, L. Hey, R. Szeliski. Layered Depth
Images. SIGGRAPH '97 Proceedings, 1997.

[4] G. Bishop, M.M. Oliveira. Relief Textures. SIGGRAPH '2000
Proceedings, 2000.

[5] Mark Levoy and Turner Whitted. The Use of Points as a
Display Primitive'. Technical Report 85-022, University of North
Carolina, 1985.

[6] J. P. Grossman and W. Dally. Point Sample Rendering. Proc.
Of Eurographics Workshop on Rendering, 1998.

[7]L. Ren, H. Pfister, M. Zwicker. Object Space EWA Surface
Splatting: A Hardware Accelerated Approach to High Quality
Point Rendering. Eurographics '02 Proceedings, 2002.

[8] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, C.
McCue. Real-Time Rendering of Real World Environments.
Rendering Techniques '99, Proc. of Eurographics Workshop on
Rendering, 1999.

[9] ISO/IEC JTC1/SC29/WG11 14496-1, Coding of Audio-Visual
Objects: Systems.

[10] ISO/IEC JTC1/SC29/WG11 14496-2, Coding of Audio-
Visual Objects: Visual.

[11] ISO/IEC JTC1/SC29/WG11 N5397: FDIS of ISO/IEC 14496
Part 16: Animation Framework eXtension (AFX), Awaji Island,
December 2002.

[12] Y. Bayakovski, L. Levkovich-Maslyuk, A. Ignatenko, A
Konushin, D. Timasov, A. Zhirkov, Mahnjin Han, In Kyu Park.
Depth Image-based representation for static and animated 3D
objects. Proc. of Intl. Conf. on Image processing, 2002.

[13] L. Westover, Footprint Evaluation for Volume Rendering.
SIGGRAPH '90 Proceedings, 1990.

[14]Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, R.
Grzeszczuk. Light Field Mapping: Efficient Representation and
Hardware Rendering of Surface Light Fields. SIGGRAPH '02
Proceedings, 2002.

 Hamburger Robot T-Rex

Number of textures 6 6 12

Number of samples 237 412 411 723
452 462

Uncompressed raw size 7,5mb 7,5mb 15mb

Compressed raw size (png) 1,09mb 1,66mb 2,68mb

Texture dims 512 512 512

Raw rendering speed 29 fps 17 fps 16 fps

Preprocessing time (m:s) 00:06 00:07 00:31

Optimized number of
samples

 191 988 293 889
312 780

Dilated compressed size
(png, jpg)

 279k 436k 735k

Optimized rendering speed
(point, gauss)

 35(13) 23(11) 23(12)

Table 1: Storage requirements, preprocessing and rendering time
for DIBR models.

(a)

(b)

(�)

Figure 4: Interactive rendering of DIBR models. (a) Hamburger
(b) Robot (c) T-Rex

