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Abstract 
We present a system for real-time realistic rendering of 3D 
scenes. Most of available on the market 3d visualization systems 
lack physical correctness of rendering, especially concerning 
complex materials and light sources. Our system is aimed to 
provide the physically correct visualization to the extent possible 
by modern graphics hardware. It supports natural sunlight 
illumination, complex BRDF materials, real-time specular 
reflections, integrated computation of illumination maps and 
lighting textures, tone mapping control. Areas of application are 
automotive and architectural design. 
Keywords: real-time rendering system, BRDF, sunlight 
illumination, real-time reflections, shadow generation. 

1. INTRODUCTION 

This paper describes a real-time realistic rendering system, called 
FLY. The main requirement to the system was interactive 
rendering speed and physical realism to the extent possible by 
modern hardware.  
Important elements of visually persuasive result of 3D rendering 
are presence of shadows, specular reflections (e.g. mirrors), and 
secondary illumination effects (color bleeding, caustics, etc). 
Besides this, the rendering with the natural sunlight illumination 
(specified by a geographic location of the scene and a preferred 
time) is often needed for architectural design. At the same time, 
evolution of local illumination models is required to support the 
visualization of materials given by an arbitrary BRDF 
(Bidirectional Reflection Distribution Function [1]). Such kind of 
materials is required for visualization of car paints and other 
complex metallic surfaces, e.g., in automotive design. 
In the paper we present our solutions and tradeoffs made in order 
to integrate different global and local illumination techniques 
while keeping the rendering at interactive frame rates. 
A lot of 3d rendering systems exist on the market, from game 
engines and VRML browsers ([2], [3]) to specialized products for 
automotive and architectural CAD design ([4], [5], [6]). 
However, to authors’ knowledge, none of them meet our goals. 
VRML browsers and game engines could produce visually 
attractive images, but operate in color space instead of physical 
luminance. Besides, none of VRML browsers have integrated 
raytracer to calculate global illumination. Another drawback of 
even the most advanced game engines is necessity for manual 
design of scene, because most of the visual effects will not 
function properly in automatic mode. On contrary, our system 
works with arbitrary geometry. 

Specialized commercial applications for automotive and CAD 
design declare support for interactive shadows and physically 
based rendering. At the same time, there are no known systems 
that support visualization of materials with true BRDF and natural 
daylight.  

 

 
Figure 1: Examples of FLY interactive rendering. 

Our system is based on modern rasterization hardware. We 
considered two approaches: traditional polygonal rasterization 
and modern interactive raytracing ([7]). An advantage of 
rasterization is high speed due to extensive hardware support. 
Interactive raytracing features internal support for global 
illumination. We’ve chosen the former, in spite of the fact that 
raytracing techniques better fit our needs on the first sight. 
However, there is a tradeoff between quality and speed, because 
interactive raytracing is still several times slower on typical 
scenes, especially for high-resolution displays. We use OpenGL 
([8]) as a low-level hardware access layer API in connection with 



own Monte-Carlo raytracer ([9]) used for calculation of lighting 
maps and textures. 
A distinctive feature is that FLY operates with physical 
illumination attributes until final transferring to hardware (which 
requires vertex colors and textures in low-range monitor RGB 
colors). This allows effective manual and automatic tone-mapping 
control.   
Several rendering modes were implemented: simple rendering 
mode (based on OpenGL internal Phong lighting), lighting maps 
mode (with pre-computed vertex luminance and lighting textures 
converted to OpenGL vertex colors as necessary), and a special 
sunlight mode, designed for simulation of sky and sun 
illumination.  
A user is allowed to specify a geographic location of the scene 
and a preferred time. The sun and sky illumination is calculated 
from these attributes. The sky is converted into a background 
illumination; the sun position is used to generate shadows using 
the modified shadow volume technique ([10]). The internal 
OpenGL shading mode is replaced with externally calculated 
vertex colors. See Section 3 for details. 
A special algorithm for rendering of surfaces covered by complex 
materials with given BRDF, was elaborated. It is based on real-
time general of a reflection texture. This texture is then applied to 
corresponding objects via OpenGL spherical mapping. BRDF 
rendering is described in Section 4. 
Highly specular materials are rendered using real-time specular 
reflections techniques built over OpenGL (see Section 5). 
This paper is organized as follows. In the following section we 
present a bird’s eye view of the system architecture. The next 
sections describe various features in details. In section 3 we 
describe implementation of the realistic sunlight illumination. 
Fourth section deals with the visualization of materials defined by 
BRDF. Section 5 describes an implementation of real-time 
specular reflections. Section 6 provides information about the 
support for illumination maps. Results are given in Section 7. 

2. SYSTEM ARCHITECHURE OVERVIEW 

The design of FLY system architecture is motivated by necessity 
to preserve physic attributes of the scene.  

 
 
 
 
 
 
 
 
 
 

Figure 2: Overview of the system architecture. Generic SDB with 
physical attributes converted to two RDBs – one for OpenGL 

engine (Visual) and another for Monte-Carlo raytracing engine 
(MCRT). 

The scene is kept in so-called SDB (Scene Description Database, 
see Figure 2). SDB is a hierarchical object-based structure, similar 

to scene interfaces used in VRML ([11]), OGLO ([12]), Java 3D 
([13]), etc. Our representation can keep complex materials (with 
BRDF), lights (including ones with goniograms), etc., not limited 
to OpenGL-supported attributes. So it allows not only interactive 
rendering, but also complex offline photorealistic lighting 
simulation. 
FLY supports import of different scene formats: VRML, 3DS, 
DXF, IOF (own internal format). If an imported format does not 
have physical attributes, an importing module creates attributes 
approximating the original ones.  
FLY has two rendering engines: hardware and raytracing. 
Because SDB contains generic attributes, which cannot be at once 
passed to a rendering engine, for each type of a rendering engine 
specific data structures are prepared. We call them RDB 
(Rendering Description Database). Generic attributes are 
converted to more simple ones, understandable by given 
rendering engine. The user can control the transformation. For 
example, vertex luminancies are replaced by colors for OpenGL 
engine, by applying a tone-mapping operator. For raytracing 
engine, special optimization RDB, based on spatial subdivision, is 
also prepared. Each time SDB is changed by user actions or 
animation events, all RDBs are updated. 
The interactive visualization module operates at RDB level. Its 
main purpose is different shading and optimization algorithms, 
such as view-frustum culling, back-to-front rendering for semi-
transparent objects, multi-pass rendering, etc. Shadows, BRDF 
rendering, sunlight illumination are implemented in this module. 
The final stage of the data flow is a graphics module, which is 
only a wrapper over the system graphics API. Currently we have 
implemented a wrapper over OpenGL, though other APIs are also 
possible. 

3. SUNLIGHT ILLUMINATION AND SHADOWS 
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Figure 3: Natural sunlight rendering. Left – dawn (8:00), right – 

morning sun (11:00). 
Rendering of scenes illuminated with sunlight is an important 
special case, used in architectural CAD systems. Visually 
persuasive and physically accurate rendering of sunlight involves 
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the following algorithms: generation of corresponding light 
sources for the sun and sky, generation of the scene background 
that represents sky, generation of shadows from the sun, and 
vertex light maps and light textures according to the illumination.  
User is allowed to add sunlight to the scene by entering either 
geographic location of the scene or by direct specification of sun 
position by latitude and longitude. After this, the sunlight is added 
to the scene and the visualization mode is changed. 
When sunlight is present in the scene, a semi-spherical 
background representing sky with the sun, is generated. It takes 
into account the location of the sun, so colors are different for the 
noon and the morning sun; see Figure 3 for an example. 
The next step is the vertex colors calculation. Usually scenes with 
sun have high level of secondary illumination; so standard 
OpenGL internal Phong shading will not give attractive results.  
Good results can be archived by calculation of lighting maps 
using Monte-Carlo raytracer. But it can take significant time. 
Therefore, we use different strategies depending on lighting map 
availability. If a lighting map is not available (has not been 
previously calculated), vertex colors are calculated using 
modified Phong model. Our modification adds empirical 
“directional ambient” term, which simulates secondary diffuse 
illumination by raising the luminance of corner vertices. Though 
this method is not physically justified, it gives good results. 
Certainly, if the user calculates lighting maps, they are used 
instead of the local illumination model. 
Finally, we construct shadows from the sun. This component is 
especially important, because on a sunny day shadows are very 
distinctive and sharp. There are two existing approaches for real-
time shadow generation: shadow mapping and shadow volumes 
([10]). Shadow mapping is a bit easier to integrate, because it 
smoothly works with any geometry. On the other hand, shadow 
volumes produce better quality sharp shadows.  
We have implemented a modified shadow volume technique. Our 
modifications are aimed to decrease amount of shadow volumes, 
needed by the algorithm. Known solutions create shadow volumes 
geometry by finding all edges possibly belonging to object’s 
silhouette. For complex object with rich internal topology (e.g., 
houses, or car with interior) this will create a lot of excess shadow 
volume geometry, significantly decreasing rendering speed. 
We improve this algorithm by rendering a scene in an 
orthographic projection from a sunlight view and building a 
visibility map, which allows us to determine lit triangles (i.e. 
visible from the sun). This is done by encoding index of each 
triangle by its color. In case of naïve implementation of this 
algorithm, too little triangles (smaller than one pixel) can be 
missed in the visibility map. This will be noticeable as holes in 
shadows. We avoid this situation by splitting geometry into 
clusters, estimating minimal triangle size in the cluster and 
applying iterative algorithm that guarantee visibility of all 
significant triangles. 
After this stage, we apply a silhouette-finding algorithm only for 
triangle visible from the sun. 

4. BRDF-BASED MATERIALS RENDERING 

FLY uses measured representation for materials with defined 
BRDF ([1]). Qualitative interactive visualization of surfaces with 
such materials is a challenging task, because it requires significant 
amount of computational work for accessing and interpolating 

values in BRDF tables. Moreover, per-vertex calculations are 
often not appropriate because they can miss unique features of 
particular BRDF, such as highlights. 

  
Figure 4: Ball image mesh for BRDF visualization 

We use a novel technique for per-pixel calculation of BRDF-
based lighting. This technique is based on real-time generation of 
a special texture, applied to the corresponding object by the 
reflection mapping. This is similar to the algorithm used in [14], 
however, the difference is in the way this texture is created. 
Cabral et al use an image-based technique based on weighted 
blending of several pre-computed spherical textures. Our 
approach is based on real-time generation of the texture from 
measured BRDF representation. 
The spherical texture is an image of a unit ball made of a given 
material under given illumination conditions. In our approach, the 
image is generated by calculation of the colors of vertices of some 
mesh, and then interpolating inside its cells with OpenGL 
shading. This mesh is created for each light source and is 
optimized to have more dense cells around light reflection 
direction thus approximating highlight shape (see Figure 4). Ball 
images for different light sources are summed up to generate a 
final texture that is applied to the object using OpenGL reflection 
mapping. 

 
a) 

  
b)                                                    c) 

Figure 5: BRDF rendering examples. a) A car painted with 
BRDF material, lit by 5 point light sources b) A close-up 

rendering of the paint c) The same part rendered by a raytracer 



This technique is suitable for 3D BRDFs and distant light sources. 
However, it shows attractive results for car paints. Comparison 
with raytraced BRDF materials shows little difference (see Figure 
5).  
Calculation time for 256x256 ball image for 5 point light sources 
is less than 15ms. 

5. REAL-TIME SPECULAR REFLECTIONS 

OpenGL shading produces only approximate reflections of light 
sources. In order to improve realism of general images, we 
generate reflection of scene geometry by additional real-time 
algorithms.  
We apply different methods for flat and curved reflectors. For the 
latter we use a well-known stencil-buffer technique ([15]). It is, 
however, not suitable for curved surfaces. For such surfaces we 
use reflection mapping with cubic environment map ([16]). 
Algorithms are selected automatically, depending on object’s 
shape and material. 

 
Figure 6: Real-time specular reflections with light maps 

rendering mode. 

6. ILLUMINATION MAPS 

An important part of FLY’s rendering engine is a raytracing 
component. Our Monte-Carlo raytracing engine supplements 
OpenGL-based visualization. The raytracer is used to calculate 
vertex light maps together with light textures. Light maps and 
textures are stored in floating point luminance format and 
converted to vertex colors by applying user-defined tone mapping 
operator ([17]). 
A special care is taken to process two-sided (open) geometry. For 
such surfaces we create light maps and textures for both sides. At 
the rendering time, a special vertex shader is used to select proper 
color and texture. 

  
Figure 7: Illumination maps and shaded textures.  Left – 

raytracing, right - OpenGL rendering (a lighting texture was 
applied to the floor) 

7. RESULTS 

Tests show that FLY is able to visualize scenes with sun 
illumination, BRDF and real-time specular reflections at 
interactive frame rates. The following Table 1 summaries 
performance tests that were done on an ordinary PC with 
Pentium4 2,8Ghz 1Gb RAM and Radeon 9700 Pro video 
accelerator. 

Scene Triangles 
number 

Simple 
mode 

Light 
maps 

Sunlight 
mode 

Mercedes (BRDF) 137551 33fps 35 fps 12 fps 

Jaguar (BRDF) 107222 33 fps 38 fps 14 fps 

House 312923 24 fps 26 fps 7 fps 

Table 1: FLY performance in different rendering modes (frames 
per second).  
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