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Physics-Based Animation

Animation through physical simulation
• Inanimate objects: 

– rigid models             (Hahn88, Baraff89)

– articulated models   (Barzel88)

– deformable models  (Terzopoulos87, Platt88)

• Animate objects: 
– animal models (Miller88, Tu95)

– human models                (Armstrong85, Wilhelms87,     
Hodgins95,)

Animation through physical simulationAnimation through physical simulation
•• Inanimate objects: Inanimate objects: 

–– rigid models             rigid models             (Hahn88, Baraff89)(Hahn88, Baraff89)

–– articulated models   articulated models   (Barzel88)(Barzel88)

–– deformable models  deformable models  (Terzopoulos87, Platt88)(Terzopoulos87, Platt88)

•• Animate objects: Animate objects: 
–– animal modelsanimal models (Miller88, Tu95)(Miller88, Tu95)

–– human models                human models                (Armstrong85, Wilhelms87,     (Armstrong85, Wilhelms87,     
Hodgins95,)Hodgins95,)

• Pioneering work•• Pioneering workPioneering work
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Physics-based Models

Simulate Newtonian mechanics
• Benefits

– offer unsurpassed realism

– automate motion synthesis

• Drawbacks

– incur high computational costs

– difficult & expensive to control

• Moore’s Law is on our side!

Simulate Newtonian mechanicsSimulate Newtonian mechanics
•• BenefitsBenefits

–– offer unsurpassed realismoffer unsurpassed realism

–– automate motion synthesisautomate motion synthesis

•• DrawbacksDrawbacks

–– incur high computational costsincur high computational costs

–– difficult & expensive to controldifficult & expensive to control

•• Moore’s Law is on our side!Moore’s Law is on our side!
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NeuroAnimator

A neural network approach to physically 
realistic animation
• Learns to approximate physical models by observing 

their actions

• Yields outstanding efficiency

– fast synthesis of physically realistic motion

– fast synthesis of motion controllers for animation

A neural network approach to physically A neural network approach to physically 
realistic animationrealistic animation
•• Learns to approximate physical models by observing Learns to approximate physical models by observing 

their actionstheir actions

•• Yields outstanding efficiencyYields outstanding efficiency

–– fast synthesis of physically realistic motionfast synthesis of physically realistic motion

–– fast synthesis of motion controllers for animationfast synthesis of motion controllers for animation
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Example NeuroAnimators
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Motivation

Is there a more efficient alternative to 
animation by simulation?
• Numerical simulation of a dynamical system evaluates  

a high-dimensional map Φ at every timestep

• In principle (Cybenko89), neural networks can learn to 
approximate arbitrary, complex maps Φ

• NeuroAnimator: accurate and efficient neural network 
approximation of maps Φ associated with physics-
based CG models

Is there a more efficient alternative to Is there a more efficient alternative to 
animation by simulation?animation by simulation?
•• Numerical simulation of a dynamical system evaluates  Numerical simulation of a dynamical system evaluates  

a higha high--dimensional map dimensional map ΦΦ at everyat every timesteptimestep

•• In principle In principle (Cybenko89)(Cybenko89), neural networks can learn to , neural networks can learn to 
approximate arbitrary, complex maps approximate arbitrary, complex maps ΦΦ

•• NeuroAnimatorNeuroAnimator: accurate and efficient neural network : accurate and efficient neural network 
approximation of maps approximation of maps Φ Φ associated with physicsassociated with physics--
based CG modelsbased CG models
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•• Example:                                                        Example:                                                        
Implicit Euler timeImplicit Euler time--integration methodintegration method

Animation through numerical simulation
• Discrete-time dynamical systems

Animation through numerical simulationAnimation through numerical simulation
•• DiscreteDiscrete--time dynamical systemstime dynamical systems
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Initial State Final State

The NeuroAnimator learns dynamics by 
observing sample state transitions
TheThe NeuroAnimatorNeuroAnimator learns dynamics by learns dynamics by 
observing sample state transitionsobserving sample state transitions

Physical ModelPhysical ModelNeuroAnimatorNeuroAnimator

Learning Dynamics

Initial StateInitial State Final StateFinal State
Initial StateInitial State Final StateFinal State

Initial StateInitial State Final StateFinal State

tsts

tftf

tutu

tt Δ+s tt Δ+s
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Emulation

Why is the NeuroAnimator efficient?
• The emulation step is relatively cheap

• The NeuroAnimator can emulate super timesteps
– up to 100 times faster than numerical simulation

• is analytically differentiable
– dramatic efficiency for animation controller synthesis

Why is the Why is the NeuroAnimator NeuroAnimator efficient?efficient?
•• The emulation step is relatively cheapThe emulation step is relatively cheap

•• TheThe NeuroAnimatorNeuroAnimator can emulate can emulate super super timestepstimesteps
–– up to 100 times faster than numerical simulationup to 100 times faster than numerical simulation

•• is analytically differentiableis analytically differentiable
–– dramatic efficiency for animation controller synthesisdramatic efficiency for animation controller synthesis

),,( ttttt fusNs ΦΔ+ = ),,( ttttt fusNs ΦΔ+ =
NeuroAnimator approximation of  ΦNeuroAnimator approximation of  Φ

ΦNΦN

super timestepsuper timestep
tnt δ=Δ tnt δ=Δ
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Talk Overview
• Introduction

• Artificial neural networks

• From physical models to NeuroAnimators

• NeuroAnimator based controller synthesis

• Conclusion and future work

•• IntroductionIntroduction

•• Artificial neural networksArtificial neural networks

•• From physical models to From physical models to NeuroAnimatorsNeuroAnimators

•• NeuroAnimatorNeuroAnimator based controller synthesisbased controller synthesis

•• Conclusion and future workConclusion and future work
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Neural Networks

Seminal work in the field
• Perceptrons

(Widrow60, Rosenblatt62, Minsky69)

• Backpropagation learning algorithm
(Rumelhart86) (Bryson69, Werbos74, Parker85)

– backpropagation through time
(Rumelhart86)

Seminal work in the fieldSeminal work in the field
•• PerceptronsPerceptrons

(Widrow60, Rosenblatt62, Minsky69)(Widrow60, Rosenblatt62, Minsky69)

•• Backpropagation Backpropagation learning algorithmlearning algorithm
(Rumelhart86) (Bryson69, Werbos74, Parker85)(Rumelhart86) (Bryson69, Werbos74, Parker85)

–– backpropagationbackpropagation through timethrough time
(Rumelhart86)(Rumelhart86)
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Artificial Neural Networks

NeuronNeuron Feedforward NetworkFeedforward Network

Networks of simple computing elementsNetworks of simple computing elementsNetworks of simple computing elements
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Backpropagation
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•• Approximation error:Approximation error:
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Talk Overview
• Introduction

• Artificial neural networks

• From physical models to NeuroAnimators

– emulation results

• NeuroAnimator based controller synthesis

• Conclusion and future work

•• IntroductionIntroduction

•• Artificial neural networksArtificial neural networks

•• From physical models to From physical models to NeuroAnimatorsNeuroAnimators

–– emulation resultsemulation results

•• NeuroAnimatorNeuroAnimator based controller synthesisbased controller synthesis

•• Conclusion and future workConclusion and future work
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NeuroAnimator Structure
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Input & Output Transformations

ts

tf

tu

tt Δ+s

ΦN



International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Input & Output Transformations

• Predict state changes•• Predict state changesPredict state changes
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• Predict state changes

• Invariance to translation and rotation

•• Predict state changesPredict state changes

•• Invariance to translation and rotationInvariance to translation and rotation

Input & Output Transformations
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Input & Output Transformations

• Predict state changes

• Invariance to translation and rotation

• Normalize inputs and outputs

•• Predict state changesPredict state changes

•• Invariance to translation and rotationInvariance to translation and rotation

•• Normalize inputs and outputsNormalize inputs and outputs

ts

tf

tu

tt Δ+s

ΦN

Δ
yTyT′

xT′ σ
xT

σ
yTσ

ΦN



International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

shoulder
elbow
wrist

shoulder

elbow
wrist

tt Δ+

tt Δ+

tt Δ+

t

t

t

Hierarchical Emulators
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Hierarchical Emulators
Dolphin modelDolphin modelDolphin model
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Training NeuroAnimators

Offline backpropagation training of networks
• “Xerion” public domain neural network simulator 

software from the University of Toronto

• Initialize networks with random weights

• Generate training examples with “short-time” physical 
model simulations from random initial conditions

– can reduce training times by sampling state, force, 
& control inputs that occur most often in practice

OfflineOffline backpropagationbackpropagation training of networkstraining of networks
•• ““XerionXerion”” public domain neural network simulator public domain neural network simulator 

software from the University of Torontosoftware from the University of Toronto

•• Initialize networks with random weightsInitialize networks with random weights

•• Generate training examples with “shortGenerate training examples with “short--time” physical time” physical 
model simulations from random initial conditionsmodel simulations from random initial conditions

–– can reduce training times by sampling state, force, can reduce training times by sampling state, force, 
& control inputs that occur most often in practice& control inputs that occur most often in practice
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Example NeuroAnimators
Inputs: 12
Outputs: 6
Hidden Units: 20
Training set: 3K

Inputs: 12Inputs: 12
Outputs: 6Outputs: 6
Hidden Units: 20Hidden Units: 20
Training set: 3KTraining set: 3K

Inputs: 8
Outputs: 6
Hidden Units: 40
Training set: 5K

Inputs: 8Inputs: 8
Outputs: 6Outputs: 6
Hidden Units: 40Hidden Units: 40
Training set: 5KTraining set: 5K

Inputs: 17
Outputs: 13
Hidden Units: 50
Training set: 13K

Inputs: 17Inputs: 17
Outputs: 13Outputs: 13
Hidden Units: 50Hidden Units: 50
Training set: 13KTraining set: 13K

Inputs: 84 (76)
Outputs: 78 (36) 
Hidden Units: 50 (40)
Training set: 64K (32K)

Inputs: 84 (76)Inputs: 84 (76)
Outputs: 78 (36) Outputs: 78 (36) 
Hidden Units: 50 (40)Hidden Units: 50 (40)
Training set: 64K (32K)Training set: 64K (32K)
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Emulation Examples
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Emulation Performance 

Speedups for a NeuroAnimator with super-
timestep Δ t = 50 δ t
• Passive pendulum 94.0x physical simulation

• Active pendulum 75.3x ”

• Truck 69.7x ”
• Lunar lander 53.7x ”

• Dolphin 66.3x ”

– approximation error holds ~steady with Δ t 

Speedups for a Speedups for a NeuroAnimatorNeuroAnimator with superwith super--
timesteptimestep Δ Δ t = 50 t = 50 δ δ tt
•• Passive pendulumPassive pendulum 94.0x physical simulation94.0x physical simulation

•• Active pendulumActive pendulum 75.3x75.3x ””

•• TruckTruck 69.7x69.7x ””

•• Lunar Lunar landerlander 53.7x53.7x ””

•• DolphinDolphin 66.3x66.3x ””

–– approximation error holds ~steady with approximation error holds ~steady with Δ Δ t t 
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• NeuroAnimator based controller synthesis

– control learning results

• Conclusion and future work

•• IntroductionIntroduction

•• Artificial neural networksArtificial neural networks

•• From physical models to From physical models to NeuroAnimatorsNeuroAnimators

–– emulation resultsemulation results

•• NeuroAnimatorNeuroAnimator based controller synthesisbased controller synthesis

–– control learning resultscontrol learning results

•• Conclusion and future workConclusion and future work
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Control of Physical Models
• Inverse dynamics                                         

(Isaacs87,Barzel88)

• Constraint optimization                                        
(Brotman88)

• Hand-crafted controllers
(Miller88, Lee95, Tu94, Wilhelms87, Hodgins95)

• Controller synthesis
(Goh88, Pandy92, Panne93, Ngo93, Grzeszczuk95)

• Connectionist robotic control                                   
(Mendel70, Werbos74, Barto87, Jordan88,                         
Nguyen89 - “truck backer-upper”)

•• Inverse dynamics                                         Inverse dynamics                                         
(Isaacs87,Barzel88)(Isaacs87,Barzel88)

•• Constraint optimization                                        Constraint optimization                                        
(Brotman88)(Brotman88)

•• HandHand--crafted controllerscrafted controllers
(Miller88, Lee95, Tu94, Wilhelms87, Hodgins95)(Miller88, Lee95, Tu94, Wilhelms87, Hodgins95)

•• Controller synthesisController synthesis
(Goh88, Pandy92, Panne93, Ngo93, Grzeszczuk95)(Goh88, Pandy92, Panne93, Ngo93, Grzeszczuk95)

•• Connectionist robotic control                                   Connectionist robotic control                                   
(Mendel70, Werbos74, Barto87, Jordan88,                         (Mendel70, Werbos74, Barto87, Jordan88,                         
Nguyen89 Nguyen89 -- “truck backer“truck backer--upper”)upper”)

Our approachOur approach



International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Controller Synthesis
(Grzeszczuk & Terzopoulos 95)
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Optimization of an objective function 

• Objective function

• Controller adjustment rule

• Trained NeuroAnimator yields gradient analytically
• Controller adjustment consists of two steps...

Optimization of an objective function Optimization of an objective function 

•• Objective functionObjective function

•• Controller adjustment ruleController adjustment rule

•• Trained Trained NeuroAnimator NeuroAnimator yields yields gradientgradient analyticallyanalytically
•• Controller adjustment consists of two steps...Controller adjustment consists of two steps...
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Controller quality Controller quality 
Motion quality Motion quality 
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1)  Forward Step

Emulates the forward dynamicsEmulates the forward dynamicsEmulates the forward dynamics

Controller
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2)  Backward Step

Computes gradient using backpropagation 
through time
Computes gradient using Computes gradient using backpropagation backpropagation 
through timethrough time

Controller

1+∂ Ms

Mu∂
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Control Learning Results
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Controller Learning Performance
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•• IntroductionIntroduction

•• Artificial neural networksArtificial neural networks

•• From physical models to From physical models to NeuroAnimatorsNeuroAnimators

–– emulation resultsemulation results

•• NeuroAnimatorNeuroAnimator based controller synthesisbased controller synthesis

–– control learning resultscontrol learning results

•• Conclusion and future workConclusion and future work
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Conclusion

The NeuroAnimator can be a powerful 
complement to physics-based animation
• NeuroAnimators accurately emulate various physical 

models up to 2 orders of magnitude faster than 
numerical simulation

• NeuroAnimator based controller learning algorithm 
synthesizes motions satisfying prescribed animation 
goals with up to 2 orders of magnitude fewer iterations

TheThe NeuroAnimatorNeuroAnimator can be a powerful can be a powerful 
complement to physicscomplement to physics--based animationbased animation
•• NeuroAnimatorsNeuroAnimators accurately emulate various physical accurately emulate various physical 

models up to 2 orders of magnitude faster than models up to 2 orders of magnitude faster than 
numerical simulationnumerical simulation

•• NeuroAnimatorNeuroAnimator based controller learning algorithm based controller learning algorithm 
synthesizes motions satisfying prescribed animation synthesizes motions satisfying prescribed animation 
goals with up to 2 orders of magnitude fewer iterationsgoals with up to 2 orders of magnitude fewer iterations
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Future Research
• NeuroAnimators for Artificial Life graphical characters

– acquiring “mental models” of dynamic worlds

• NeuroAnimation by motion capture

– learning approximations of complex biomechanics

• Connectionist controller representation

• Hierarchical emulation and control

•• NeuroAnimatorsNeuroAnimators for Artificial Life graphical charactersfor Artificial Life graphical characters

–– acquiring “mental models” of dynamic worldsacquiring “mental models” of dynamic worlds

•• NeuroAnimationNeuroAnimation by motion captureby motion capture

–– learning approximations of complex biomechanicslearning approximations of complex biomechanics

•• Connectionist controller representationConnectionist controller representation

•• Hierarchical emulation and controlHierarchical emulation and control
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One More Thing...

“The Eagle has Landed?”“The Eagle has Landed?”“The Eagle has Landed?”
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