
An Evolving Approach to Computer Graphics Courses in Computer Science

Steve Cunningham
California State University, Stanislaus

Abstract in the field. Topics in this course include the process of
presenting 3D images on a 2D surface (projections and
viewing; Z-buffers), developing and presenting realistic
images (texture maps, environment maps, anti-
aliasing, alpha channel, lighting models), and
managing the viewing device (scan conversion,
clipping). The second course is close to the concepts
and algorithms course described in [BRO 88] and [OHL
86], frequently taught now as the first computer
graphics course, but is not the kind of course in
specialized techniques or systems that is sometimes
considered as an advanced course [OWE 92].

Recent developments in computer graphics APIs
permit us to take a new approach to teaching a first
graphics course that parallels a first computer
programming course. This first graphics course, and a
second course that could follow it, are briefly
described and are placed in the context of current
graphics courses.

New Opportunities in Graphics Courses

There are two reasons students study computer
graphics: to be able to do computer graphics
programming, either on the job or for personal work, or
to understand computer graphics deeply in order to
build a graphics-focused career. Few computer science
programs can develop separate courses for these two
kinds of students because the faculty and equipment
resources needed are too scarce. Thus we must
consider courses that serve both purposes.

An analogy might be useful. This analogy is the
general programming environment, in which students
learn programming through a high-level language (and
the trend has been to move the level of the language
upwards as the field has matured) and later learn the
details of how program execution works. In a more
diagrammatic form:

Computer is: Problem Solving + Language
The field of computer graphics has evolved to a

point that allows us to respond to these dual needs.
This response is a full year program in computer
graphics that involves two half-year courses. In the first
course, lasting perhaps 15 weeks in the U.S. system,
the focus would be on computer graphics programming.
At this point in our field, there's no use in considering
2D graphics; all significant graphics is 3D. This course
would use a high-level platform-independent 3D API
such as OpenGL or Java3D and would focus on the
principles of developing a 3D model, displaying it, and
interacting with it. The particular concepts that should
be covered here are fundamental 3D geometry;
geometric transformations; lighting and viewing;
expressing geometry, materials, and views through the
API; material properties; and details of managing
programming with local systems and the API. This
course would be similar to that described by Angel
[ANG 97] and covered by Angel's book [ANG 97a], but
would not try to include both high-level graphics
programming and fundamental algorithms because it
seems more productive to keep the focus on the
capabilities provided by the API. The course would be
quite distinct from a number of other introductory
courses that have been described in the literature, such
as [SCH 90] or [XIA 94] because it has the single focus
on graphics programming.

Programming builds on: Computer Organization

Graphics is: Geometric Thinking + Language
Programming builds on: Fundamental Graphics Techniques

Thus the first course in computer graphics might be
seen as a “high-level language” course in graphics,
while the second might be seen as an “assembly
language” or “system organization” analog in
computer graphics.

Additional courses should complement these for
any program with a concentration in computer
graphics. A course in interaction covers event-driven
programming and how one can interact with 3D
environments, and might end with a consideration of
interactive environments such as VRML. A course on
animation would describe how one can describe and
model motion and create image sequences that give
good illusions of motion [WAT 92].

The First Course

The first course focuses on graphics programming with
a graphics API as noted above. Several people in the
United States now teach such a course, though it is not
yet considered standard. An example of this course,
based on OpenGL, is the undergraduate course taught
by Lew Hitchner at Cal Poly State University, San
Luis Obispo, California. This course is based on the
Angel book [ANG 97a] and a book on SGI Inventor
[WER 94]; it is described by online materials found at

The second course would focus on computer
graphics concepts. This course covers the fundamental
concepts and algorithms by which a graphics system
creates images and is intended for the student who
wishes to understand computer graphics in depth, to
prepare for graduate study, or to pursue individual work

http://www.csc.calpoly.edu/~hitchner/CSC455.S98

This course covers an introduction to graphics systems,
graphics programming, input and interaction,

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

geometric objects and transformations, viewing,
modeling (using Open Inventor), shading, the
implementation pipeline, and discrete techniques. It is
an advanced course and includes a mixture of graphics
programming and fundamental techniques.

The Challenge

The course we propose as the introductory course is not
yet supported by a textbook or a body of experience. It
will be challenging to design a course, develop a set of
projects and examples, and to create textbooks. This
will likely take a few years, but it seems to be the
right time to take this direction for the field.

This first computer graphics course could be given
earlier than the Hitchner course or most other computer
graphics courses. The course could be motivated by
computer graphics applications in areas such as
science, engineering, education, mathematics,
business, statistics, architecture, or entertainment,
depending on the students and the university. Lectures
could discuss graphics systems as expressed through
the API, geometry, simple modeling, transformations,
and simple lighting. Student projects would create
graphics for the application area of the course’s focus.
Students who complete this first course would be
prepared to do graphics programming as part of their
overall programming work, but would not necessarily
have a deep understanding of all the techniques and
issues involved in the field. Thus those students who
wanted to go on in graphics would need to take the
second course to lay the groundwork for the area.

References

[ANG 97] Angel, Edward, “Teaching a Three-
Dimensional Computer Graphics Class
Using OpenGL,” Computer Graphics 31
(3), August1997, 54-55

[ANG 97a] Angel, Edward, Interactive Computer
Graphics: A Top-Down Approach with
OpenGL, Addison-Wesley, 1997

[BRO 88] Brown, Judith R., Robert P. Burton, Steve
Cunningham, Mark Ohlson, “Varieties of
Computer Graphics Courses in Computer
Science,” Proceedings of SIGCSE 88,
SIGCSE Bulletin 20(1), 1988, 313

[FOL 96] Foley, van Dam, Feiner, and Hughes,
Computer Graphics Principles and
Practice, 2nd ed in C, Addison-Wesley,
1996

The Second Course

As noted above, the second computer graphics course
serves students who want a deeper understanding of
graphics principles and techniques. It focuses on
details of creating and manipulating graphics images,
and would probably use a very basic graphics system
buildt directly on raw pixel access. It covers the
material typically seen in the concepts course as
represented by [FOL 96] and as described in a number
of sources such as [BRO 88], including scan converting
and filling polygons, clipping and visible line and
surface processing, spatial subdivision, implementing
viewing environments, curve and surface construction,
and shading and texturing, but not the introduction to
geometry and other beginning concepts usually found
in those courses. Student projects are very similar to
those of the current computer graphics principles
course, but because early introductory projects are no
longer needed, more comprehensive and interesting
projects are possible. An interesting feature of the
second course is be that students would understand
principles of geometry, modeling, lighting, and
materials from the first course, so the second course
can move much more quickly into techniques. Students
completing this second course would have a solid
grounding in the field and would be prepared for a
graduate program in computer graphics or for work in a
firm in the graphics industry.

[OHL 86] Ohlson, Mark R., “The Role and Position
of Graphics in Computer Science
Education,” Proceedings of SIGCSE 86,
SIGCSE Bulletin 18(1), 1986, 232-237

[OWE 92] Owen, G. Scott, “Teaching Computer
Graphics Using RenderMan,” Proceedings
of SIGCSE 92, SIGCSE Bulletin 24(1),
1992, 304-308

[OWE 94] Owen, G. Scott, Maria M. Larrondo-
Petrie, and Cary Laxer, “Computer
Graphics Curriculum: Time for a
Change?” Computer Graphics 28(3),
August 1994, 183-185

[SCH 90] Schweitzer, Dino, “Ray Tracing: a Means
to Motivate Students in an Introductory
Graphics Course,” Proceedings of
SIGCSE 90, SIGCSE Bulletin 22(1), 1990,
157-161

[WAT 92] Watt, Alan and Mark Watt, Advanced
Animation and Rendering Techniques,
Theory and Practice, Addison-Wesley,
1992

[WER 94] Wernecke, Josie, The Inventor Mentor,
Addison-Wesley, 1994

[XIA 94] Xiang, Zhigang, “A Nontraditional
Computer Graphics Course for Computer
Science Students,” Computer Graphics
28(3) August 1994, 186-188

Students could also go from this second course to
study particular topics in depth or to begin research
work. These advanced courses could affect the content
of the second course, but the second course should
avoid the specialization described in [OWE 94] and
remain as general as possible so students can go on to
a wide range of future studies.

Department of Computer Science
California State University Stanislaus
Turlock, CA 95382 USA
rsc@csustan.edu

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

