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Abstract

Skin color has proven to be a useful and robust cue for face de-
tection, localization and tracking. Image content filtering, content-
aware video compression and image color balancing applications
can also benefit from automatic detection of skin in images. Numer-
ous techniques for skin color modelling and recognition have been
proposed during several past years. A few papers comparing differ-
ent approaches have been published [Zarit et al. 1999], [Terrillon
et al. 2000], [Brand and Mason 2000]. However, a comprehensive
survey on the topic is still missing. We try to fill this vacuum by
reviewing most widely used methods and techniques and collecting
their numerical evaluation results.
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1 Introduction

Face detection and tracking has been the topics of an extensive re-
search for the several past decades. Many heuristic and pattern-
recognition based strategies have been proposed for achieving ro-
bust and accurate solution. Among feature-based face detection
methods, the ones using skin color as a detection cue, have gained
strong popularity. Color allows fast processing and is highly robust
to geometric variations of the face pattern. Also, the experience
suggests that human skin has a characteristic color, which is easily
recognized by humans. So trying to employ skin color modelling
for face detection was an idea suggested both by task properties and
common sense.

When building a system, that uses skin color as a feature for
face detection, the researcher usually faces three main problems.
First, what colorspace to choose, second, how exactly the skin color
distribution should be modelled, and finally, what will be the way
of processing of color segmentation results for face detection. This
paper covers the first two questions, leaving the third (an equally
important one) for another discussion.

In this paper we discusspixel-basedskin detection methods, that
classify each pixel as skin or non-skin individually, independently
from its neighbors. In contrast,region-basedmethods [Kruppa
et al. 2002], [Yang and Ahuja 1998], [Jedynak et al. 2002] try to
take the spatial arrangement of skin pixels into account during the
detection stage to enhance the methods performance.

Pixel-based skin detection has long history, but surprisingly few
papers that provide surveys or comparisons of different techniques
were published. [Zarit et al. 1999] have provided a comparison
of five colorspaces (actually their chrominance planes) and two
non-parametric skin modelling methods (lookup table and Bayes
skin probability map). [Terrillon et al. 2000] have compared nine
chrominance spaces and two parametric techniques (Gaussian and
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mixture of Gaussians models). [Brand and Mason 2000] have eval-
uated three different skin color modelling strategies. [Lee and Yoo
2002] also have compared two most popular parametric skin mod-
els in different chrominance spaces and have proposed a model of
their own.

Our goal, in this paper, is to gather as much published techniques
as we could find, describe their key ideas and try to find out and
summarize their advantages, disadvantages and characteristic fea-
tures. The paper is organized as follows. Section 2 is devoted to
description of different colorspaces used for skin detection. Sec-
tion 3 covers the existing skin color modelling methods. In section
4 numerical evaluation of some of the described methods is pro-
vided. In Sections 5 and 6 we discuss and compare the colorspaces
and modelling methods. In Section 7 the conclusion are drawn.

2 Colorspaces used for skin modelling

Colorimetry, computer graphics and video signal transmission stan-
dards have given birth to many colorspaces with different proper-
ties. A wide variety of them have been applied to the problem of
skin color modelling. We will briefly review the most popular col-
orspaces and their properties.

2.1 RGB

RGB is a colorspace originated from CRT (or similar) display ap-
plications, when it was convenient to describe color as a combina-
tion of three colored rays (red, green and blue). It is one of the
most widely used colorspaces for processing and storing of digital
image data. However, high correlation between channels, signifi-
cant perceptual non-uniformity (see section 2.6 for perceptual uni-
formity explanation), mixing of chrominance and luminance data
make RGB not a very favorable choice for color analysis and color-
based recognition algorithms. This colorspace was used in [Brand
and Mason 2000], [Jones and Rehg 1999].

2.2 Normalized RGB

Normalized RGB is a representation, that is easily obtained from
the RGB values by a simple normalization procedure:

r =
R

R+G+B
g =

G
R+G+B

b =
B

R+G+B
(1)

As the sum of the three normalized components is known (r +
g+ b = 1), the third component does not hold any significant in-
formation and can be omitted, reducing the space dimensionality.
The remaining components are often called ”pure colors”, for the
dependance ofr andg on the brightness of the source RGB color
is diminished by the normalization. A remarkable property of this
representation is that for matte surfaces, while ignoring ambient
light, normalized RGB is invariant (under certain assumptions) to
changes of surface orientation relatively to the light source [Skarbek



and Koschan 1994]. This, together with the transformation simplic-
ity helped this colorspace to gain popularity among the researchers
[Brown et al. 2001], [Zarit et al. 1999], [Soriano et al. 2000], [Oliver
et al. 1997], [Yang et al. 1998]

2.3 HSI, HSV, HSL - Hue Saturation Intensity
(Value, Lightness)

Hue-saturation based colorspaces were introduced when there was
a need for the user to specify color properties numerically. They de-
scribe color with intuitive values, based on the artist’s idea of tint,
saturation and tone.Hue defines the dominant color (such as red,
green, purple and yellow) of an area,saturationmeasures the col-
orfulness of an area in proportion to its brightness [Poynton 1995].
The ”intensity”, ”lightness” or ”value” is related to the color lu-
minance. The intuitiveness of the colorspace components and ex-
plicit discrimination between luminance and chrominance proper-
ties made these colorspaces popular in the works on skin color seg-
mentation [Zarit et al. 1999], [McKenna et al. 1998], [Sigal et al.
2000], [Birchfield 1998], [Jordao et al. 1999]. Several interesting
properties of Hue were noted in [Skarbek and Koschan 1994]: it is
invariant to highlights at white light sources, and also, for matte
surfaces, to ambient light and surface orientation relative to the
light source. However, [Poynton 1995], points out several unde-
sirable features of these colorspaces, including hue discontinuities
and the computation of ”brightness” (lightness, value), which con-
flicts badly with the properties of color vision.

H = arccos
1
2((R−G)+(R−B))√

((R−G)2 +(R−B)(G−B))
(2)

S = 1−3
min(R,G,B)
R+G+B

(3)

V =
1
3
(R+G+B) (4)

An alternative way of hue and saturation computation using log op-
ponent values was introduced in [Fleck et al. 1996], where addi-
tional logarithmic transformation of RGB values aimed to reduce
the dependance of chrominance on the illumination level.

The polar coordinate system of Hue-Saturation spaces, resulting
in cyclic nature of the colorspace makes it inconvenient for para-
metric skin color models that need tight cluster of skin colors for
best performance. A different representation of Hue-Saturation us-
ing Cartesian coordinates can be used [Brown et al. 2001]:

X = ScosH, Y = SsinH (5)

2.4 TSL - Tint, Saturation, Lightness

A normalized chrominance-luminance TSL space is a transforma-
tion of the normalized RGB into more intuitive values, close to hue
and saturation in their meaning.

S = [9/5(r ′2 +g′2)]1/2 (6)

T =

 arctan(r ′/g′)/2π +1/4,g′ > 0
arctan(r ′/g′)/2π +3/4,g′ < 0
0,g′ = 0

(7)

L = 0.299R+0.587G+0.114B (8)

wherer ′ = r −1/3, g′ = g−1/3 andr, g come from (1). [Terril-
lon et al. 2000] have compared nine different colorspaces for skin
modelling with a unimodal Gaussian joint pdf (only chrominance
components of the colorspaces were used). They argue that nor-
malized TSL space is superior to other colorspaces for this task.

[Brown et al. 2001] has also employed this representation for their
approach.

2.5 YCrCb

YCrCb is an encoded nonlinear RGB signal, commonly used by Eu-
ropean television studios and for image compression work. Color is
represented byluma(which is luminance, computed from nonlinear
RGB [Poynton 1995]), constructed as a weighted sum of the RGB
values, and two color difference valuesCr andCb that are formed
by subtracting luma from RGB red and blue components.

Y = 0.299R+0.587G+0.114B

Cr = R−Y (9)

Cb = B−Y

The transformation simplicity and explicit separation of lumi-
nance and chrominance components makes this colorspace attrac-
tive for skin color modelling [Phung et al. 2002], [Zarit et al. 1999]
[Menser and Wien 2000], [Hsu et al. 2002], [Ahlberg 1999], [Chai
and Bouzerdoum 2000].

2.6 Perceptually uniform color systems

The term ”skin color” is not a physical property of an object, rather
a perceptual phenomenon and therefore a subjective human con-
cept. Therefore, color representation similar to the color sensitivity
of human vision system should help to obtain high performance
skin detection algorithm.

CIELAB and CIELUV are perceptually uniform colorspaces
(reasonably perceptually unform, to be exact) that were proposed
by G. Wyszecki and standardized by CIE (Commission Interna-
tionale de L’Eclairage). Perceptual uniformity means that a small
perturbation to a component value is approximately equally per-
ceptible across the range of that value ([Poynton 1995]). The well-
known RGB colorspace is far from being perceptually uniform, the
non-linear transformation to CIELAB and CIELUV try to correct
the situation. The price for better perceptual uniformity is com-
plex transformation functions from and to RGB space, demanding
far more computation than most other colorspaces, described here.
These colorspaces were used in [Zarit et al. 1999], [Yang and Ahuja
1999], [Schumeyer and Barner 1998], [Yang and Ahuja 1998]

Psychologist Farsnworth have proposed an even more percep-
tually uniform color system, derived from psychophysical experi-
ments. It also uses nonlinear transforms from an RGB space. It
was first used for the skin detection in [Chen et al. 1995].

2.7 RGB channels ratio

It was observed, that skin invariably contains a significant level of
red. Using this observation, certain values ofR/G ratio were used
as skin presence indicators [Wark and Sridharan 1998]. Usefulness
of other RGB-space ratios (R/B andG/B) for skin detection was
tested and evaluated by [Brand and Mason 2000].

2.8 Other colorspaces

Besides YCrCb, several other linear transforms of the RGB space
were employed for skin detection - YES [Saber and Tekalp 1998],
YUV [Marques and Vilaplana 2000] and YIQ [Brand and Mason
2000], [C.Wang and M.Brandstein 1999]. Among less frequently
used colorspaces, CIE-xyz [Terrillon et al. 2000] can be mentioned.



3 Skin modelling

The final goal of skin color detection is to build a decision rule, that
will discriminate between skin and non-skin pixels. This is usually
accomplished by introducing a metric, which measures distance (in
general sense) of the pixel color to skin tone. The type of this metric
is defined by the skin color modelling method.

3.1 Explicitly defined skin region

One method to build a skin classifier is to define explicitly (through
a number of rules) the boundaries skin cluster in some colorspace.
For example [Peer et al. 2003]:

(R,G,B) is classified as skin if:

R> 95 andG > 40 andB > 20 and

max{R,G,B}−min{R,G,B}> 15 and (10)

|R−G|> 15 andR> G andR> B

The simplicity of this method have attracted (and still does) many
researchers [Peer et al. 2003], [Ahlberg 1999], [Fleck et al. 1996],
[Jordao et al. 1999]. The obvious advantage of this method is sim-
plicity of skin detection rules that leads to construction of a very
rapid classifier. The main difficulty achieving high recognition rates
with this method is the need to find both good colorspace and ad-
equate decision rules empirically. Recently, there have been pro-
posed a method that uses machine learning algorithms to find both
suitable colorspace and a simple decision rule that achieve high
recognition rates [Gomez and Morales 2002]. The authors start
with a normalized RGB space and then apply a constructive induc-
tion algorithm (see [Gomez and Morales 2002] for details) to cre-
ate a number of new sets of three attributes being a superposition
of r, g, b and a constant 1/3, constructed by basic arithmetic opera-
tions. A decision rule, similar to (10) that achieves the best possible
recognition is estimated for each set of attributes. The authors pro-
hibit construction of too complex rules, which helps avoiding data
over-fitting, that is possible in case of lack of training set represen-
tativeness. They have achieved results that outperform Bayes skin
probability map (see section 3.2.2) classifier in RGB space for their
dataset.

3.2 Nonparametric skin distribution modelling

The key idea of the non-parametric skin modelling methods is to es-
timate skin color distribution from the training data without deriv-
ing an explicit model of the skin color. The result of these methods
sometimes is referred to as construction of Skin Probability Map
(SPM) [Brand and Mason 2000], [Gomez 2000] - assigning a prob-
ability value to each point of a discretized colorspace.

3.2.1 Normalized lookup table (LUT)

Several face detection and tracking algorithms [Chen et al. 1995],
[Zarit et al. 1999], [Schumeyer and Barner 1998],[Sigal et al. 2000],
[Soriano et al. 2000], [Birchfield 1998] use a histogram based-
approach to skin pixels segmentation. The colorspace (usually, the
chrominance plane only) is quantized into a number of bins, each
corresponding to particular range of color component value pairs
(in 2D case) or triads (in 3D case). These bins, forming a 2D or 3D
histogram are referred to as the lookup table (LUT). Each bin stores
the number of times this particular color occurred in the training
skin images. After training, the histogram counts are normalized,
converting histogram values to discrete probability distribution:

Pskin(c) =
skin[c]
Norm

(11)

whereskin[c] gives the value of the histogram bin, corresponding
to color vectorc andNorm is the normalization coefficient (sum of
all histogram bin values [Jones and Rehg 1999], or maximum bin
value present [Zarit et al. 1999]). The normalized values of the
lookup table bins constitute the likelihood that the corresponding
colors will correspond to skin.

3.2.2 Bayes classifier

The value ofPskin(c) computed in (11) is actually a conditional
probabilityP(c|skin) - a probability of observing colorc, knowing
that we see a skin pixel. A more appropriate measure for skin de-
tection would beP(skin|c) - a probability of observing skin, given a
concretec color value. To compute this probability, the Bayes rule
is used:

P(skin|c) =
P(c|skin)P(skin)

P(c|skin)P(skin)+P(c|¬skin)P(¬skin)
(12)

P(c|skin) andP(c|¬skin) are directly computed from skin and
non-skin color histograms (11). The prior probabilitiesP(skin) and
P(¬skin) can also be estimated from the overall number of skin
and non-skin samples in the training set [Jones and Rehg 1999],
[Zarit et al. 1999], [Chai and Bouzerdoum 2000]. An inequality
P(skin|c) ≥ Θ, whereΘ is a threshold value, can be used as a skin
detection rule [Jones and Rehg 1999]. Receiver operating charac-
teristics (ROC) curve [Trees 1968] shows the relationship between
correct detections and false detections for a classification rule as a
function of the detection threshold. It turns out, that the ROC curve
for P(skin|c) ≥ Θ is invariant to choice of prior probabilities, due
to nature of the Bayes model. This means thatP(skin) value affects
only the choice of the thresholdΘ.

One can avoid computing (12) explicitly, if what is really needed
is the comparison ofP(skin|c) to P(¬skin|c), not their exact values.
Using (12) the ratio ofP(skin|c) to P(¬skin|c) can be written as:

P(skin|c)
P(¬skin|c)

=
P(c|skin)P(skin)

P(c|¬skin)P(¬skin)
(13)

Comparing (13) to a threshold produces the skin/non-skin deci-
sion rule. That after some manipulations, can be rewritten as:

P(c|skin)
P(c|¬skin)

> Θ (14)

Θ = K× 1−P(skin)
P(skin)

This shows, why the choice of prior probabilities does not affect
the overall detector behavior - for any prior probabilityP(skin) it is
possible to choose the appropriate value ofK, that gives the same
detection thresholdΘ. It is also clear, that maximum likelihood
(ML) and maximum a posteriori (MAP) Bayes classification rules
compared in [Zarit et al. 1999] are equivalent to (14) with different
Θ values.

3.2.3 Self Organizing Map

Self-Organizing Map (or SOM), devised by Kohonen in 80’s is
now one of the most popular types of unsupervised artificial neu-
ral network. In [Brown et al. 2001] a SOM-based skin detector
was proposed. Two SOM’s - skin-only and skin + non-skin were
trained from a set of about 500 manually labelled images. The de-
tectors performance was tested on the authors training/test images
set and famous Compaq skin database [Jones and Rehg 1999]. Sev-
eral colorspaces (normalized RGB, Hue-Saturation, cartesian Hue-
Saturation and chrominance plane of TSL) were tested with SOM



detector. The results have shown, that SOM skin detectors do not
exhibit vivid performance change when using different colorspaces.
The SOM performance on the authors dataset is marginally better
than Gaussian mixture model, while for the Compaq database the
SOM performance is inferior to the RGB histograms used in [Jones
and Rehg 1999]. The authors stress out that SOM method needs
considerably less resource than histogram and mixture models and
is efficiently implemented for run-time applications by the means
of SOM hardware.

3.2.4 Non-parametric methods summary

Two clear advantages of the non-parametric methods are i. they are
fast in training and usage and ii. they are theoretically independent
to the shape of skin distribution (which is not true for explicit skin
cluster definition and parametric skin modelling). The disadvan-
tages are much storage space required and inability to interpolate
or generalize the training data. If, for example, we consider RGB
quantized to 8 bits per color, we’ll need an array of 224 elements to
store skin probabilities. To reduce the amount of needed memory
and to account for possible training data sparsity, coarser colorspace
samplings are used - 128x128x128, 64x64x64 and 32x32x32. The
evaluation of different RGB samplings in [Jones and Rehg 1999]
has shown, that 32x32x32 shows the best performance.

3.3 Parametric skin distribution modelling

The most popular histogram-based non-parametric skin models re-
quire much storage space and their performance directly depends
on the representativeness of the training images set. The need for
more compact skin model representation for certain applications
along with ability to generalize and interpolate the training data
stimulates the development of parametric skin distribution models.

3.3.1 Single Gaussian

Skin color distribution can be modelled by an elliptical Gaussian
joint probability density function (pdf), defined as:

p(c|skin) =
1

2π|Σs|1/2
·e−

1
2 (c−µs)T Σ−1

s (c−µs) (15)

Here,c is a color vector andµs andΣs are the distribution param-
eters (mean vector and covariance matrix respectively). The model
parameters are estimated from the training data by (16):

µs =
1
n

n

∑
j=1

c j ; Σs =
1

n−1

n

∑
j=1

(c j −µs)(c j −µs)T (16)

wheren is the total number of skin color samplesc j . Thep(c|skin)
probability can be used directly as the measure of how ”skin-like”
thec color is [Menser and Wien 2000], or, alternatively, the Maha-
lanobis distance from thec color vector to mean vectorµs, given
the covariance matrixΣs can serve for the same purpose [Terrillon
et al. 2000]:

λs(c) = (c−µs)TΣ−1
s (c−µs) (17)

Single Gaussian modelling method was also employed in [Hsu et al.
2002], [Ahlberg 1999], [Yang and Ahuja 1998], [Saber and Tekalp
1998].

3.3.2 Mixture of Gaussians

A more sophisticated model, capable of describing complex-shaped
distributions is the Gaussian mixture model. It is the generalization
of the single Gaussian, the pdf in this case is:

p(c|skin) =
k

∑
i=1

πi · pi(c|skin) (18)

In (18) k is the number of mixture components,πi are the mix-
ing parameters, obeying the normalization constraint∑k

i=1 πi = 1,
and pi(c|skin) are Gaussian pdfs, each with its own mean and co-
variance matrix. Model training is performed with a well-known
iterative technique called the Expectation Maximization (EM) al-
gorithm, which assumes the number of componentsk to be known
beforehand. The details of training Gaussian mixture model with
EM can be found, for example in [Yang and Ahuja 1999], [Terril-
lon et al. 2000]. The classification with a Gaussian mixture model
is done by comparing thep(c|skin) value to some threshold.

The choice of the components numberk is important here. The
model needs to explain the training data reasonably well with the
given model on one hand, and avoid data over-fitting on the other.
The number of components used by different researchers varies sig-
nificantly - from 2 [Yang and Ahuja 1999] to 16 [Jones and Rehg
1999]. A bootstrap test for justification ofk= 2 hypothesis was per-
formed in [Yang and Ahuja 1999], in [Terrillon et al. 2000]k = 8
was chosen as a ”good compromise between the accuracy of of es-
timation of the true distributions and the computational load for
thresholding”. [McKenna et al. 1998], [Oliver et al. 1997] have
also used Gaussian mixture models.

3.3.3 Multiple Gaussian clusters

Approximation of skin color cluster with three 3D Gaussians in
YCbCr space is described in [Phung et al. 2002]. A variant of
k-means clustering algorithm for Gaussian clusters performs the
model training. The pixel is classified as skin, if the Mahalanobis
distance from thec color vector to the closest model cluster center
is below a pre-defined threshold.

3.3.4 Elliptic boundary model

By examining skin and non-skin distributions in several colorspaces
Lee and Yoo [Lee and Yoo 2002] have concluded that skin color
cluster, being approximately elliptic in shape is not well enough
approximated by the single Gaussian model. Due to asymmetry of
the skin cluster with respect to its density peak, usage of the sym-
metric Gaussian model leads to high false positives rate. They pro-
pose an alternative they call an ”elliptical boundary model” which
is equally fast and simple in training and evaluation as the single
Gaussian model and gives superior detection results on the Com-
paq database [Jones and Rehg 1999] compared both to single and
mixture of Gaussians . The elliptical boundary model is defined as:

Φ(c) = (c−φ)TΛ−1(c−φ) (19)

The model training procedure has two steps - first, up to 5% of the
training color samples with low frequency are eliminated to remove
noise and negligible data. Then, model parameters (φ andΛ) are
estimated by

φ =
1
n

n

∑
i=1

ci ; Λ =
1
N

n

∑
i=1

fi · (ci −µ)(ci −µ)T ; (20)

µ =
1
N

n

∑
i=1

fici ; N =
n

∑
i=1

fi

wheren is the total number of distinctive training color vectorsci
of the training skin pixel set (not the total samples number!), andfi
is the number of skin samples of color vectorci . Pixel with colorc
is classified as skin in case whenΦ(c) < θ , whereθ is a threshold
value. The authors claim that their model approximates the skin



cluster better, because the data skew does not affect the model cen-
troid φ calculation.

3.3.5 Parametric methods summary

All described parametric methods (except described in Section
3.3.3) operate in colorspace chrominance plane, ignoring the lu-
minance information.

Of course, since an explicit distribution model is used, a question
of model validation arises. Obviously, the goodness of fit is more
dependent on the distribution shape, and therefore colorspace used,
for parametric than for non-parametric skin models. This is clearly
visible in the results of [Terrillon et al. 2000], [Lee and Yoo 2002],
where the model performance varies significantly from colorspace
to colorspace.

Only several authors have included theoretical justification for
the validity of models they used. [Yang et al. 1998] has shown
that skin color distribution of a single person under fixed lighting
conditions in normalized RGB space obeys Gaussian distribution.
[Yang and Ahuja 1999] have justified the hypotheses of skin data
normality in CIELuv space and validity of two-component Gaus-
sian mixture model by statistical tests. Others relied whether on the
observation of nearly elliptic shape of the skin chrominances clus-
ter in the colorspace they used (to employ single Gaussian model
or similar), or its clearly non-elliptical shape (to employ mixture of
Gaussians or several Gaussian clusters) with further model perfor-
mance evaluation as the acceptance criterion [Terrillon et al. 2000],
[Lee and Yoo 2002], [McKenna et al. 1998].

3.4 Dynamic skin distribution models

A family of skin modelling methods was designed and tuned specif-
ically for skin detection during face tracking. This task makes skin
detection different from the static images analysis in several as-
pects. First, in principle, the skin model can be less general (more
specific) - i.e. tuned for one concrete person, camera or lighting.
Second, initialization stage is possible, when the face region is
discriminated from background by different classifier or manually.
This gives a possibility to obtain skin classification model, that is
optimal for the given conditions (person, camera, lighting, back-
ground). Since there is no need for model generality, it is possible
to reach higher skin detection rates with low false positives with
this specific model, than with general skin color models, intended
to classify skin in totally unconstrained images set (like in [Jones
and Rehg 1999]). On the other hand, skin color distribution can
vary with time, along with lighting or camera white balance change,
so the model should be able to update itself to match the changing
conditions. Also, model training and classification time becomes
extremely important here, for the skin detection system must work
at real-time, consuming little computing power.

To summarize the most important properties of skin color model
for face tracking: first, it should be fast in both training and clas-
sification and second, it should be able to update itself to changing
conditions. Minding these aspects, many researches turn to sim-
ple parametric skin modelling - it is easily updated to distribution
change, is acceptably fast (except for many-component mixture of
Gaussians) and needs little storage space. The high false positives
rate - a usual companion of parametric skin modelling, is less a
problem here. The need for specific, not general skin color model
permits achievement of good classification performance. Among
non-parametric models, the histogram-based LUT is popular for
face tracking tasks, thanks to its simplicity and high training and
working speed.

A number of methods for skin color distribution recalculation
were proposed: online Expectation Maximization [Oliver et al.
1997], dynamic histograms [Soriano et al. 2000], [Stern and Efros

2002], [Sigal et al. 2000], Gaussian distribution adaptation [Yang
et al. 1998].

Several authors have investigated how the color of a single per-
son should be modelled and how it varies with lighting change. The
hypothesis of unimodal Gaussian distribution of one person’s skin
color under fixed lighting was justified in [Yang et al. 1998]. A spe-
cial study on skin color change under different lighting conditions
was made by [M. Storring 1999] and [Martinkauppi et al. 2001].
An unusual method for automatic colorspaces switching during the
face tracking was proposed in [Stern and Efros 2002]. See col-
orspaces discussion (Section 6) for more information on the two
latter methods.

4 Comparative evaluation

For fair performance evaluation of different skin color modelling
methods identical testing conditions are preferred. Unfortunately,
many skin detection methods provide results on their own,
publicly unavailable databases. The most famous training and
test database for skin detection is the Compaq database [Jones
and Rehg 1999]. In the table below the best results of different
methods, reported by the authors, for this dataset are presented.
Table 1 shows true positives (TP) and false positives (FP) rates
for different methods configurations. Although different methods
use slightly different separation of the database into training and
testing image subsets and employ different learning strategies,
the table should give an overall picture of the methods performance.

Method TP FP
Bayes SPM in RGB 80% 8.5%
[Jones and Rehg 1999] 90% 14.2%
Bayes SPM in RGB 93.4% 19.8%
[Brand and Mason 2000]
Maximum Entropy Model 80% 8%
in RGB [Jedynak et al. 2002]
Gaussian Mixture models 80% ∼ 9.5%
in RGB [Jones and Rehg 1999] 90% ∼ 15.5%
SOM in TS 78% 32%
[Brown et al. 2001]
Elliptical boundary model 90% 20.9%
in CIE-xy [Lee and Yoo 2002]
Single Gaussian in CbCr 90% 33.3%
[Lee and Yoo 2002]
Gaussian Mixture in IQ 90% 30.0%
[Lee and Yoo 2002]
Thresholding of I axis 94.7% 30.2%
in YIQ [Brand and Mason 2000]

Table 1: Performance of different skin detectors reported by the
authors

The best performance (lower false positives for a given correct de-
tection rate) is demonstrated by Bayes SPM and it’s descendant
- maximum entropy model [Jedynak et al. 2002]. The paramet-
ric modelling techniques (Gaussian, mixture of Gaussians, elliptic
boundary model) are left behind together with SOM-based detec-
tor. High performance of the mixture of Gaussians used in [Jones
and Rehg 1999] is due to the fact, that they actually modelled both
p(RGB|skin) andp(RGB|¬skin) pdfs (in contrast to other paramet-
ric skin modelling papers). They did not provide a clear indication
on how exactly the final skin probability was computed from these
pdfs, so we conclude that Bayesian rule was used (14). This, al-
together with high number of mixture components (sixteen) makes
this model an approximation of Bayes SPM. We believe that this
the explanation of high performance of Gaussian mixture model of



Jones and Rehg. A fact worth noting is that simple thresholding of I
component of YIQ space, proposed by [C.Wang and M.Brandstein
1999] and evaluated in [Brand and Mason 2000] shows result com-
parable to more sophisticated Gaussian and mixture of Gaussians
skin models.

Another promising method, appeared recently, which is not in-
cluded in this table, is automatic construction of a colorspace and
an explicitly defined skin cluster in it [Gomez 2000], [Gomez and
Morales 2002] (refer back to Section 3.1 for more details). The au-
thors have achieved results that outperform Bayes SPM classifier in
RGB space for their dataset, giving significantly lower false posi-
tives rate (around 6% against 22%) and almost equal false negatives
(around 5%).

5 Methods discussion

The main advantage of the methods that use explicitly defined skin
cluster boundaries (section 3.1) is the simplicity and intuitiveness
of the classification rules. However, the difficulty with them is the
need to find both good colorspace and adequate decision rules em-
pirically. The recently proposed method that uses machine learn-
ing algorithms to find both suitable colorspace and simple decision
rules [Gomez and Morales 2002] has shown a way to overcome
these difficulties.

The non-parametric methods (section 3.2) are fast both in train-
ing and classification, independent to distribution shape and there-
fore to colorspace selection (seecolorspaces discussionsection for
more information on the topic). But, they require much storage
space and a representative training dataset.

The parametric methods (section 3.3) can also be fast, they have
a useful ability to interpolate and generalize incomplete training
data, they are expressed by a small number of parameters and need
very little storage space. However, they can be really slow (like
mixture of Gaussians) in both training and work, and their perfor-
mance depends strongly on the skin distribution shape. Besides,
most parametric skin modelling methods ignore the non-skin color
statistics. This, together with dependance on skin cluster shape
results in higher false positives rate, compared to non-parametric
methods.

6 Colorspaces discussion

At a first glance, colorspace selection seems to be crucial for color-
based skin detection. One important question is: what is the best
colorspace for skin detection, or more generally - is there an optimal
colorspace for skin-classification? Surprisingly, many papers on
skin detection do not provide strict justification of their colorspace
choice, probably because of possibility to obtain acceptable skin
detection results on limited dataset with almost any colorspace.

Only few papers have been devoted to comparative analysis of
different colorspaces used for skin detection [Zarit et al. 1999],
[Terrillon et al. 2000], [Gomez 2000], [Gomez and Morales 2002],
[Stern and Efros 2002]. Several authors have seriously considered
the problem of colorspace selection, and have provided justifica-
tions for the optimality (or adequateness) of their choice for the
skin model they employed [Yang and Ahuja 1999], [Yang et al.
1998], [M. Storring 1999], [Schumeyer and Barner 1998]. The col-
orspace ’goodness’ for skin modelling is usually evaluated by two
different families of measures. First is training and test set classi-
fication error, computed after color model parameter estimation. It
is a well-known classifier performance evaluation principle, which
clearly indicates the goodness-of-fit of the selected model to the
given dataset. The second family of measures is skin and non-skin
colors overlap in the given colorspace and compactness of the skin

cluster. These measures are independent to color modelling strat-
egy and are determined to evaluate the colorspace goodness ’in gen-
eral’. They surely can provide an overall impression on the distri-
bution of the skin and non-skin samples of the training set, but their
feasibility for evaluation of the colorspace goodness seems doubtful
to us.

Recently, there emerged several papers that seriously doubt any
significant influence of colorspace selection on the final skin detec-
tion result [Shin et al. 2002], [Albiol et al. 2001]. In [Shin et al.
2002] the authors have used scatter matrices of skin and non-skin
clusters and skin and non-skin histograms overlap as colorspace
performance metrics. Their conclusion is that skin and non-skin
color classes separability is highest in RGB space, and that drop-
ping luminance component significantly worsens the separability.
We do not quite agree the colorspace comparison strategy, carried
out in [Shin et al. 2002]. Our strong belief is that valid colorspace
comparison is the one carried not ’in general’ (by assessing skin
and non-skin colors overlap and skin cluster shape), but for a cer-
tain skin distribution model. The performance of parametric skin
classifiers depends heavily on the colorspace choice - this can be
observed by the results obtained in [Terrillon et al. 2000], [Lee and
Yoo 2002]. The methods, that use explicitly defined skin region also
benefit much by appropriate colorspace choice [Peer et al. 2003],
[Gomez 2000], [Gomez and Morales 2002]. The non-parametric
methods (Bayes SPM, SOM, LUT), on the contrary, are almost
independent to the colorspace choice [Zarit et al. 1999], [Brown
et al. 2001], [Albiol et al. 2001]. We believe, that skin and non-skin
overlap damages heavily the performance of parametric skin color
models [Terrillon et al. 2000], [Lee and Yoo 2002] and lookup-table
(LUT) method [Zarit et al. 1999], because this overlap is not taken
into account by the model. The independence on colorspace choice
for most non-parametric models fits well with theoretical results ob-
tained in [Albiol et al. 2001]. The authors state that for an optimal
skin detectorD(x) in colorspaceC, and for an invertible colorspace
transformation ruleT : C→C′, there exists a classifierD′(x′) in C′

colorspace, that has the same correct detection and false positive
rates. The authors give an example of Bayes SPM, that performs
almost equally in several colorspaces.

Many works on skin detection drop the luminance component
of the colorspace. This decision seems logical, as the goal is to
model what can be thought of ”skin tone”, which is more controlled
by the chrominance than luminance coordinates. The dimension-
ality reduction, achieved by discarding luminance also simplifies
the consequent color analysis. Another argument for ignoring lu-
minance is that skin color differs from person to person mostly
in brightness and less in the tone itself. The illumination condi-
tions clearly affect the color of the objects in the scene. The goal
of any color-based system is diminishing this influence to make
color-based recognition robust to illumination change. It seems,
that chrominance-only color analysis should render the system par-
tially independent from the lighting conditions. The profit of lumi-
nance component removal, that seemed perfectly logical for many
researchers before, was doubted by [Shin et al. 2002]. The tests the
authors have performed have shown that luminance removal does
not increase separability of skin and non-skin clusters. This is, of
course, true because the projection of 3D data on a plane almost
certainly smears skin and non-skin classes together. But we think,
that dropping luminance is a matter of training data generalization.
For a training dataset with sparse distribution of skin luminances
(e.g. little number of face image under similar lighting conditions)
the removal of luminance component helps constructing skin clas-
sifier that will also work for images with different lighting inten-
sity. Also, the reduction of space dimensionality is very attractive
in some cases.

An interesting study of skin color distribution behavior under
changing lighting conditions was performed in [M. Storring 1999]



and [Martinkauppi et al. 2001]. The authors have shown that for
different lighting conditions the skin color from their dataset (of
approximately 125 individuals) lies inside a definitely shaped col-
orspace region - the so-calledskin locus, that can be modelled by
one or two functions of up to quadratic order only. The locus is
camera-specific and is used by [Soriano et al. 2000] as the skin
color filter for dynamic skin histogram updating during face track-
ing. The locus may be found experimentally or, in principle, may
be calculated. A database of illuminants, skin spectral reflectance
and a knowledge of the camera sensitivities (for example, supplied
by the manufacturer) can allow the user to compute the camera skin
locus ([Martinkauppi and Soriano 2001]).

An adaptive colorspace switching method for face tracking was
proposed in [Stern and Efros 2002]. The optimal colorspace for
a given video frame is determined by a simple colorspace quality
measure. The dynamic change of the colorspace is intended to con-
tribute to robustness of the face tracking method. However, judg-
ing from the experimental data the authors have provided, among
five colorspace chromaticity planes (normalized RGB, HS, YQ, and
CrCb) and RG plane of the RGB space, the normalized RGB and
HS planes performed almost equally and much better than the oth-
ers. This suggests that little was gained by the adaptive colorspace
switching, if compared to using solely HS or normalized RGB.

7 Conclusion

In this paper, we have provided the description, comparison and
evaluation results of popular methods for skin modelling and detec-
tion. We tried to summarize the most notable and significant dif-
ferences between the methods, their advantages and disadvantages.
The most important conclusions we draw are listed below:

• Parametric skin modelling methods are better suited for con-
structing classifiers in case of limited training and expected
target data set. The generalization and interpolation ability of
these methods makes it possible to construct a classifier with
acceptable performance from incomplete training data.

• The methods that are less dependent on the skin cluster shape
and take into account skin and non-skin colors overlap (Bayes
SPM, Maximum entropy model [Jedynak et al. 2002], au-
tomatically constructed colorspace and classification rules
[Gomez and Morales 2002]) look more promising for con-
structing skin classifier for large target datasets.

• Excluding color luminance from the classification process
cannot help achieving better discrimination of skin and non-
skin colors, but can help to generalize sparse training data.

• Evaluation of colorspace goodness ’in general’ by assessing
skin/non-skin overlap, skin cluster shape, etc. regardless to
any specific skin modelling method cannot give the impres-
sion of how good is the colorspace suited for skin modelling,
because different modelling methods react very differently on
the colorspace change.
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