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Abstract 
Robust parameter estimation methods are the general tool in 
computer vision, widely used for such tasks as multiple view 
relation estimation and camera calibration. In this paper, we 
propose a new general robust maximum-likelihood estimator 
called AMLESAC, which is a noise adaptive variant of renowned 
MLESAC estimator. It adopts the same sampling strategy and 
seeks the solution to maximize the likelihood rather then some 
heuristic measure, but unlike MLESAC, it simultaneously 
estimates the outlier share γ and inlier noise level σ. Effective 
optimization for computation speed-up is also introduced. Results 
are given for both synthetic and real test data for different types of 
models. The algorithm is demonstrated to outperform previous 
approaches for the task of pose estimation and provide results 
equal or superior to other robust estimators in other tests. 
 
Keywords: Robust Estimation, Sampling Consensus, Maximum 
Likelihood, RANSAC, MLESAC, Pose Estimation, Non-Linear 
Optimization 

1. INTRODUCTION 
One of the key tasks in the field of computer vision is to establish 
a relation between information extracted from images and some 
mathematical parametric model. The general task of parameter 
estimation from measured data can be formulated in the following 
way. We need to estimate the parameters vector θ , so that 
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where  – is the measured data vector, NixX i ..1},{ == ),( θXF  
is the target mathematical model. A classical example of 
parameter estimation task is fitting straight line to a set of points. 
In this case, x  is the point set, ),( θxF  is line equation, θ  - line 
parameters to be estimated. 
 
Statistical parameter estimation methods such as maximization of 
likelihood (ML) or maximization of posterior probability (MAP) 
rely on certain assumptions on relation of measured data and 
target model. It is expected that all data  is generated by 
the target model 

}{ ixx =
),( θxF , and later deviated by noise ε , with 

expectation , and variance . 
This assumption does not hold in cases when part of the measured 
data is generated not by the estimated model, but originate from 
some pure measurement noise. The data points generated by the 
target model are called inliers with respect to the model 
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F , 
generated by some other model (i.e. noise) are called outliers. 
Outliers do not conform to the target model, and the result of 
parameter estimation in presence of outliers by likelihood 
maximization may deviate arbitrarily far from the true values [10]. 
The proportion of inliers in the input data is usually denoted by 

]1,0[∈γ . An estimation technique is called robust if it can 
estimate the model from input data with inlier fraction γ < 1.  

 
Several methods were proposed to deal with presence of outliers – 
M-Estimators [10], voting schemes like Hough transform [2],[10], 
Least Median of Squares [3],[10], or a family of methods based 
on RANdom SAmpling Consensus estimator (RANSAC) [1]. 
                                                                      

2. BACKGROUND 
RANdom SAmpling Consensus (RANSAC) was proposed by 
Fisher and Boules in 1981 [1]. It uses the following strategy. The 
measured data has total of N samples with unknown fraction of 
inliers γ. To estimate true model parameters we would like to 
label data as outliers and inliers and estimate the model 
parameters from inliers only. As this labeling is initially unknown, 
RANSAC tries to find outlier-free data subset randomly, in 
several attempts. To maximize the probability of selecting sample 
without outliers RANSAC tests only samples of minimal size.  
 
The RANSAC algorithm consists of M  iteration of the following 
three steps: 

1) Random sampling m elements of the input data  xSk ⊂

2) Estimating hypothesis kθ  from  kS
3) Measuring the hypothesis score  )( kk RR θ=

After generation and evaluation of M hypothesizes, the one with 
highest score 
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= , is selected as the result of robust estimation.  

 
Given the expected fraction of inliers γ in the input data and the 
total number of samples N , the number of algorithm iterations 
M  necessary to find the true model parameters with desired 
probability P can be calculated [10].  
 
Since the introduction of the original RANSAC estimator, several 
different approaches for hypothesis scoring were developed. The 
original RANSAC scheme counts the number of inliers for the 
each of the generated hypothesis and selects the one that 
maximizes this number: 
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where is discrepancy of point and hypothesis 2)(θir ix θ , T  – 
outlier rejection threshold.  
 
The MSAC estimator [4] raises the influence of quality of each 
particular inlier by measuring the quality of hypothesis as  
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MLESAC [5] extends robust estimation to evaluate true 
hypothesis likelihood instead of heuristic measures (2), (3). This 
requires estimation of inlier share γ, which is solved by iterative 
EM algorithm [5]. 
 
The above-mentioned methods make no us of the prior knowledge 
that can be very helpful for more accurate hypothesizes 
evaluation. The MAximum aPosteriory Samling Consensus 
(MAPSAC) extends MLESAC estimator by replacing the 
likelihood with posterior probability. However, in most cases, the 
absence of meaningful prior information reduces it back to 
likelihood.  
 
One of the main drawbacks of previously mentioned methods is 
relying on parameters estimated elsewhere - outlier threshold T  

or predefined noise parameter  and inlier share γ (except for 
MLESAC that estimates γ). If their values are far from true, the 
scoring is incorrect and result can deviate arbitrary far from true 
model. Unfortunately, this case is not uncommon as will be 
discussed in next section in more detail.  
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Simultaneously with RANSAC another robust estimator was 
proposed from mathematical community.  It uses median error for 
hypothesis evaluation, to lower outlier’s contribution: 
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It does not rely on pre-defined thresholds, but was demonstrated 
to show lower performance than that of MSAC and its other 
methods in such computer vision tasks as two-view relation 
estimation [4]. 
 
For fundamental matrix robust estimation a new method was 
proposed by Feng and Hung in [12]. It is based on MSAC scoring 
function, but to increase the precision of fundamental matrix 
estimation it extends the EM algorithm from MLESAC to both 
inlier fraction γ and noise deviation σ estimation. However, our 
test has shown that accuracy of σ and γ is very poor in many 
cases and cannot be reliably used without modifications for real 
test sequences. Our estimator uses likelihood for hypothesis 
scoring instead MSAC heuristic scoring function and 
simultaneously accurately estimates σ and γ using local 
optimization and subset of input data selection. 
  

3. THE VARIANCE OF NOISE IN SEQUENCE OF 
ESTIMATIONS 
General robust estimators require predefined parameters of noise 
distribution. Portion of inliers γ and noise standard deviation σ  
are used to calculated the outlier threshold T in RANSAC and 
MSAC, and directly used for hypothesizes likelihood and 
posteriori probability calculation in MLESAC and MAPSAC. In 
many cases these parameters can be manually selected or be 
estimated by the input data generation method, like point feature 
detector [4]. But often this is not possible due to natural variations 
of error parameters. One of such examples, which actually 
stimulated development of general noise adaptive robust 
estimator, is given below.  

 
3.1 Pose estimation problem  
 
Consider set of 2d points projected from a set of 3d points. The set 
of 3d points NidD i ,...,1},{ ==  is projected to corresponding 

points NimM i ,...,1},{ ==  in 2d image by projection matrix 
P: 

NidPm ii ,...,1),( ==  

 
The camera orientation and position that is encoded in P  are 
called camera pose. So the task of estimation of P  from known 
sets D and M is called the pose estimation problem.  
 
One pose estimation method is 6-point linear method [11], which 
works in both Euclidian and Projective frameworks. It solves the 
pose estimation problem by directly solving a system of linear 
equations NidPm ii ,...,1),( == . The quality of estimated pose 

'P  is measured as a sum of reprojection errors of all 3d points: 
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where is distance between two points in image.  (.,.)dist
 

3.2 The variance of noise 
 
Consider camera pose estimation for the frame  when the pose 
for frames

k
}1,...,1{ −k  is already estimated. In camera pose 

estimation point feature detection is used to estimate 
NimM i ,...,1},{ == . The detector estimates the coordinates of 

with certain error im matchε  that is almost constant between 
frames. This gives the first source of error. The 3d points 

NidD i ,...,1},{ ==  are calculated by triangulation [11] from point 

feature tracks in several frames with known poses P . Since both 
poses and feature tracks were estimated with errors, the resulting 
3d points D  coordinates were also calculated with some error, 
which parameters are extremely complicated to estimate.  Also it 
is not constant and varies from frame to frame. This is the second 
source of error.  
 
Since pose estimation error depends on both sources of error, one 
of them unknown and varying, it makes impossible to select fixed 
outlier threshold T  or inlier share γ and deviation σ  for all 
frames in image sequence. This leads to camera calibration 
failures in wide number of image sequences if general RANSAC-
based estimators are used.  
 
Similar situation often arise in other computer vision tasks. If 
input data is extracted directly from the images, the error of point 
measurement is almost constant for all frames. However, if part of 
input data is the result of previous estimations the deviation of 
noise σ and inlier fraction γ are can vary from frame to frame. In 
such cases these parameters should be estimated for each 
hypothesis scoring.   
 



4. PROPOSED METHOD 
For accurate robust estimation of model parameters we propose a 
novel algorithm called AMLESAC. It is based on general random 
sampling consensus framework but introduces maximum 
likelihood estimation of hypothesis with simultaneous noise 
parameters estimation. We also propose local optimization and 
subset selection to increase precision and speed of estimation.  
 
4.1 Maximum likelihood error 
We assume that inlier point coordinates are measured with error 
that satisfies Gaussian distribution with zero mean and standard 
deviation σ . The probability distribution for error of inlier points 
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The distribution of outliers is assumed to be uniform (the least 
informative distribution), with s  dimensions and given by: 

v
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where is volume of space within which the outliers are believed 
to fall uniformly.  
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If no prior information about points being inlier or outlier is given, 
the probability of point to be inlier is equal for each point from 
input data. The error for all points can be modeled as mixture of 
Gaussian and uniform distributions: 
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The probability of generating data D with respect to parameter 
hypothesis θ is given by: 
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where N is number of data points. The negative log likelihood  
–L of all points equals: 
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The true hypothesis θ  minimizes the negative log likelihood. The 
search for such hypotheses is dubbed “maximum likelihood 
estimation”. We select negative log likelihood –L as a scoring 
function 
 

4.2 Mixture model parameters estimation 
The value of hypothesis likelihood depends on γ and σ and can 
be estimated correctly only is the values are accurate. As it was 
discussed in details in section 3 these parameters can usually vary 
for different input data sets and should be estimated for each 
hypothesis.  
 
We propose the method for mixture parameter estimation based 
on median of point errors for all input data points. Consider for 
the one-dimensional case the minimum inlier fraction minγ  and 
number of iteration steps , we test all variants of itern ]1,[ minγγ ∈  
with certain step stepγ   

1) Form a vector of discrepancy errors for all input data 

points NieE i ,1},{ == where iii xxe −=
~

 

2) Sort E  so that  jijiee ji <∀< :,,  

3) For each ]1,[ minγγ ∈k  with step stepγ  

a. Select )*(,1},{ NieE kik γ==  

b. Set  )(*4826.1 2
kk Emedian=σ

c. Estimate kγ  using EM algorithm from 
MLESAC [5] 

d. Calculate negative log likelihood kL−   

4) Select γ , σ that correspond to maximum kL−  

5) Then σ is refined by using gradient descent 

minimization method applied to negative log likelihood 
 
Another iterative method for inlier fraction γ and inlier noise 
deviationσ  estimation was proposed by Feng and Hung in [12]. 
Their method is an extension of EM algorithm for inlier fraction γ 
estimation only, which was originally proposed by Torr and 
Zisserman in [5]  
 
4.3 Stopping criteria 
Considering the inlier fraction γ in input data and number of 
RANSAC iterations M  the probability of selection the sample 
with size during this iterations equals: p

MpM )1(1),( γγ −−=Γ  

Two different stopping criteria exist for RANSAC-based 
estimators to achieve the desired probability of outlier-free sample 
selection. First is to compute the number of iterations M before 
estimation using the prior information about inlier fraction γ in 
input data, and stop the estimator only after all M hypotheses are 
selected and tested. Conservative strategy is often used in this 
case and inlier fraction γ is assumed lower than expected.  
 
The second strategy is to compute ),( kγΓ  after each iteration. 
The inlier share γ for currently best hypothesis is used. ),( kγΓ  is 
the probability that outlier-free sample has already been selected 
after k iterations. If ),( kγΓ  is higher than a given value (usually 
95-97%), then RANSAC estimator stops 
 



The last criterion is not applicable in case when noise 
deviationσ and inlier fraction γ are estimated for each hypothesis 
separately as AMLESAC does. It is not uncommon that a large 
noise deviation σ and relatively large inlier fraction γ are 
estimated for erroneous hypothesis from sample with outliers. The 
probability ),( kγΓ is large in this case and algorithm can stop 
long before outlier free sample can actually be found. So only the 
first criterion can be used in AMLESAC. This was not considered 
in [12] where both σ and γ were also estimated for each 
hypothesis. 
 
4.4 Mixture parameter estimation on subset of 
input data 
 
Estimation of σ and γ requires computation of hypothesis 
likelihood several times with different values of σ and γ for each 
hypothesis. Since the size of input data is large and counts 
hundred and thousands of points, the hypothesis evaluation step is 
usually more expensive and time consuming than sampling and 
hypothesis estimation steps. As a result, AMLESAC is several 
times slower then other RANSAC-based estimators. 
 
In [7] and [8] two different methods for lowering the 
computational complexity of RANSAC-based estimators were 
proposed. They share the same idea of using only subset of input 
data for hypothesis evaluation. In [7] each hypothesis is tested 
against several randomly selected points, and only if specified 
number of them are marked as inliers the evaluation is continued 
using all input data. Preemptive RANSAC, introduced in [8] first 
estimates all M hypothesizes. The one point is randomly selected 
and all hypothesizes are tested against it. The partial score is 
calculated based on it. Next point is then selected and hypotheses 
scores are updated. The process is continued until the time limit is 
reached.  
 
We propose to use the similar idea of subset selection to increase 
the speed of σ and γ estimation. After new hypothesis is 
generated, the subset of all input data is randomly selected 
and used in mixture model parameters estimation. In case of large 
volume of input data, a relatively small subset is sufficient for 

accurate

xTk ⊂

kT
σ and γ estimation. Depending on size different share of 

input data can be selected for such test subset. The negative log 
likelihood of hypothesis is then calculated using all input data and 
estimated values of inlier fraction γ and noise deviation σ .  
 
4.5 Local optimization 
The assumption that good estimate can be computed from any 
outlier-free sample is not always correct. Since the size of each 
sample tested by RANSAC is minimal, the influence of noise is 
can be significant.  For most RANSAC-based estimators this leads 
to errors in computation of inlier fraction γ and hence the 
probability that outlier-free sample has already been selected. 
Consequently, the number of samples M tested before termination 
of algorithm increases. To reduce the influence of noise 
hypothesis can be refined by local optimizations, as it was 
proposed in [9]. Consider the minimal sample size is H. After new 
top-score hypothesisθ  is found, a new sample  is randomly 
selected from points that have been marked as inliers with respect 

to hypothesis 

LOS

θ . Size of  is larger then H. The exact size of 

 can be determined from used model parameter estimation 

method. Hypothesis 

LOS

LOS
θ  is then re-estimated from .  It was 

demonstrated that this step lowers the probability of rejecting the 
hypothesis generated from outlier-free sample [9].  

LOS

 
Figure 1 Inlier noise deviation σ estimation with and without 

local optimization 
 
The accuracy of hypothesis scoring greatly depends on precision 
of σ and γ estimation. Our tests have shown that this precision is 
very low if hypotheses are estimated on minimal samples that 
makes σ and γ estimation meaningless. We propose to apply 
local optimization step to each hypotheses before σ and γ 
estimation. This significantly increases the precision of σ and γ 
estimation as shown on Figure 1. Because the inliers are not yet 
calculated when local optimization is applied, a sample  is 

constructed from points 

LOS

x with lowest error xxe −=
~

.  

 
4.6 Algorithm summary 
 
The proposed algorithm searches for the parameter vector θ with 
highest likelihood on input data x with assumption that input data 
is a mixture of inliers measured with error that obey the Gaussian 
distribution and uniformly distributed outliers.  
 

1) Calculate the required number of iterations M based on 
prior estimate of γ  

2) Repeat M  times:  
a. Random sampling m elements of the input 

data   xSk ⊂

b. Estimate hypothesis kθ  from sample  kS
c. Apply local optimization to refine kθ  

d. Random sample of the input data   xTk ⊂

e. Estimate the mixture parameters σ and γ 
based on hypothesis kθ  and sample  kT

f. Measure the likelihood of hypothesis kθ  
using all input data x with estimated values 
for σ and γ 



3) Select hypothesis θ with highest likelihood 
4) Minimize the robust cost function as described in 

section 5 

5. NON-LINEAR MINIMIZATION 
The result of any RANSAC-based estimator is a vector 
parameter θ , which has been estimated using only a portion of 
input data, even if a local optimization is applied. The precision 
of estimation can be increased if all inliers or even all input data 
points are used for estimation. It has become a “gold standard” 
to apply non-linear minimization over all input data using robust 
hypothesis scoring function to refine the resulting model. The 
most common non-linear minimization methods for such tasks 
are Gauss-Newton and Levenberg-Marquardt [13]. 
 
5.1 Noise parameters estimation based on 
current hypothesis  
 
One of the best general methods for model parameterization 
required for non-linear optimization is point-based 
parameterization introduced in [4][5]. It proposes to 
parameterize the model θ  by minimal sample of input data 
points . The non-linear minimization method varies 

coordinates of points in instead of varying the parameters 

xSk ⊂

kS
θ directly. For scoring function evaluation first the value of 

parameter vectorθ is estimated from as it is done in 
RANSAC-based estimators, then score itself is calculated from 

kS

θ and x . 
 
This parameterization has several advantages over model type 
specific parameterizations. First is that sample , which 
has been used for best hypothesis 

xSk ⊂
θ  estimation by RANSAC-

based robust estimator serves as good starting point for non-
linear minimization and has a strong support with high 
confidence. Second, it is consistent, which means that during 
non-linear optimization only hypothesizes that can actually arise 
are accounted for. 
 
The first variant of our non-linear refinement step uses this point 
parameterization. Negative log likelihood –L is used as a scoring 
function for minimization. Inlier share γ and noise deviance 
σ are estimated during each scoring function evaluation. This 
increases the precision of refinement in cost of additional 
computation.   
 
5.2 Free noise parameters estimation 
Instead of implicit calculation of inlier fraction γ and noise 
deviance σ we also consider the inclusion of these parameters 
into model parameterization. In this case the search is conducted 
in space of both sample points and noise parameters.  
 

6. EXPERIMENTS ON REAL DATA  
Based on the proposed AMLESAC estimator, the camera 
calibration framework was developed and tested on image 
sequences of various real scenes. As was discusses previously in 
section 3, the camera pose estimation problem highlights the 

necessity of robust estimator that will be adaptive to noise level 
in input data. So it was important to assess the performance of 
the proposed method on this particular task.   
 
Several real image sequences were captured with photo-camera 
Canon IXUS 500. The scenes were constructed from a set of 
man-made objects arranged on a top of the table. Feature-based 
calibration algorithm was then applied to image sequences. First, 
the point feature tracker with robust outlier detection via 
homography and fundamental matrix estimation was used to 
create a set of feature tracks. Second, the two frames based on 
image-based measure were selected and camera motion and 
scene structure were initialized similar to [11]. Then the pose 
estimation procedure was applied to each frame of the sequence.  
 
The pose estimation procedure consists of robust estimator and a 
linear 6-point pose estimation method as described in section 
3.1. After a robust estimator initialized camera pose the non-
linear refinement procedure was applied. 
 
The main goal of the real test was the comparison of whole 
camera calibration frameworks when MSAC and AMLESAC 
were used for pose estimation problem. The other robust 
estimators like LO-RANSAC, Preemptive-RANSAC, Guided 
RANSAC has been designed for lowering the computational 
complexity then that of MSAC or MLESAC with similar or 
slightly lower reliability and precision. 
 
The accuracy of camera motion reconstruction was assessed by 
measuring the 3d point reprojection error in all the sequence. An 
additional comparison was made by visual inspection of 
reconstructed camera motion to check its consistency with the 
real trajectory.  
 
The results of camera calibration by sequential pose estimation 
using MSAC and AMLESAC estimators for “cup” image 
sequence are shown in Figure 2. As can be clearly seen from 
Figure 2 (b) 3d points from the surface of the cup, when 
reprojected using camera pose that was estimated by MSAC, lie 
far from the respective matches. The non-linear optimization 
step fails to refine the camera pose sufficiently to label these 
points correctly as inliers. Errors in camera pose estimation 
leads to erroneous structure and pose estimations for other 
frames. This results in obvious deviation of reconstructed 
camera motion from real trajectory and severe deformations of 
recovered 3d structure as seen in Figure 2 (c). 
 
The inlier noise σ deviation for this sequence is shown on 
Figure 3. Images 1 and 5 were used for structure and motion 
initialization, so poses of these cameras were estimated 
separately thus the inlier noise deviation for these frames was set 
to 0. A steady rise of inlier noise deviation is clearly visible on 
the plot. This is the main reason why MSAC fails to correctly 
estimate pose for all frames of this test sequence.  In this case 
AMLESAC obviously shows the superior results as shown in 
Figure 2. 
 
 



 
(a) (b) (c) 

  
(d) (e) (f) 

Figure 2 Camera pose estimation for “cup” image sequence (a),(b) – Reprojection of 3d points on 6-th and 9-th frames using camera poses 
by MSAC estimator, (c) – 3d points and camera trajectory, reconstructed using MSAC estimator. (d),(e) – Reprojection of 3d points on 6-th 

and 9-th frames using camera poses by AMLESAC estimator. (f) – 3d points and camera trajectory, reconstructed using AMLESAC 
estimator. Magnified parts of source images are shown. Reprojections are black circles with white center, reprojection error is marked by 
white line. Notice that MSAC estimator marks most of the points on the cup as outliers since their respective reprojection errors are large. 

This leads to significant errors in camera pose estimation failure in camera trajectory 
 

On other test image sequences camera calibration framework 
based on AMLESAC shows a superior performance then that of 
based on MSAC. For “box” sequence mean reprojection error 
falls from 1.4 to 1.1, for “cup2” sequence it decreases from 0.92 
to 0.83.  
  

7. DISCUSSION 
A number of tests on synthetic data sets were also conducted to 
evaluate the AMLESAC performance. The first series of tests was 
made on the classical problem of line fitting. The second series of 
tests was made for camera pose estimation problem. The tests 
were designed to compare the accuracy of robust estimators 
methods with and without simultaneous noise parameters γ and 
σ . The precision of γ and σ estimation is also evaluated.  

  
7.1 Synthetic data tests – lines 
 
First experiments were made on line fitting tasks. For each test a 
set of points was randomly generated on a line and perturbed with 
Gaussian noise with zero mean and different standard deviation 
σ . Then outliers were generated to uniformly fill the square 
region [-10,10]*[-10,10], with different inlier shares ranged in 
[0.1,0.8]. The first set of experiments was designed to evaluate the 

estimation of inlier shareγ and noise deviation σ . Figure 4 (a) 
shows the value of estimated σ averages by 100 tests. In Figure 4 
(b) the corresponding outlier share γ−1 is demonstrated. It can be 
seen from these figures that AMLESAC accurately estimates the 
inlier error deviation but tends to raise the outlier share when 
noise deviation increases. When noise deviation rises, more inliers 
fall far from the line and marked as outliers. 

 
Figure 3 Estimated inlier noise σ deviation during camera 

calibration for “cup” image sequence 
 
On line fitting problem we have also compared our proposed 
method for noise deviation σ and inlier share γ  estimation



   
(a) (b) (с) 

Figure 4 AMLESAC evaluation on line fitting problem (a) Estimated noise deviation σ  of inliers plotted against true value. (b) Estimated 

outlier share γ−1 plotted against noise deviationσ   (c) Inlier variance of 4 robust estimators for line fitting problem: RANSAC, 
MLESAC, MSAC, AMLESAC plotted against true deviation of inlier noise

2σ
σ . Each value was calculated by averaging the results of 100 

tests. (a) and (b) were computed for outlier shares 0.3, 0.4, 0.5. Comparison (c) is demonstrated for outlier share 0.5 

with one of Feng and Hung. Both methods have been 
demonstrated similar precision of γ and σ estimation, however 
the latter has lower computational complexity.   
 
A popular measure for robust estimator accuracy comparison is 

inlier variance before non-linear minimization step [4],[5]. It 
demonstrates the discrepancy between best hypothesis 

2σ
θ and 

points of x  that has been marked as inliers. Using this measure 
the comparison was made between AMLESAC and other robust 
estimators RANSAC, MSAC and MLESAC. Figure 4 (c) shows 
that for line fitting all robust estimators demonstrate roughly the 
same estimation precision. It must be emphasized that true values 
for γ and σ  were used for RANSAC, MSAC and MLESAC. 
This demonstrates that precision of γ and σ estimation in 
AMLESAC is sufficient to achieve the same accuracy as other 
robust estimator.  
 
7.2 Synthetic data tests – pose estimation 
 
The pose estimation task is the one of robust estimation problems, 
which clearly reveals the changes of noise level during camera 
motion estimation in one image sequence. The synthetic tests 
were supposed to demonstrate the ability of AMLESAC to 
correctly determine both the parameters of noise and outliers 
share while maintaining the accuracy of other robust estimator. 
 
Each test data set consists of 200 randomly generated 3d points in 
10 focal lengths away from camera center and their corresponding 
reprojections onto camera plane. The projection points are 
perturbed by Gaussian noise with zero mean and different 
deviation. A set of outliers is added to lower inlier share γ  to 0.5. 
Figure 5 (a) and (b) show the estimated inlier noise variation 

and outlier share 2σ γ−1  plotted against true noise variation 
respectively.  
 
In Figure 5 (c) the comparison of pose estimation with MSAC and 
AMLESAC estimators is demonstrated. It can be seen that 
AMLESAC has generally lower mean inlier error then that of 
MSAC.  

The AMLESAC exploits both accurate scoring function based on 
hypothesis likelihood and local optimization step, which 
combined give it superior performance compared with other 
robust estimators, especially in real tests, however in expense of 
higher computational complexity.  
 

8. CONCLUSION 
In this paper a new general robust estimation method AMLESAC 
has been developed. It has been demonstrated that AMLESAC 
can be efficiently used in such task as camera pose estimation 
when inlier error deviation varies from frame to frame and 
prohibits the application of other robust estimators. It has been 
shown to provide equal or superior precision compared to existing 
robust estimators without relying on predefined noise parameters. 
This show that likelihood maximization with simultaneous inlier 
noise σ and inlier share λ estimation, boosted by local 
optimization lead to significantly more accurate and robust 
hypotheses scoring. When the computational complexity is not a 
first priority the AMLESAC is preferable to all other currently 
existing robust estimators.  
 
Our method differs from existing methods in several ways. First, 
during the robust initialization step we search for a model with 
maximum likelihood with simultaneous estimation of the 
unknown parameters σ and λ in a mixture model of errors for 
inliers and outliers. Second, only the subset of points is used for 
mixture parameters estimation and hypothesizes are locally 
optimized to increase precision of inlier noise deviation σ and 
inlier share λ estimation. Without local optimization estimated 
values of mixture parameters can deviate very far from true ones 
that leads to constant estimation failures. Third, during the non-
linear refinement step we evaluate the likelihood of the model 
more precise then other methods by simultaneous estimation of 
inlier portion γ and deviation σ or by optimization in space of all 
model parameters including γ and σ. 
 
 



  
(a) (b) (c) 

Figure 5 AMLESAC evaluation on pose estimation problem. (a) Inlier error by AMLESAC plotted against true value. (b) Outlier share 

estimated by AMLESAC plotted against true inlier error variation. (c) Mean inlier variance of hypothesis, estimated by MSAC and 
AMLESAC estimators plotted against true inlier error deviation. Plots and comparison are demonstrated for inlire share 

2σ
5.0=γ   
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