
A Real-Time 3D Rendering System with BRDF Materials
and Natural Lighting

Alexei Ignatenko*, Ildar Valiev**, Kirill Dmitriev**, Boris Barladian**, Sergey Ershov**,
Alexei Voloboy**, Vladimir Galaktionov**

* Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia
ignatenko@graphics.cs.msu.su

** M.V. Keldysh Institute for Applied Mathematics
Russian Academy of Sciences

Abstract
We present a system for real-time realistic rendering of 3D
scenes. Most of available on the market 3d visualization systems
lack physical correctness of rendering, especially concerning
complex materials and light sources. Our system is aimed to
provide the physically correct visualization to the extent possible
by modern graphics hardware. It supports natural sunlight
illumination, complex BRDF materials, real-time specular
reflections, integrated computation of illumination maps and
lighting textures, tone mapping control. Areas of application are
automotive and architectural design.
Keywords: real-time rendering system, BRDF, sunlight
illumination, real-time reflections, shadow generation.

1. INTRODUCTION

This paper describes a real-time realistic rendering system, called
FLY. The main requirement to the system was interactive
rendering speed and physical realism to the extent possible by
modern hardware.
Important elements of visually persuasive result of 3D rendering
are presence of shadows, specular reflections (e.g. mirrors), and
secondary illumination effects (color bleeding, caustics, etc).
Besides this, the rendering with the natural sunlight illumination
(specified by a geographic location of the scene and a preferred
time) is often needed for architectural design. At the same time,
evolution of local illumination models is required to support the
visualization of materials given by an arbitrary BRDF
(Bidirectional Reflection Distribution Function [1]). Such kind of
materials is required for visualization of car paints and other
complex metallic surfaces, e.g., in automotive design.
In the paper we present our solutions and tradeoffs made in order
to integrate different global and local illumination techniques
while keeping the rendering at interactive frame rates.
A lot of 3d rendering systems exist on the market, from game
engines and VRML browsers ([2], [3]) to specialized products for
automotive and architectural CAD design ([4], [5], [6]).
However, to authors’ knowledge, none of them meet our goals.
VRML browsers and game engines could produce visually
attractive images, but operate in color space instead of physical
luminance. Besides, none of VRML browsers have integrated
raytracer to calculate global illumination. Another drawback of
even the most advanced game engines is necessity for manual
design of scene, because most of the visual effects will not
function properly in automatic mode. On contrary, our system
works with arbitrary geometry.

Specialized commercial applications for automotive and CAD
design declare support for interactive shadows and physically
based rendering. At the same time, there are no known systems
that support visualization of materials with true BRDF and natural
daylight.

Figure 1: Examples of FLY interactive rendering.

Our system is based on modern rasterization hardware. We
considered two approaches: traditional polygonal rasterization
and modern interactive raytracing ([7]). An advantage of
rasterization is high speed due to extensive hardware support.
Interactive raytracing features internal support for global
illumination. We’ve chosen the former, in spite of the fact that
raytracing techniques better fit our needs on the first sight.
However, there is a tradeoff between quality and speed, because
interactive raytracing is still several times slower on typical
scenes, especially for high-resolution displays. We use OpenGL
([8]) as a low-level hardware access layer API in connection with

own Monte-Carlo raytracer ([9]) used for calculation of lighting
maps and textures.
A distinctive feature is that FLY operates with physical
illumination attributes until final transferring to hardware (which
requires vertex colors and textures in low-range monitor RGB
colors). This allows effective manual and automatic tone-mapping
control.
Several rendering modes were implemented: simple rendering
mode (based on OpenGL internal Phong lighting), lighting maps
mode (with pre-computed vertex luminance and lighting textures
converted to OpenGL vertex colors as necessary), and a special
sunlight mode, designed for simulation of sky and sun
illumination.
A user is allowed to specify a geographic location of the scene
and a preferred time. The sun and sky illumination is calculated
from these attributes. The sky is converted into a background
illumination; the sun position is used to generate shadows using
the modified shadow volume technique ([10]). The internal
OpenGL shading mode is replaced with externally calculated
vertex colors. See Section 3 for details.
A special algorithm for rendering of surfaces covered by complex
materials with given BRDF, was elaborated. It is based on real-
time general of a reflection texture. This texture is then applied to
corresponding objects via OpenGL spherical mapping. BRDF
rendering is described in Section 4.
Highly specular materials are rendered using real-time specular
reflections techniques built over OpenGL (see Section 5).
This paper is organized as follows. In the following section we
present a bird’s eye view of the system architecture. The next
sections describe various features in details. In section 3 we
describe implementation of the realistic sunlight illumination.
Fourth section deals with the visualization of materials defined by
BRDF. Section 5 describes an implementation of real-time
specular reflections. Section 6 provides information about the
support for illumination maps. Results are given in Section 7.

2. SYSTEM ARCHITECHURE OVERVIEW

The design of FLY system architecture is motivated by necessity
to preserve physic attributes of the scene.

Figure 2: Overview of the system architecture. Generic SDB with
physical attributes converted to two RDBs – one for OpenGL

engine (Visual) and another for Monte-Carlo raytracing engine
(MCRT).

The scene is kept in so-called SDB (Scene Description Database,
see Figure 2). SDB is a hierarchical object-based structure, similar

to scene interfaces used in VRML ([11]), OGLO ([12]), Java 3D
([13]), etc. Our representation can keep complex materials (with
BRDF), lights (including ones with goniograms), etc., not limited
to OpenGL-supported attributes. So it allows not only interactive
rendering, but also complex offline photorealistic lighting
simulation.
FLY supports import of different scene formats: VRML, 3DS,
DXF, IOF (own internal format). If an imported format does not
have physical attributes, an importing module creates attributes
approximating the original ones.
FLY has two rendering engines: hardware and raytracing.
Because SDB contains generic attributes, which cannot be at once
passed to a rendering engine, for each type of a rendering engine
specific data structures are prepared. We call them RDB
(Rendering Description Database). Generic attributes are
converted to more simple ones, understandable by given
rendering engine. The user can control the transformation. For
example, vertex luminancies are replaced by colors for OpenGL
engine, by applying a tone-mapping operator. For raytracing
engine, special optimization RDB, based on spatial subdivision, is
also prepared. Each time SDB is changed by user actions or
animation events, all RDBs are updated.
The interactive visualization module operates at RDB level. Its
main purpose is different shading and optimization algorithms,
such as view-frustum culling, back-to-front rendering for semi-
transparent objects, multi-pass rendering, etc. Shadows, BRDF
rendering, sunlight illumination are implemented in this module.
The final stage of the data flow is a graphics module, which is
only a wrapper over the system graphics API. Currently we have
implemented a wrapper over OpenGL, though other APIs are also
possible.

3. SUNLIGHT ILLUMINATION AND SHADOWS

SDB RDB1 Visual

Figure 3: Natural sunlight rendering. Left – dawn (8:00), right –

morning sun (11:00).
Rendering of scenes illuminated with sunlight is an important
special case, used in architectural CAD systems. Visually
persuasive and physically accurate rendering of sunlight involves

RDB2 Graphics

OpenGL MCRT

VRML,
DXF,
3ds,…

the following algorithms: generation of corresponding light
sources for the sun and sky, generation of the scene background
that represents sky, generation of shadows from the sun, and
vertex light maps and light textures according to the illumination.
User is allowed to add sunlight to the scene by entering either
geographic location of the scene or by direct specification of sun
position by latitude and longitude. After this, the sunlight is added
to the scene and the visualization mode is changed.
When sunlight is present in the scene, a semi-spherical
background representing sky with the sun, is generated. It takes
into account the location of the sun, so colors are different for the
noon and the morning sun; see Figure 3 for an example.
The next step is the vertex colors calculation. Usually scenes with
sun have high level of secondary illumination; so standard
OpenGL internal Phong shading will not give attractive results.
Good results can be archived by calculation of lighting maps
using Monte-Carlo raytracer. But it can take significant time.
Therefore, we use different strategies depending on lighting map
availability. If a lighting map is not available (has not been
previously calculated), vertex colors are calculated using
modified Phong model. Our modification adds empirical
“directional ambient” term, which simulates secondary diffuse
illumination by raising the luminance of corner vertices. Though
this method is not physically justified, it gives good results.
Certainly, if the user calculates lighting maps, they are used
instead of the local illumination model.
Finally, we construct shadows from the sun. This component is
especially important, because on a sunny day shadows are very
distinctive and sharp. There are two existing approaches for real-
time shadow generation: shadow mapping and shadow volumes
([10]). Shadow mapping is a bit easier to integrate, because it
smoothly works with any geometry. On the other hand, shadow
volumes produce better quality sharp shadows.
We have implemented a modified shadow volume technique. Our
modifications are aimed to decrease amount of shadow volumes,
needed by the algorithm. Known solutions create shadow volumes
geometry by finding all edges possibly belonging to object’s
silhouette. For complex object with rich internal topology (e.g.,
houses, or car with interior) this will create a lot of excess shadow
volume geometry, significantly decreasing rendering speed.
We improve this algorithm by rendering a scene in an
orthographic projection from a sunlight view and building a
visibility map, which allows us to determine lit triangles (i.e.
visible from the sun). This is done by encoding index of each
triangle by its color. In case of naïve implementation of this
algorithm, too little triangles (smaller than one pixel) can be
missed in the visibility map. This will be noticeable as holes in
shadows. We avoid this situation by splitting geometry into
clusters, estimating minimal triangle size in the cluster and
applying iterative algorithm that guarantee visibility of all
significant triangles.
After this stage, we apply a silhouette-finding algorithm only for
triangle visible from the sun.

4. BRDF-BASED MATERIALS RENDERING

FLY uses measured representation for materials with defined
BRDF ([1]). Qualitative interactive visualization of surfaces with
such materials is a challenging task, because it requires significant
amount of computational work for accessing and interpolating

values in BRDF tables. Moreover, per-vertex calculations are
often not appropriate because they can miss unique features of
particular BRDF, such as highlights.

Figure 4: Ball image mesh for BRDF visualization

We use a novel technique for per-pixel calculation of BRDF-
based lighting. This technique is based on real-time generation of
a special texture, applied to the corresponding object by the
reflection mapping. This is similar to the algorithm used in [14],
however, the difference is in the way this texture is created.
Cabral et al use an image-based technique based on weighted
blending of several pre-computed spherical textures. Our
approach is based on real-time generation of the texture from
measured BRDF representation.
The spherical texture is an image of a unit ball made of a given
material under given illumination conditions. In our approach, the
image is generated by calculation of the colors of vertices of some
mesh, and then interpolating inside its cells with OpenGL
shading. This mesh is created for each light source and is
optimized to have more dense cells around light reflection
direction thus approximating highlight shape (see Figure 4). Ball
images for different light sources are summed up to generate a
final texture that is applied to the object using OpenGL reflection
mapping.

a)

b) c)

Figure 5: BRDF rendering examples. a) A car painted with
BRDF material, lit by 5 point light sources b) A close-up

rendering of the paint c) The same part rendered by a raytracer

This technique is suitable for 3D BRDFs and distant light sources.
However, it shows attractive results for car paints. Comparison
with raytraced BRDF materials shows little difference (see Figure
5).
Calculation time for 256x256 ball image for 5 point light sources
is less than 15ms.

5. REAL-TIME SPECULAR REFLECTIONS

OpenGL shading produces only approximate reflections of light
sources. In order to improve realism of general images, we
generate reflection of scene geometry by additional real-time
algorithms.
We apply different methods for flat and curved reflectors. For the
latter we use a well-known stencil-buffer technique ([15]). It is,
however, not suitable for curved surfaces. For such surfaces we
use reflection mapping with cubic environment map ([16]).
Algorithms are selected automatically, depending on object’s
shape and material.

Figure 6: Real-time specular reflections with light maps

rendering mode.

6. ILLUMINATION MAPS

An important part of FLY’s rendering engine is a raytracing
component. Our Monte-Carlo raytracing engine supplements
OpenGL-based visualization. The raytracer is used to calculate
vertex light maps together with light textures. Light maps and
textures are stored in floating point luminance format and
converted to vertex colors by applying user-defined tone mapping
operator ([17]).
A special care is taken to process two-sided (open) geometry. For
such surfaces we create light maps and textures for both sides. At
the rendering time, a special vertex shader is used to select proper
color and texture.

Figure 7: Illumination maps and shaded textures. Left –

raytracing, right - OpenGL rendering (a lighting texture was
applied to the floor)

7. RESULTS

Tests show that FLY is able to visualize scenes with sun
illumination, BRDF and real-time specular reflections at
interactive frame rates. The following Table 1 summaries
performance tests that were done on an ordinary PC with
Pentium4 2,8Ghz 1Gb RAM and Radeon 9700 Pro video
accelerator.

Scene Triangles
number

Simple
mode

Light
maps

Sunlight
mode

Mercedes (BRDF) 137551 33fps 35 fps 12 fps

Jaguar (BRDF) 107222 33 fps 38 fps 14 fps

House 312923 24 fps 26 fps 7 fps

Table 1: FLY performance in different rendering modes (frames
per second).

8. ACKNOWLEGMENTS

This work was supported by INTEGRA Inc. (Tokyo, Japan).
The version of the paper with color illustrations can be found on
http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.htm

9. REFERENCES

[1] B. K.P Horn, "Robot Vision", MIT Press and McGraw-Hill,
Cambridge, MA, 1986. ISBN: 0070303495 (Russian
translation: Хорн Б.К.П. Зрение роботов: Пер. с англ.-
М.:Мир, 1989.-487 с.,ил.).

[2] Cortona VRML Client. http://www.parallelgraphics.com.
[3] Blaxxun VRML Client. www.blaxxun.com.
[4] Opus Realizer. http://www.opticore.com
[5] Outline 3D. http://www.outline3d.com
[6] RTT. http://www.realtime-technology.com
[7] Cyrill Damez, Kirill Dmitriev, Karol Myszkowski "Global

Illumination for Interactive Applications and High-Quality
Animations", STAR - State of The Art Report, Eurographics,
2002.

[8] http://www.opengl.org
[9] J.T. Kajiya, The Rendering Equation, Computer Graphics,

Annual Conference Series, ACM SIGGRAPH, pp. 143-150,
1986.

[10] Andrew Woo, Pierre Poulin, Alain Fournie, “A Survey of
Shadow Algorithms”, IEEE Computer Graphics &
Applications, 1990.

[11] http://www.web3d.org
[12] http://www.sgi.com/software/optimizer/
[13] http://www.j3d.org
[14] B. Cabral, M. Olano, and P. Nemec. Reflection Space Image

Based Rendering. SIGGRAPH, pp. 165–170, 1999.
[15] M. J. Kilgard, Real-time Environment Reflections with

OpenGL, Slides, nVidia Corp.,1999.
[16] M. J Kilgard: Perfect Reflections and Specular Lighting

Effects With Cube Environment Mapping, Technical Brief,
nVidia Corp., 1999.

http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.htmR
http://www.realtime-technology.com/
http://opengl.org/

[17] Boris Barladian, Robust Parameter Estimation for Tone
Mapping Operator, 13-th International Conference on
Computer Graphics and Vision GraphiCon-2003, Moscow,
September 5 -10, Conference Proceedings, pp.106-108, 2003

	INTRODUCTION
	SYSTEM ARCHITECHURE OVERVIEW
	SUNLIGHT ILLUMINATION AND SHADOWS
	BRDF-BASED MATERIALS RENDERING
	REAL-TIME SPECULAR REFLECTIONS
	ILLUMINATION MAPS
	RESULTS
	ACKNOWLEGMENTS
	REFERENCES

