

GraphiCon'98 Moscow - Russia September 7-11, 1998

Estimating Criteria for Fitting B-spline Curves: Application to Data Compression

Eric SAUX, <u>Marc DANIEL</u> Institut de Recherche en Informatique de Nantes, France

Outline

⊠Survey of the present compression methods

- Strategies based on polygonal curves
- Strategy based on spline curves

- Data fitting with B-splines
- Criteria for estimating data approximation
- Reduction technique
- Result comparison

Outline

⊠Survey of the present compression methods

- Strategies based on polygonal curves
- Strategy based on spline curves
- MA new compression strategy
 - Data fitting with B-splines
 - Criteria for estimating data approximation
 - 🖔 Reduction technique
 - Result comparison
- **⊠**Conclusion

Stategies based on polygonal curves

Output A polygonal curve
$$Q = (q_0, ..., q_m)$$

with $m < n$ such as $d(P, Q) \le \varepsilon$

■ The intersecting cones method (E. Arge & M. Daehlen)

Intersection of cones originated at p_i

Douglas and Peucker's method without tolerance

Rearrange the points of P

$$P = (p_0, ..., p_n) \longrightarrow P' = (p'_0, ..., p'_n)$$

Multi-scale analysis

Stategies based on spline curves

■ The knot removal strategy of T. Lyche & K. Morken

- + Selection of knots to be removed t_i can be removed if $\omega_i \le \varepsilon$
- + Reconstruction of the approximating curve

The knot removal strategy of M. Eck & J. Hadenfeld

Inputs

Output

General

strategy

The same as in T. Lyche and K. Morken's strategy

where $f(t) = \sum_{i=0}^{n} C_i N_{i,k,T}(t)$ is an interpolating B-spline

Removal of knot t_i \square Approximating Bspline g^i on $\mu = T - \{t_i\}$

$$g^{i}(t) = \sum_{j=0}^{n-1} A_{j} N_{j,k,\mu}(t)$$

"forward" construction of g_I^i with A_i^I

"backward" construction of g_{II}^{i} with A_{i}^{II}

Position of control point A_i in $[A_i^I, A_i^{II}]$

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Outline

- Strategies based on polygonal curves
- Strategy based on spline curves

- Data fitting with B-splines
- Criteria for estimating data approximation
- Reduction technique
- Result comparison

Data fitting with B-splines

Problem

Given a polygonal curve
$$P = (p_0, ..., p_n)$$
, find a curve $f(t) = \sum_{i=0}^{m} Q_i N_{i,k,T}(t)$ as close as possible of P

Least squares fitting: find control points Q_i so that

■ Choice of a parameterization method

- **uniform** $h_i = \text{constant}$
- cumulative chord length $h_i = ||p_{i+1} p_i||$
- centripetal $h_i = \sqrt{\|p_{i+1} p_i\|}$

General expression proposed by Lee

$$\zeta_{0} = 0, \quad \zeta_{i} = \frac{\sum_{j=0}^{i} \|p_{j} - p_{j+1}\|^{e}}{\sum_{j=0}^{n} \|p_{j} - p_{j+1}\|^{e}} \quad (e \le 0 \le 1)$$

$$\Rightarrow \text{ uniform with } e = 0$$

$$\Rightarrow \text{ cumulative chord length with } e = 1$$

$$\Rightarrow \text{ centripetal with } e = 0.5$$

Choice of a knot vector

$$\begin{cases} t_0 = \dots = t_{k-1} = \zeta_0 \\ t_{m+1} = \dots = t_{m+k} = \zeta_n \\ t_{i+k} = \frac{\zeta_{i+l_1} + \dots + \zeta_{i+l_2}}{l_2 - l_1 + 1} & \text{for } i = 0, \dots, m-k \end{cases}$$

Best results in approximation with

a knot vector from the extension of De Boor formula

a centripetal parameterization

A new compression method

Two other parameterizations

Intrinsic Hoschek's parameterization

Improvement of Hoschek's method

Best global approximation

Best convergence speed

Common problem

Oscillation problem

A new compression method

Criteria for estimating data approximation

Definitions of norms: N_{∞} et N_2

$$f(t) = \sum_{i=0}^{m} Q_i N_{i,k,T}(t)$$
 is the fitting B-spline curve

- \blacktriangleright k is the order
- $T = (t_0, \dots, t_{k-1}, t_k, \dots, t_m, t_{m+1}, \dots, t_{m+k})$ is the knot vector

f belongs to linear space $S_{k,T}$

Definitions
$$N_{\infty}(f) = Max\{Max\{|Q_{ji}|; i = 0,...,m\}; j = 1,...,d\}$$

$$N_2(f) = \frac{\sqrt{\sum_{i=0}^{m} |Q_i|^2}}{(m+1)}$$

A new compression method

Polygonal curve

 $g(t) = \sum_{i=0}^{n} R_i N_{i,2,\tilde{T}}(t)$ is the interpolating B-spline curve of initial data p_i

- $\widetilde{T} = \left(\widetilde{t}_0, ..., \widetilde{t}_{k-1}, \widetilde{t}_k,, \widetilde{t}_m, \widetilde{t}_{m+1}, ..., \widetilde{t}_{m+k}\right) \text{ is the knot vector}$ $g \text{ belongs to linear space } S_{2,\widetilde{T}}$

To use N_{∞} and N_2 on f-g, B-spline curve f and g should have

- the same order degree elevation (H. Prautzsch)
- the same knot vector subdivision algorithms (Boehm, Oslo, improved Oslo)

Band criterion for data approximation

$$N_{\infty}(f-g)=\varepsilon$$

Band criterion for B-spline approximation

Local estimation criteria

Aim

To have a local approach of approximation and estimation

+ Find the best curve segment $[p_i, p_{i+1}]$

+ Use the convex hull of B-splines

NOT ENOUGH

+ Transform this best curve segment into its "Bézier" representation

Apply the Hausdorff metric on both polygonal curves $P^i = (p_i, p_{i+1})$ and $\overline{Q}^j = (\overline{Q}_{j-nb+1,...}, \overline{Q}_j)$

Result

If $d_H = (P^i, \overline{Q}^j) = \varepsilon$ then the best curve segment is at the most at ε distance from $[p_i, p_{i+1}]$

Reduction technique

- Best choices
 - **尽 Uniform knot vector**
 - Intrinsic Hoschek's parameterization applied to a centripetal one
- Principle
 - A bissection method on the number of control points

Results comparison

on compression rate

Initial isobathymetric line

Tolerance so that no visual difference

Results

Method	Knots	Strategy	Compression
Polygonal		Arge Daehlen	68 %
1 Olygonai		Douglas Peucker	56 %
B-spline	De Boor	Lyche Morken	13 %
		Eck Hadenfeld	51 %
		Fitting (<i>e</i> =0.5)	22 %
	Uniform	Fittting (Hoschek <i>e</i> =0.5)	61 %
		Fitting (<i>e</i> =0.5)	49 %

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Method	Knots	Strategy	Compression (Smooth curves)	Compression (Complex curves)
Polygonal		Arge Daehlen	74 %	61 %
		Douglas Peucker	65 %	51 %
B-spline	De Boor	Lyche Morken	24 %	5 %
		Eck Hadenfeld	58 %	38 %
		Fitting (<i>e</i> =0.5)	34 %	11 %
	Uniform	Fittting (Hoschek <i>e</i> =0.5)	68 %	49 %
		Fitting $(e=0.5)$	59 %	40 %

♦ Results comparison

on computation time

Results

Method	Knots	Strategy	Computation time (Smooth curves)	Computation time (Complex curves)
Polygonal		Arge Daehlen	0.1 ''	2 ''
		Douglas Peucker	0.4 ''	3 "
B-spline	De Boor	Lyche Morken	47' 08''	1h 22''
		Eck Hadenfeld	40' 31''	59' 21''
		Fitting (<i>e</i> =0.5)	1' 27''	3' 27''
	Uniform	Fittting (Hoschek <i>e</i> =0.5)	9' 33''	13' 24''
		Fitting (<i>e</i> =0.5)	1' 52''	4' 45''

♦ Advantage when■ zooming in

Useful in embarked

cartographic information systems

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Outline

Survey of the present compression methods

- Strategies based on polygonal curves
- Strategy based on spline curves
- - Data fitting with B-splines
 - Criteria for estimating data approximation
 - 🖔 Reduction technique
 - 🗣 Result comparison

Conclusion

We have **build**

Local estimation criteria

We have improved

→ Hoschek's technique

Which has allowed us to introduce

- ► Good reduction rates
- ► Raisonable computation costs

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

GraphiCon'98 Moscow - Russia September 7-11, 1998

Estimating Criteria for Fitting B-spline Curves: Application to Data Compression

Eric SAUX, <u>Marc DANIEL</u>
Institut de Recherche en Informatique de Nantes, France