
Displacement and Normal Map Creation For
Pairs of Arbitrary Polygonal Models Using GPU

and Subsequent Model Restoration

Ilya Tisevich, Alexey Ignatenko
Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia
ilya.t@mail.ru, ignatenko@graphics.cs.msu.ru

Abstract
Displacement maps were originally intended for mostly
superficial alterations of polygonal models, while being
artificially obtained by means of various raster graphics software.

 Now, though, with rapid development of graphics hardware
and its constantly increasing level of programmability it becomes
possible to apply or simulate displacement mapping in real time,
which renders it a very promising technique for making polygonal
scene visualisations look even more realistic. It is also possible to
utilize the displacement approach for lossy (or even lossless,
considering significant data overhead) 3d-models compression
algorithms. If combined with dedicated model compression
methods and image and binary data compression algorithms,
displacement mapping can result in dramatically improved overall
compression ratios.

In this article a complete life cycle of differential
displacement maps is described, including proposed algorithm of
GPU-based map creation and an algorithm of model restoration. It
is shown that the described algorithm is capable of all of the
features of conventional raytracing-based algorithms, while
significantly outperforming them in terms of speed and feedback
times, which renders it much more suitable for real life
development process. Also, a multi-level displacing approach is
presented, clearing the possibilities of non-height-field model
details representation.
Keywords: displacement map, polygonal model, subdivision,
model restoration, level of detail, multi-level displacing,
complexity reduction, GPU algorithms.

1. INTRODUCTION

1.1 Displacement maps and their use
Originally displacement maps were used to add desired detail to
polygonal models, as it obviously is much less time-consuming to
draw a needed depth-pattern in a raster or vector image editor
than to carry out all the vertex operations by hand. It is also
obvious that image editors are perfectly suited for the job, given
evidence that there’s a huge resemblance between model’s texture
and its displacement features nature. It was never considered a
realtime application, mostly because it was computationally
demanding, especially when used in combination with model
animation algorithms, and resulting model complexity and data
size were often huge.

While still being one of the modeling techniques,
displacement mapping nowadays gathers more attention from
realtime graphics developers, it seems that its main purpose is

about to turn around, and here is why. In recent years there has
been a growing interest in the use of displacement maps for
realtime polygonal models rendering due to significantly
increased graphics hardware programmability and performance.
Several approaches has been developed, such as Real-Time Relief
Mapping [Policarpo05], Steep Parallax Mapping
[McGuire05], Per-Pixel Displacement Mapping with Distance
Functions [Donnelly05], Dynamic Parallax Occlusion Mapping
with Approximate Soft Shadows [Tatarchuk06] and more. Figure
1 (courtesy of ATI) illustrates the visible differences between
normal mapping (on the bottom) and parallax occlusion mapping
(on the top). The pavement is represented by a flat low-polygonal
model which is being accompanied by a normal map only (in case

Figure 1. Parallax Occlusion Mapping vs. Normal Mapping

of normal mapping), and a combination of normal and
displacement map (in case of parallax occlusion mapping). It is
the displacement data which allows to simulate relief details, self-
occlusion and self-shadowing and provide correct z-buffer depth
values. And the best thing about these algorithms is that they
don’t require any structural model modifications whatsoever.
With the introduction of Direct3D 10 and its improved
architecture, which now includes a geometry shader [DirectX
Dev], it also became possible to perform model subdivision and
displacement routines on the fly, utilizing immense GPU
capacities (for more details, see the model restoration section).
With the new rendering algorithms it is easy to imitate surface
microrelief, offering model detail level beyond the reach of
preceding realtime rendering techniques, and thus raising the
resulting image realism to a whole new level.

Displacement mapping approach is also suitable for polygonal
models compression. The idea is to create a smooth-surface less-
tessellated low-poly model based on an original complex high-
poly mesh and extract a differential displacement data. Our tests
show that even using a conventional lossless data compression
algorithm, it is possible to notably reduce overall data size.
Dedicated 3d-geometry compression techniques generally show
better results with smoother input meshes, and the displacement
data, stored as an image, could be subjected to any of the existing
image compression algorithms, both lossy and lossless. At this
point, it is worth mentioning that today’s leading wavelet-based
image compression methods, while achieving notably better
compression ratios, are perfectly suitable for displacement maps
compression, as they tend to produce blurry artifacts, compared to
JPEG’s rough blocking, which results in smoother restored
meshes with no eye-catching artificial geometry noise.

1.2 Displacement map formats
There is no established standard for displacement maps, so their
format and representation generally depend on the requirements
of the task in hand.

The most common representation is based on the texture
mapping approach, where each mesh vertex is bound with a pair
of [0,1]-range values which provide a mapping into the
conventional (s,t)-texture space of the displacement map, while
the map itself is a two-dimensional image. Explicit mapping is
usually omitted, which means that original vertex texture
coordinates play double role as both texture and displacement
map s,t-space vectors, although it’s not always the case. The
displacement data itself, as mentioned above, is stored in the
raster image format and is sometimes a combined normal-
displacement map with normal vectors data placed alongside
displacement values in each pixel of the image. The image format
used is usually a well-known 32 bits per pixel in 4 channels,
although 16 bits per channel mode is also supported by modern
hardware and is sometimes made good use of, in order to achieve
greater precision. The possible formats, then, are as follows
(precision given for 32bpp images):

• 8-bits displacement only. Displacement amount value only
is stored, while displacement direction is determined by
the surface normal direction in given point.

• 24-bit direction, 8-bit displacement. Three of the channels
define the displacement direction in current point, while
the fourth contains the displacement amount. It is possible
to save additional 8 bits by storing x and y components of
the displacement vector only, providing the vector is

normalized, so that the third component could be later
restored from the z2 = 1 – (x2 + y2) equation. Each of the
two remaining vector components could be then
represented by a 12-bit value, which allows for enhanced
precision while requiring some additional computations.

• 16-bit direction 16-bit displacement. Direction vector
consists of x and y components only, displacement
amount is a 16-bit value.

• 8-bit displacement, 24-bit normal (not to be confused with
displacement direction). The same as the very first format,
but with embedded normal map for correct realtime
surface shading.

• 2 x 8-bit displacement, 16-bit normal. Also known as Dual-
Depth Relief Textures, used by Relief Mapping. Two
displacement channels represent offset values from the
imaginary upper and imaginary lower planes, allowing to
simulate opaque closed-surface objects on a single relief-
mapped triangle.

• 16-bit displacement, 16-bit normal. High-precision
displacement amount value and a component-reduced
normal vector.

1.3 Displacement map creation
 To create a differential displacement map we need a pair of
models — an original high detailed model (will be referenced as
high-poly or original or detailed) and a probably smoothed,

simplified low-poly model (will
be referenced as either low-poly
or simplified). If a low-poly
model was not saved at one of
the steps of model creation, or if
model is not of handcrafted
nature, a simplified model can
be created by means of various
geometry reduction tools, such
as Rational Reducer [Rational]
or 3D Studio MAX [Discreet].
To achieve better results it is
sometimes crucial to apply a
few passes of a surface
smoothing algorithm before
reducing the number of
polygons.

 The problem we are facing
now is how do we obtain a
proper displacement map,
providing we are given both
low-poly and high-poly
models? There are numerous
products on the market which
can do the job, yet they all have
their weaknesses — they either
put too many restrictions on

model’s parameters and origin or are vastly time consuming.
Sometimes they simply offer not enough flexibility, too.

The proposed algorithm utilizes the ever growing computing
power and improved capabilities of modern graphics hardware
together with specialized high level rendering optimization
structures to offer fast and flexible technique of differential

Figure 2.
Model simplification

displacement and normal map creation. All-round subsequent
model restoration techniques are also described in the article.
Figure 3 shows a basic displacement workflow, illustrating results
achieved with the developed algorithms.

 Section 2 describes existing algorithms and implementations,
section 3 brings up the details of the proposed algorithm, while
section 4 provides some knowledge on the technique’s main
features. Section 5 discusses possible model restoration
approaches and is followed by section 6, which contains a results
showcase. Section 7 concludes the article.

2. EXISTING ALGORITHMS

There are two general categories of differential displacement map
creation techniques:

• techniques which exploit the precise information on models’
vertex correspondence;

• techniques based on raytracing and render-to-displacement-
map approach.

 ZBrush 2 [Pixologic] falls into the first category, allowing to
construct a precise displacement map in a couple of seconds,
providing the application can establish a one-to-one
correspondence (Figure 4) between all the vertices of the
simplified model and some of the vertices of the original model.

Models created in ZBrush from scratch can be easily subjected to
this condition either by saving a half-finished low-poly copy of
the model in the middle of the sculpting process, or by
reconstructing subdivision (i.e. simplifying the model) using
built-in software functionality, but only in case the model’s faces
are stored as quads. Unfortunately, it is impossible to
unambiguously figure out any correspondences between vertices
of pairs of arbitrary polygonal models, which renders this
approach virtually unusable for models obtained from laser 3d-
scanners or any other geometry reconstruction devices, models
represented by non-quadrant polygons or models created by
means of any other modeling software.

This leads us to the second class of displacement calculation
utilities — the ones built upon raytracing approach. Figure 5
shows principles of this technique: rays, corresponding to each

pixel of the mapped displacement map area, are casted towards
the direction of the normal vector in the corresponding point of
the low-poly model surface to determine an actual displacement
amount value. Given the fact that maximum displacement value is
correctly set the way that high-poly backface surface is beyond
the reach of the distance rays, this allows to accurately obtain
desired measurements.

Several applications rely on this technique, including a 3D
Studio MAX plugin, a Maya plugin (discontinued) and the ATI
NormalMapper [ATI]. While these utilities put no close restraints

Figure 3. Displacement workflow

Figure 4. Established vertices correspondence.

Figure 5. Casting rays to determine displacement amount.

on input models, their output formats are limited by available
render target formats of the raytracers in question. Moreover, the
CPU-based raytracer implementations are pretty slow, taking up
to a few hours to build a 4096x4096 displacement map for a pair
of models with a below-the-average geometry complexity on a
2.4GHz single-core processor.

3. PROPOSED ALGORITHM

3.1 Input data
 The algorithm takes two polygonal models as an input,
presuming one of them is an original high-detail model and the
second one is a simplified low-poly model. Apart from mandatory
texture mapping presence for the vertices of the simplified model,
the following restrictions of the displacement’s height-field
representation nature are applied:

• Texture mapping for the simplified model should be strictly
unambiguous.

• There should be no ambiguity in the original-onto-
simplified surface projection, which means that height-
field alterations only can be represented. Although it is
discussed later how to displace other model features using
multistep deformations.

If the first requirement is not met, some displacement data loss
will obviously occur. Multiple unwrapping techniques are
available to get this problem sorted out, although it is important to
understand their disadvantages while considering using either of
them. Figure 6 illustrates three different mappings, (1) is a bi-
plane front-face projection, (2) was created using a smart
projection algorithm and then slightly adjusted manually to
reduce the amount of wasted texture space. Mapping (3) is a
simple packed-triangles unwrapping. The first approach is rather
handy for texturing, while it is of little use for displacement
purposes, as some of the polygons, settled at acute angles to the
projection planes, are mapped into a handful of pixels, which
means a significant data loss is to be expected. It is also obvious
that more than 4/5th of the texture area are wasted. Approach (3),
on the contrary, maps all the faces into equal pieces in texture
space, wasting very little of it, yet it is near impossible to do a
proper texture job with such poly align. Among other drawbacks,
there is an issue with texture filtering: closely located triangles
will influence each other’s borders once the map is subjected to
filtering or mipmapping. Furthermore, relative triangle sizes are
not taken into account, which means bigger faces with much more
surface data to receive are granted equal texture space with tiny
faces which probably need not to be displaced at all. From this
point of view, the second (2) approach seems to be all things to all
men, mapping acute-angled faces separately while using most of
the texture area and properly packing adjacent faces, which fixes
filtering issues and makes it rather easy to carry out the texturing
job.

 The projection restriction could be solved by altering the
model simplification algorithm’s bias, or by manually adjusting
the low-poly model’s surface in problem areas. While difficult to
spot with a naked eye, this issue can be easily tracked using the
proposed algorithm in the diagnostics mode.

3.2 Displacement and normal map creation
The main idea behind the algorithm is to utilize the rasterization
approach and shift most of the job to the GPU, exploiting its
specialized architecture and superior floating-point computation
power. A virtual camera (or viewpoint) is positioned alongside a
polygon of the simplified model, projection matrices are adjusted
to transform the polygon’s model space coordinates into
displacement texture’s s,t-mapping coordinates. Then a culling-
wise chosen subset of the original model is rendered in such
manner that the vertex and pixel shaders are able to compute
displacement amount and original surface normal in given point
and then save it as the color of the corresponding render target
pixel (or fragment).

Generally speaking, the simplified model can consist of a
number of subsets, each with its own texture mapping.
Nevertheless, all the following details and explanations are given
under assumption that the model consists of a single subset, and
all its polygons are triangular, simply to avoid further
complication.

Figure 6. Consider different unwrapping strategies.

Steps of the algorithm:
1. Preliminary step. Clipping tree is built.
2. For each polygon of the simplified model the following steps

are taken (assuming i is the number of current polygon):

a) Projection matrix M i
p is built according to the

current triangle’s position and texture coordinates.
b) Clipping tree is traversed to select branches (and later,

individual triangles) which are not culled by the

viewing pyramid defined by the matrix M i
p and the

near and far clipping planes. A preset maximum
displacement value is used to filter out triangles
located beyond the distance threshold. Selected data
represents a subset of the high-poly model, which
projects onto the current simplified model triangle.

c) The selected subset is rendered using the

transformation defined by the M i
p projection

matrix, normalized displacement value and (optional)
normal direction data are calculated in the pixel shader.
Resulting values are stored in the render target.

d) Some combined map formats (see Introduction section
for details) may require multi pass rendering, in which
case step 2.c will be executed numerous times with
altering shader settings.

3. Optional postprocessing and resulting map assembly in case
of multipass rendering.

Figure 7 illustrates the projection-based clipping: a low-poly
model triangle and an adjacent detailed model area are shown on
the figure 7.1, selected high-poly model subset is painted light-
green on the figure 7.2, while 7.3 illustrates a sketch of the
resulting displacement map fragment. The fringe was successfully
clipped in the pixel shader.

3.3 Clipping tree
Since it is extremely inefficient to rely on the GPU only in the
task of geometry clipping, a dedicated spatial clipping structure
was introduced. Its goal is to serve the following purposes:
optional backface culling, projection frustum culling and
projection distance clipping. It is also designed in such manner
that intermediate computation structures for both original and
simplified models can be cached, allowing to noticeably reduce,
although already little, the tree computation time, once one of the
models has changed.

The structure is based on a combination of an adaptive-
subdivision-based modification of a conventional octree and a
frustum clipping tree, allowing to provide exactly the needed
model subset for every projection setup during the displacement
map building process.

First, an octree is built, which settings may vary depending on
such parameters as both low-poly and high-poly models grid
densities, high-poly model elongation, spatial orientation and
position of a particular model region. Each of the octree’s nodes
provides a bounding sphere for quick plane tests. Then a
combined projection clipping tree is created, using projection
frustum settings of each polygon of the simplified model.

4. FEATURES OF THE PROPOSED ALGORITHM

Not only are modern GPUs up to 100+ times more powerful
(FLOPS-wise) than CPUs, they’re also designed specifically for
rasterization operations. Furthermore, packing tens of parallel
pixel pipelines and backed by drivers which allow to prepare next
round of data while rendering is being finished, they can
dramatically outperform CPU-based realizations. Thus,
transferring most of the computations to the GPU and utilizing its
inherent parallelism allowed to significantly increase the speed of
displacement maps creation and bring the implemented
application into the realtime category (if using previously built
clipping tree). This makes it particularly handy for displacement
parameters fine-tuning, as one can see the changes in almost no
time, while adjusting a slider.

 Flexible shading programmability makes it possible to
implement most of the displacement and combined normal-
displacement map formats as one-pass setups, while others can be
implemented as two- or more complex multi-pass realizations,
while still keeping the implementation interactive.

The use of the GPU offers pretty cheap antialiasing as well.
While raytracing-based algorithms have to cast multiple rays from
every point, using proposed technique, it is possible to utilize
native hardware multisampling with nice nonuniform sample
patterns. It is also possible to apply supersampling by rendering a
displacement texture of bigger size and then scaling it down,
either on the GPU or on the CPU, using preferred resampling
algorithm. For bigger displacement maps, it is possible to render
them in parts and then assemble obtained pieces into one. Any
kind of postprocessing can be applied, including on-the-fly edge
detection and subsequent edge line extension (in case of poor
unwrapping adjacency, to avoid unpleasant effects of texture
filtering applied by realtime visualization algorithms).

Figure 7. Projection clipping in action.

 Raytracing algorithms cast distance rays towards the low-
poly model triangle’s normal direction. With proposed approach,
it is possible to set up the frustum and the transformation matrices
the way that the vectors connecting the viewpoint and the
projected triangle’s vertices will be pointing in the exactly same
directions as the original triangle’s normals. This makes it
possible to precisely simulate distance-computing raytracing.

 We also propose a multistep displacement approach, which
makes it possible to represent non-height-field surface features
using two or more subsequent displacement adjustments. This
method requires an equal number of intermediate models during
displacement maps creation, although none of them are needed for
surface restoration. Figure 9 shows an example of a two-step
displacement, where the intermediate model is built in such
manner that it tends to resemble as many original surface features
as possible, while the final (stage 2) simplification is created after
applying reasonable surface smoothing to flatten the relief
features. Stage2→stage1 displacement map should normally be
highly compressible, given the fact it will mostly consist of semi-
uniform linear gradient patterns.

5. MODEL RESTORATION

The first and rather crucial thing to be considered before model
restoration is the tessellation method. It is important not to
underestimate the role of appropriate subdivision and its influence
on the resulting mesh. When choosing between tessellation
patterns, it is helpful to analyse the low-poly model and
understand the nature of modifications made. Some of the patterns
(a representative selection is shown on the Figure 10) only
increase the number of vertices along the original triangle ribs.
Others, on the contrary, tend to saturate inner areas of the triangle
with newly added vertices.

Figure 10. Various subdivision patterns.

It is also important to take into account the added
triangles/vertices ratio figures and the subdivision algorithm’s
per-step memory consumption characteristic.

A number of adaptive and view-dependant subdivision
techniques were introduced, often with a possible hardware
support [Boo01], [Doggett00].

 Some unwrapping strategies may result in vertex duplication,
so that some triangles, originally sharing the same vertices and,
eventually, ribs, will be indeed completely separated, with twin
vertices having texture coordinates pointing to different areas of a
displacement map. In case of antialiased or compressed
displacement map, it may result in noticeable reconstructed model
integrity degradation, be the map applied in a straightforward
way. This problem could be solved using model repairing
techniques explained in [Botsch06], although we propose an alias-
based subdivision and displacing approach which allows to avoid
geometry inconsistency and correctly restore model normals.
First, an adaptive-depth octree is built for the low-poly model.

Then a search among residents of each octree leaf node is
performed, in order to reveal possible vertex duplication. Twin
information is being stored in the main alias buffer, allowing all
duplicate vertices to refer to the first instance found. All the other
operations are performed using the alias-layer-based
identification. During subdivision, each vertex registers all its
neighbours (a neighbour is a vertex

Figure 8. Using transformations to simulate normals’ directions.

Figure 9. Multistep displacement.

Figure 11. Vertex alias buffers.

residing on a defined rib along with the current vertex), so that if
duplicate ribs exist, it is possible to detect subdivision-originated
vertices duplication and maintain accurate and coherent alias
information. Finally, alias information is used to restore smooth
model normals, if not present, and synchronize duplicate vertices
displacement amounts. After that, if normal map was not
provided, another pass of smooth normals calculation is applied to
restore correct model lighting attributes.

Various realtime restoration or relief imitation techniques
exist. Recent approaches are listed in the section 1, although
earlier proposals can be considered as well (e.g. [Wang03]).
We’ve been recently introduced with the Direct3D 10 and the
novel geometry shader in particular.

The new architecture element is capable of controlled surface
subdivision and various mesh alterations, including real-time
displacing. Figure 12 (courtesy of Microsoft) clearly
demonstrates the described feature. Geometry shader processing
is parallel and utilizes multiple pipelines, while serial order is
preserved.

6. RESULTS

The proposed displacement and normal map creation algorithm
was implemented using C++, Cg, Direct3D 9.0 and Windows
API. The software model restoration technique was implemented
in C++, using the proposed alias-based subdivision and
restoration approach.

 512 1024 2048 4096

NM 63000 ms 157000 ms Est >10 mins Est > 40 mins

Our 42 ms 42 ms 43 ms 67 ms

Figure 13. Comparative timing, no multisampling. Model:
Rabbit.

Figure 13 shows the details of comparative timings of the
implementation of our algorithm and the NormalMapper 1.21
utility with multisampling turned off. The column headings are
set to the square displacement map side sizes in pixels. Models
used: high-poly model: 69451 faces, low-poly model: 4857 faces.

Figure 14 shows timings of the same test but with
multisampling turned on. NormalMapper was set to cast 5 rays
per pixel, while our rendering was performed with 4x antialiasing.

Face quantity numbers for the test models are given on the figure
15.

Clipping tree build times are listed below.

Next are detailed displacement map creation timings.

 Bunny Sphere Sword

512 41.8 145.1 25.0

1024 42.4 145.7 25.0

2048 43.3 146.3 25.1

4096 67.1 149.7 25.2

Figure 17. Detailed timings, in milliseconds.

As you can see from the timing table, map creation time does not
grow proportionally to the image size, opposed to that of
raytracing algorithms.
Below are some model restoration results and both displacement
and combined normal-displacement map samples created for the
test models.

Figure 18. Restoration results, displacement map. Model: Sword.

 512 1024 2048 4096

NM 122000 ms 392000 ms Est 0.5 hour Est > 1.5 hours

Our 43 ms 43 ms 45 ms 69 ms

Figure 14. Comparative timing, 5 rays / 4x AA. Model: Rabbit.

Figure 12. Applying displacement map in the geometry shader.

Model High-res, faces Low-res, faces

Bunny 69451 4857

Sphere 262144 16384

Sword 282624 438

Figure 15. Test models.

Model Bunny Sphere Sword

Time 1607 ms 14896 ms 1401 ms

Figure 16. Clipping tree build times.

Figure 19. Restoration results. Model: Bunny. More on figure 3.

Figure 20. Combined normal-displacement maps for the Sword
and Sphere models. Displacement value is stored in the alpha
channel.

We’ve also done some data size testing. As you can see on the
figure 21, after model simplification and displacement map
creation, the compressed resulting set takes up to 11 times less
space than the compressed original model. Compression used:
RAR with the compression level option set to “Best”.

All the measurements were taken on the following configuration:
P4 2.4GHz, 1024+256 MB RAM, NVIDIA 6600GT 128MB.

7. CONCLUSION

Displacement maps are used in the leading state-of-the-art
realtime rendering techniques, they can also be utilized for
modeling and polygonal models compression. We have proposed
a fast, flexible and efficient differential displacement and
combined normal-displacement maps creation algorithm, which

exploits vast computational power and inherent parallelism of
modern graphics hardware. We have also proposed a fast and
precise model restoration technique and a multistep-displacement-
based non-height-field surface feature representation approach,
which can be implemented in hardware to achieve realtime model
reconstruction, and then combined with any of the available (self-
)shadowing techniques.

8. REFERENCES

• [Policarpo05] Fabio Policarpo, Manuel M. Oliveira, João
Comba. Real-Time Relief Mapping on Arbitrary Polygonal
Surfaces. ACM SIGGRAPH 2005 Symposium on Interactive
3D Graphics and Games, Washington, DC, April 3—6, 2005,
pp. 155—162.

• [McGuire05] Morgan McGuire, Max McGuire. Steep Parallax
Mapping. I3D 2005 Poster.

• [Donnelly05] William Donnelly. Per-Pixel Displacement
Mapping with Distance Functions. 2005. In GPU Gems 2, M.
Pharr, Ed., Addison-Wesley, pp. 123—136.

• [Tatarchuk06] Natalya Tatarchuk. Dynamic Parallax Occlusion
Mapping with Approximate Soft Shadows. 2006. In Proceedings
of ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (SI3D '06), pp. 63—69.

• [DirectX Dev] Microsoft DirectX Developer Center.
http://msdn.microsoft.com/directx/

• [Rational] Rational Reducer. http://www.sim.no

• [Discreet] Discreet 3D Studio MAX. http://www.discreet.com

• [Pixologic] Pixologic ZBrush. http://www.pixologic.com

• [ATI] ATI NormalMapper.
http://ati.amd.com/developer/tools.html

• [Boo01] M. Bóo, M. Amor, M. Doggett, J. Hirche, W. Strasser.
Hardware Support for Adaptive Subdivision Surface Rendering.
2001. SIGGRAPH, pp. 33—40.

• [Doggett00] Michael Doggett, Johannes Hirche. Adaptive View
Dependent Tessellation of Displacement Maps. 2000.
SIGGRAPH, pp. 59—66.

• [Botsch06] Mario Botsch, Mark Pauly, Christian Rossl, Stephan
Bischoff, Leif Kobbelt. Geometric Modeling Based on Triangle
Meshes. 2006. SIGGRAPH, ISBN:1-59593-364-6.

• [Wang03] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin,
Shimin Hu, Baining Guo, Heung-Yeung Shum. View-
Dependent Displacement Mapping. 2003. SIGGRAPH, pp.
334—339.

About the authors

Ilya Tisevich is a student at Moscow State University,
Department of Computational Mathematics and Cybernetics. His
contact email is ilya.t@mail.ru.

Alexey Ignatenko is a Ph.D. researcher at Moscow State
University, Department of Computational Mathematics and
Cybernetics. His contact e-mail is ignatenko@graphics.cs.msu.ru.

Figure 21. Space savings after model simplification, displacement
map creation and resulting set compression.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

