
Cognitive Modeling for Computer Games and Animation

John Funge
john.funge@intel.com
Microcomputer Research Lab,

Intel Corporation

Introduction
Modeling for computer animation addresses the challenge
of automating a variety of difficult animation tasks. An
early milestone was the combination of geometric models
and inverse kinematics to simplify keyframing. Physical
models for animating particles, rigid bodies, deformable
solids, and fluids offer copious quantities of realistic mo-
tion through dynamic simulation. Biomechanical modeling
employs simulated physics to automate the realistic anima-
tion of living things motivated by internal muscle actua-
tors. Research in behavioral modeling is making progress
towards self-animating characters that react appropriately
to perceived environmental stimuli.

In our research, we explorecognitive modelingfor com-
puter animation and computer games. Cognitive models
go beyond behavioral models in that they govern what a
character knows, how that knowledge is acquired, and how
it can be used to plan actions. Cognitive models are ap-
plicable to directing the new breed of highly autonomous,
quasi-intelligent characters that are beginning to find use in
animation and game production. Moreover, cognitive mod-
els can play subsidiary roles in controlling cinematography
and lighting.

We decompose cognitive modeling into two related sub-
tasks:domain specificationandbehavior specification. Do-
main specification involves giving a character knowledge
about its world and how it can change. Behavior specifica-
tion involves directing the character to behave in a desired
way within its world. Like other advanced modeling tasks,
both of these steps can be fraught with difficulty unless an-
imators are given the right tools for the job. To this end, we
develop a cognitive modeling language, CML.

CML rests on solid theoretical foundations laid by artifi-
cial intelligence (AI) researchers. This high-level language
provides an intuitive way to give characters, and also cam-
eras and lights, knowledge about their domain in terms of
actions, their preconditions and their effects. We can also
endow characters with a certain amount of “commonsense”
within their domain and we can even leave out tiresome de-
tails from the specification of their behavior. The missing
details are automatically filled in at run-time by a reasoning
engine integral to the character which decides what must be
done to achieve the specified behavior.

Traditional AI style planning certainly falls under the
broad umbrella of this description, but the distinguishing

features of CML are the intuitive way domain knowledge
can be specified and how it affords an animator familiar
control structures to focus the power of the reasoning en-
gine. This forms an important middle ground between reg-
ular logic programming (as represented by Prolog) and tra-
ditional imperative programming (as typified by C). More-
over, this middle ground turns out to be crucial for cognitive
modeling in animation and computer games. In one-off an-
imation production, reducing development time is, within
reason, more important than fast execution. The animator
may therefore choose to rely more heavily on the reasoning
engine. When run-time efficiency is also important our ap-
proach lends itself to an incremental style of development.
We can quickly create a working prototype. If this proto-
type is too slow, it may be refined by including more and
more detailed knowledge to narrow the focus of the reason-
ing engine.

Specifying behavior in CML capitalizes on our way of
representing knowledge to include a novel approach to
high-level control. It is based on the theory ofcomplex ac-
tions from the situation calculus [4]. Any primitive action
is also a complex action, and other complex actions can be
built up using various control structures. As a familiar ar-
tifice to aid memorization, the control structure syntax of
CML is deliberately chosen to resembles that of C.

Although the syntax may be similar to a conventional
programming language, in terms of functionally CML is a
strict superset. In particular, a behavior outline can be non-
deterministic. By this, we do not mean that the behavior is
random, but that we can cover multiple possibilities in one
instruction. As we shall explain, this added freedom allows
many behaviors to be specified more naturally, more sim-
ply, more succinctly and at a much higher-level than would
otherwise be possible. The user can design characters based
on behavior outlines, or ”sketch plans”. Using its back-
ground knowledge, the character can decide for itself how
to fill in the necessary missing details.

The complete list of operators for defining complex ac-
tions is defined recursively and the mathematical definitions
are given in [4]. The corresponding CML syntax is given in
the CML documentation. The documentation and the Java
executable can be found at [2].

We have used CML in a number of research projects re-
lated to computer animation and games. Some of the im-
ages from the corresponding animations can be found at

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/



[3]. We will give a brief description of these case studies
below, some further details can be found in [1].

Cinematography
We have positioned our work as dealing with cognitive
modeling. At first, it might seem strange to be advocating
building a cognitive model for a camera. We soon realize,
however, that it is the knowledge of the cameraperson, and
the director, who control the camera that we want to cap-
ture with our cognitive model. In effect, we want to treat
all the components of a scene, be they lights, cameras, or
characters as ”actors”. Moreover, CML is ideally suited to
realizing this approach and can reduce long and compli-
cated Finite State Machine (FSM) controllers to a few lines
of code (see [1]).

Prehistoric world †
In our prehistoric world we have a Tyrannosauras Rex (T-
Rex) and some Velociprators (Raptors). The motion is gen-
erated by some simplified physics and a lot of inverse kine-
matics. The main non-aesthetic advantage the system has is
that it is real-time on a Pentium II with an Evans and Suther-
land RealImage 3D Graphics card. In only a few lines of
CML code we were able to specify a territorial behavior
for the T-Rex that caused it to “herd” the Raptors out of its
territory.

Undersea world†
In our undersea world we bring to life some mythical crea-
tures, namely “merpeople”. The undersea world is physics-
based. The high-level intentions of a merperson get fil-
tered down into detailed muscle actions which cause reac-
tion forces on the virtual water. A low-level reactive behav-
ior system described in [5], provides a buffer between the
reasoning engine and the environment. Thus at the higher
level we need only consider actions such as “go left”, “go
to a specific position”, etc. and the reactive system will take
care of translating these commands down into the required
detailed muscle actions. We used CML to create some en-
gaging pursuit and evasion behaviors of a larger and faster
shark chasing the more intelligent merpeople. In open wa-
ter a shark can easily catch the merpeople. When we add
some rocks for the merpeople to hide behind they can use
their intelligence to often out smart the sharks and escape.

Conclusion
In summary, CML always gives us an intuitive way to give
a character knowledge about its world in terms of actions,
their preconditions and their effects. When we have a high-
level description of the ultimate effect of the behavior we
want from a character, then CML gives us a way to auto-
matically search for suitable action sequences. When we
have a specific action sequence in mind, there may be no
point to have CML search for one. In this case, we can
use CML more like a regular programming language, to ex-
press precisely how we want the character to behave. We
can even use a combination of these two extremes, and the
whole gamut inbetween, to build different parts of one cog-
nitive model. It is this combination of convenience and au-
tomation that makes CML such a potentially important tool

in the arsenal of tomorrow’s animators and game develop-
ers.

Acknowledgements
Note that the sections marked with a† refer to work done
in collaboration with Xiaoyuan Tu. We would also like to
thank Eugene Fiume for originally suggesting the applica-
tion of CML to cinematography, Demetri Terzopoulos for
originally suggesting creating a merperson, and Angel Stu-
dios for developing the low-level dinosaur API.

References
[1] J. Funge.Making Them Behave: Cognitive Models for

Computer Animation. PhD thesis, Department of Com-
puter Science, University of Toronto, Toronto, Canada,
1998.

[2] John Funge, www.cs.toronto.edu/˜funge/cml .
CML Compiler, 1998.

[3] John Funge,
www.cs.toronto.edu/˜funge/images.html . Se-
lected Frames from various Animations, 1998.

[4] H. Levesque, R. Reiter, Y. Lesp´erance, F. Lin, and
R. Scherl. Golog: A logic programming language
for dynamic domains.Journal of Logic Programming,
31:59–84, 1997. Special issue on Reasoning about Ac-
tion and Change.

[5] X. Tu. Artificial Animals for Computer Animation:
Biomechanics, Locomotion, Perception, and Behavior.
PhD thesis, Department of Computer Science, Univer-
sity of Toronto, Toronto, Canada, January 1996.

2

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/


