
An Efficient Object-oriented Authoring and Presentation System
for Virtual Environments

Wolfgang Müller

Darmstadt University of Technology
Darmstadt, Germany

Ralf Dörner, Volker Luckas, Arno Schäfer

Fraunhofer Institute for Computer Graphics
Darmstadt, Germany

Abstract

In this paper we describe the design and implementation of
a multi-purpose object-oriented authoring system for
interactive virtual environments and presentations, semi-
interactive 3D visualization, and non-interactive photo-
realistic animations. Its main design criteria are reusability
and flexibility, especially in the support of a wide range of
input and output formats.

Input data may be provided from any type of event-oriented
simulation system as well as from an interactive scene
modeling tool. The primary output system is a Java-based
VRML browser, but a concept of output driver channels
allows the use of other rendering systems, such as off-line
renderers for the production of photo-realistic video
streams.

Objects used in the system consist of both geometry and
behavior, where the latter is defined in C++ and/or Java.
Objects are provided in different abstraction levels and are
stored in an animation element library for reuse in different
application scenarios.

Keywords: Authoring Systems, Virtual Environments,
Simulation, Visualization, Animation, WWW, VRML.

1. INTRODUCTION

Virtual Reality and interactive 3D applications are gaining
increasing importance in various application domains.
Beyond the large area of computer games and
entertainment, these techniques add new dimensions in
areas such as presentations [4], visualization of planning
and simulation data [3], teaching and training applications,
three-dimensional graphical user interfaces, and medical
applications [12].

Interactive 3D presentations have some important
advantages: for example, they allow the analysis and
validation of 3D models, data, and simulation results by
interactive visual examination in a natural and intuitive
way. Spatial arrangements in three-dimensional scenes in
connection with time-related events can be mediated and
explored very effectively by the use of interactive
navigation and animation in virtual environments.
However, not only analytical processes may be supported
using these techniques. Sometimes even more important,

the ability to create a connection between an abstract 3D
representation and real world objects by applying suitable
metaphors makes interactive virtual environments a
valuable technique for communicating information, data,
and ideas to other people, especially to non-experts.

In spite of the advantages of virtual environments for the
presentation of data and information, such techniques are
rarely applied in multimedia applications until now. Here,
the central problem is not the technical feasibility, but the
creation of the 3D content and the layout definition of such
interactive virtual environments. Using standard tools from
the areas of Computer Aided Design (CAD) and 3D
Computer Animation, these processes are usually
cumbersome, very time consuming, and expensive. This is
because tools and techniques in these application areas
were primarily designed for high- quality animations, non-
interactive media, and well and a-priori defined
presentation channels. Moreover, these tools are
customized for experienced and well-trained users, which
makes their application difficult for non-experts.
Flexibility, scalability, reusability of animation
components, and ease of use were typically not the primary
design criteria. The resulting complexity of content
creation explains why 3D virtual environments and
animations did not evolve into generally used components
in multimedia presentations until now.

In this paper we present the concept of an authoring
environment for interactive 3D animations and virtual
environments. Our solution is not designed as one large
monolithic application but consists of a toolkit with
specifically designed subsystems. This approach enables
the easy exchange of components such as modeler and
viewers. Thus, it provides high flexibility in the world of
fast changing interactive media and varying application
domains. Moreover, we present a prototype implementation
following this concept, based on a newly developed
animation package and a specifically designed VRML 2.01

browser. Finally we present first results in the application
of this prototype in the 3D visualization of simulation data
from logistic processes.

1 Virtual Reality Modeling Language [2]

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

2. CONCEPT

2.1 System Overview

Instead of having one tool to generate a virtual
environment, our concept is based on several independent
and coordinated tools at the author’s disposal to determine
the geometric formation of a 3D scene as well as the
behavior of its objects.

This concept is not new for animation and rendering
systems as well as visualization systems. Very early
animation systems such as Clockworks [7] and state-of-the-
art visualization systems such as AVS [15] and Khoros
already made use of such a flexible concept. However, this
approach has been applied seldom to support the authoring
of interactive and behavioral information entities.

The authoring and presentation environment components
and their connections are depicted in our architectural
concept (see Figure 1). The most important components of
the CASUS system are the Animation Element Library, the
Animation System, the Scene Editor, and the Presentation
Toolkit. Simulators, SPS-Control Units, and additional
modelers may be connected to this system as needed. In
this chapter, we will describe the CASUS system
components in more detail. Moreover, we illustrate their
interaction and interfaces.

Presentation Toolkit

CASUS Kernel

Editing Toolkit

Modeler Behavior Editor

Simulator

SPS Control

Control Devices

Scene Editor

Renderer

VR-Viewer

Animation System

Animation Element
Library

Geometry
Behavior

Figure 1: Architecture of the CASUS Authoring and
Presentation System

2.2 Animation Element Library

The fundamental idea of our concept is to provide a
comprehensive animation element library. Animation
elements are the basic objects that can be used to build an
interactive 3D scene [10]. An animation element consists
not only of a description of its visual representation, but
also of a specific behavior provided by this element (see
Fig.2).

Figure 2: Structure of an Animation Element

While the visual representation is determined by the
element’s geometry and material characteristics, the
behavior is represented by object-specific methods. Each
method is linked to a previously described animation. For
instance, the element “Person“ may provide abstract
behavior in terms of methods such as “walk”, “sit”, “stand
up” or “take”. Figure 3 shows an example for the use of
these methods to create a complex animation.

Figure 3: Example of an animation script

Two animation elements, a person and a box, are
instantiated. In this example the element “Person“ takes the
box and walks to a certain point. Because of the predefined
visual representation and the provided high-level behavior,
the author neither needs to model a new visual form, nor to
animate the realistic walking of the person - both aspects
are provided automatically by the animation element.
Additionally, intelligent behavior such as scaling of
geometry without distortion is integrated in the animation
elements. This leads to a remarkable speedup of the
animation, authoring and scene generation process.

Another important concept of the animation elements is the
support of a variety of visual representations in animation
elements, which correspond to different levels of detail and
abstraction. This concept is able to support various media

peter = new Person()
peter.scaleLength(1.82)
parcel = new Box
position1 = (3,4,4)
position2 = (3, 4.5, 4)
position3 = (7, 7, 7)
time = 0.0
peter.place(time, position1)
parcel.place(time, position2)
peter.take(time, parcel)
peter.walk(time, time+5,
 position2, position3)

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

and presentation channels and to switch between such
abstraction levels on-the-fly. For example, very detailed
representations can be used for high-bandwidth channels
such as off-line rendering, while symbolic and more
abstract representations may be used for interactive real-
time presentations. The same concept holds for the
element-specific functionality and behavior, thereby
providing animations of varying complexity and levels of
abstraction for different client systems.

Figure 4: Different Representation forms of a Forklift

In this context, it should be emphasized that animation
elements encapsulate geometry and behavior in the sense of
the paradigm of object-orientation, making both form and
behavior convertible and exportable. In addition, this
concept guarantees the reusability of animation elements. It
makes it possible to store animation elements in a suitable
database offering corresponding retrieval functions. If a
required element is not available, the author can create it or
modify an existing element accordingly with the help of a
modeler. It is also possible for the author to determine the
animation element’s functionality with a behavior editor.

2.3 Scene Editor

The first thing that has to be done is the creation and
initialization of the 3D virtual environment. In order to
simplify the creation of the scene’s spatial layout a scene
editor is offered. With the help of this tool the author is
able to interactively place objects for instance symbolic
representations of the animation elements and scale them to
match the desired layout. After finishing the placement of
the objects the initial 3D virtual environment is
automatically created making use of the animation
elements’ encapsulated functionality and considering their
initial state.

2.4 Animation System

The purpose of the animation system is to generate time-
dependent positions and movements (transformations) of
the animation elements from higher level behavior
descriptions. Furthermore, the camera can be animated and
the rendering parameters (e.g. illumination parameters) can
be established. The behavior is specified using the
animation elements’ specific functionality as shown in the
script example in Figure 2. These descriptions must be

implemented by the author, or can be acquired through
corresponding interfaces to systems such as simulators,
SPS2 programs, or sensors. The animation system
transforms this specification into a description suitable for
the addressed presentation system.

An intermediate internal representation of the behavioral
description is used as a basis for the generation of output to
various viewers and media. Temporal conditions such as
different frame rates or mappings between simulation and
presentation time can thus be handled.

2.5 Presentation Toolkit

In our concept we provide two different kinds of
presentation systems, called renderers and VR viewers.
Rendering, which may be performed off-line, produces
images or video sequences at a high quality level.

Figure 5: Still image from an example scene produced by
an alternative high-quality renderer. In this scene the

animation elements were evaluated at a higher level of
detail.

These are by nature non-interactive, but can be integrated
in interactive virtual environments, for instance, as
textures. In contrast to the renderer, a VR viewer offers
interaction to the user with appropriate input devices.
Interactive camera control and user-controlled movement
in virtual space are feasible. The user can also interact with
the objects, whose object-specific functionality is still
available in the viewer, due to the animation elements’
object-oriented approach.

2.6 Discussion

The modular approach allows the exchange of components
as well as the use of existing systems, such as animation
systems or renderers, after a few adaptations have been
made. Furthermore, it is possible to separate animation and
visualization into individual subsystems. This is beneficial
when distributing animated VR scenes over networks. The
scene description can be adapted to various network
bandwidths and viewers, due to the flexibility of the
animation system. Computation requirements on the

2 Storage Programmable Steering

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

machine used for visualization may be lower than those for
the animation system. Time and cost efficiency is increased
through the scalability and flexibility of the concept
presented. The same scene can be easily visualized on
various visualization platforms. Behavioral descriptions
can be created by external systems and do not have to be
defined by the author. However, probably the biggest
increase in efficiency is due to reusability. For one, existing
systems can be reused for data input, tapping large supplies
of existing geometry data. Secondly, the object-oriented
animation element concept enables the reuse of modular
units.

3. REALIZATION

The CASUS system implements the concepts presented in
this paper. In this chapter we will describe the realization of
the three main tools, called CASUS Base, CASUS Anim
and CASUS Presenter.

3.1 CASUS Base

In co-operation with professional designers we have
modeled over 100 animation elements in three
representation forms. This library of animation elements is
the key issue of the CASUS Base system [5]. Until now
most of the elements belong to an industrial context and,
as a result of a survey, they provide 80% of the objects
needed for building virtual environments in this area.

The realization of the elements follows strictly object-
oriented design patterns. In addition, we implemented a
WWW-based browsing system for the animation elements
that shows the object specific functions in a short
animation. An extension of the animation element library to
other application domains is on the way.

3.2 CASUS Anim

In order to realize the animation system component of our
concept we implemented CASUS Anim, an object-oriented
three-dimensional animation system, described in detail in
[11]. CASUS Anim complies the requirements specified in
our conception like supporting the concept of animation
elements.

The concept of CASUS Anim does not fit in the classical
concepts of animation systems which are known as
keyframe animation systems, parametric systems,
programmable systems, simulation or model based
systems. Based on the desired flexibility and concerning
the elements to be animated, a combined animation system
was designed, which is parametric as well as
programmable. Furthermore, the system must support
loading different objects which were saved for specific
animation patterns. Therefore, an object-oriented system
design seems to be the right choice. This conclusion was
already drawn partially in related work [6], however, our
strategy follows this concept in more consequence.

There exists the possibility of combining various
implementations of animation elements and their behavior
patterns. This way, the animation functionality of the entire
system can be easily adapted to various conditions.
Furthermore, the implementation language for the
animation plays a distinct role. It is used to define the
desired animation sequences, including the behavior
macros as well as the entire animation sequences. It is
designed to supply complex structures and be easy to
handle, too.

Figure 6: WWW-based Catalogue of CASUS Base

One of the outstanding features of CASUS Anim is that it
allows the integration of data from arbitrary event-oriented
simulators. For this purpose CASUS Anim provides
additional tools including a simulator trace normalizer and
a trace translator ([9], [11]). In general a simulator supplies
a complete listing of all simulation events and their
corresponding objects or components, the so called trace.
The trace is converted to a unique format, using the
normalizer. Using the normalized trace, the translator
generates an animation script, referring the objects or
components in the simulation to the animation elements.
The animation system creates an executable animation by
processing the animation script, which contains a unified
description of all simulation events.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Moreover, CASUS Anim is specifically adapted to CASUS
Base, which contains a complete description of all
animation elements available. Also, the various events of
simulation are translated to a descriptive form which can be
used within the animation. The animation system processes
this script and creates a rendering script depending on the
connected visualization system. For instance VRML can be
used as output format to achieve distributability via WWW.
The rendering script holds all information necessary for the
3D animation, again referring to the library of animation
elements.

The flexibility of the output format raises the problem how
an animation system can convert its output to different
media types making use of various scene description
methods, e.g. frame-based or procedural.

CASUS Anim uses both frame-based and procedural
description components. The frame-based concepts are
needed to support key-framing while procedural
components are used to realize the programmable scripting
interface. In order to make clear the advantages of our
concept we will exemplary discuss the different ways to
generate VRML as an output format. Referring to the
internal structure of CASUS Anim there basically exist
three possible solutions. First, one can implement a
conversion of frame-based output into frame-based VRML.
Although this is a working solution, the generation of an
online visualization is obviously impossible to establish in
this way. The conversion is independent from the
animation system but cannot use the animation elements’
internal functionality. This is equivalent with a severe
information loss during the presentation generation.

An alternative is to implement a functionality to directly
generate frame-based VRML referring to the internal data
structure of the animation system. The animation system
itself is responsible for parsing and processing the
necessary information. Hence the information is already
translated into the specific media when send to the
presentation system using a specific driver. So it is possible
to provide online visualization allthough there is still an
information loss because of the frame-based concept. The
last and most efficient way is the synthesis of frame-based
and procedural information following the element-based
concept directly. In this case the scripting interface of
VRML is extensively used with the help of Java programs.
These programs represent the procedural (object-specific)
information of the animation elements and fit directly into
the object-oriented concept. Allthough this solution is
absolutely flexible and extensible there is still a high effort
as the basic animation system functionality must be
provided in Java.

We currently support the first and the second way to
automatically generate VRML output format.

In all cases not only during the generation of VRML the
generation of 3D animations is done automatically. This is
possible because of the transparency during the whole

generation process that allows direct access to the internal
data structures of the animation system. Thus, for the
author the connection of a system that provides the
behavioral description of the objects in the virtual
environment is easy to realize with CASUS Anim. The
various example figures (Figure 4, 5, 6) in this paper show
the result of the automatic scene generation in the context
of a logistic simulation that can be used for validation or
presentation purposes. It can be seen in the examples that
three-dimensional visualization has decisive advantages,
for instance the customer will receive a complex display of
the entire simulation scenario not only giving an overview
but enabling an interactive walkthrough. Events and
strategies are visible at once and can be followed better, so
a decision can be made easier and faster [9].

Another advantage of CASUS Anim is that the author is
able to focus on rendering parameters of the animation such
as camera position, view-point, light sources and
background that may be defined interactively giving the
user direct feedback on his changes (see Figure 7).
Positioning of the camera and multiple light sources can be
done through exact input or intuitively by dragging
different three-dimensional icons into the scene. The
resulting camera view with light and specified background
as well as the animation is presented in a separate camera
view. The author can choose to view the entire animation
or can specify a part of the animation by defining special
beginning and ending times.

Figure 7: Graphical User Interface of CASUS Anim

3.3 CASUS Presenter

CASUS Presenter [14] is a general-purpose VRML 2.0
Browser which is used as a VR viewer and presentation
tool and was developed for interactive visualization in the
context of the CASUS system. Since CASUS Presenter is
based on VRML 2.0 and implemented in Java, it can be

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

used as a flexible VRML 2.0 browser in various application
scenarios, especially in World Wide Web applications. The
use of Java combined with the industry standard 3D
graphics libraries Open Inventor and OpenGL in the
realization of CASUS Presenter allowed to combine very
good performance with high portability. CASUS Presenter
currently supports a subset of the VRML 2.0 specification,
including prototypes, events, sensors, and interpolators.
Additionally, it enables direct reuse of Java behavior
descriptions in animation elements from CASUS Base, by
supporting the VRML 2.0 Java API. Stereo viewing using
shutter glasses is possible. CASUS Presenter takes
advantage of existing 3D hardware through OpenGL. It
runs on multiple platforms, including SGI IRIX, Sun
Solaris, and Windows NT.

CASUS Presenter accesses the Open Inventor library
through the Kahlua Interface [16], which is a freely
available Java wrapper for the Open Inventor library.
Kahlua uses the native code interface of Java to make the
Open Inventor classes available to Java applications. By
using Kahlua, it is possible to develop 3D graphics
applications in Java using Open Inventor, just as one would
do in C++. When an Open Inventor object is created or a
method is called from within a Java program, the
corresponding method in the C++ library is invoked.

Figure 8: Example Scene in CASUS Presenter

Figure 9: Example scene from the animation sequence
described in Figure 3 in CASUS Presenter

Thus, one takes advantage of performing computation
intensive 3D operations in a graphics library on the system
level, while retaining the robustness and ease of use of
Java.

Because of Java’s nature as an interpreted language, it is
slower to execute than native machine code, and special
attention must be given to the performance of the browser.
Tests with large VRML models confirm that good
interactive performance can be achieved using the approach
described. No significant difference is noticed when
compared to the performance of Open Inventor applications
or VRML browsers written entirely in C/C++. Moreover,
use of Open Inventor guarantees that the browser
automatically takes advantage of existing 3D graphics
hardware through the OpenGL library, as soon as an
OpenGL binding exists for the respective hardware. This
distinguishes CASUS Presenter from VRML browsers
using pure software rendering.

4. APPLICATION OF THE SYSTEM

In the application of the system three user types have to be
distinguished:

• programmers, i.e. persons who model and program the
animation elements

• authors, i.e. persons who create and edit scenes

• users, i.e. persons to whom the scenes are presented or
who interact with the scene

In this paragraph we describe how each group makes use of
the proposed system.

Programmers can be assisted by 3D modelling tools to
create the geometry of animation elements. For the
programming of the objects’ behaviour a C++ / Java class

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

hierarchy of animation elment classes is provided. To
implement an animation element the proper class is
inherited and the object-specific methods are written. A
reimplementation is necessary if standard methods (like
scale, rotate) have to be adapted to a specific behavior of
the element.

Authors use a scene editor to specify the static scene
description. The editor allows to choose animation
elements and place them in the scene. Each element can be
picked to scale and orient it properly. In our sytem a simple
scene editor is used where the elements are represented in
2D as rectangle with a specific symbol inside. After the
scene description is given the author defines the animation
where he can use a simulator to complete this task. Then
each object in the simulation model has to be mapped to its
correspondend animation element by name. If a software
adaptor for the chosen simulator exists the rest can be done
automatically. If no simulator is applied the author has to
program the behavior using the methods provided by the
animation elements. Methods are documented in the
animation elements library and illustrated with short
animations. The last step is to load the scene and behavior
description in the animation system. Here the author can
edit animation parameters (e.g. concerning illumination)
and timing parameters. Then one or more output format are
chosen and the virtual environment is saved in the specific
formats.

Users can interact with the virtual environment according
to the output format the author has chosen and according to
the presentation tool they are using. For instance, if VRML
is the output format and a VRML browser is chosen as the
preferred presentation environment, the user can navigate
through the 3D world and may interact with the object
specific functions (see Figure 8).

Figure 10: Manipulating the Fork of a Forklift

5. CONCLUSION

In this paper, we have presented a flexible and efficient
authoring system for virtual environments. The approach
described can significantly reduce cost and development
time in a wide range of application scenarios. This is
achieved by encapsulating behavior inside the animation
elements in an object-oriented manner and by using a
flexible driver concept for input and output. The object-
oriented approach enables reuse not only of model
geometry, but also of programmed behavior, and allows
hiding the details of complex actions such as movement
and scaling inside the objects. Additionally, both geometry
and behavior can be defined at different levels of
abstraction, making it possible to generate both high
definition VR worlds or photo-realistic renderings and
lower definition VRML files from the same input source
for distribution over the Internet. The driver concept
supports flexible adaptation of the system to changing
needs and environments.

6. REFERENCES

[1] Curtis Beeson. An Object-Oriented Approach To
VRML Development, Proceedings of VRML 97, Monterey,
1997

[2] G. Bell, R. Carey, and C. Marrin: The Virtual Reality
Modeling Language Specification, Version 2.0,
http://vag.vrml.org/VRML2.0/FINAL, August 1996

[3] S. Bryson: Virtual Environment Techniques in
Scientific Visualization, Tutorial, IEEE Visualization, 1992

[4] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti: Surround-
Screen Projection-Based Virtual Reality: The Design and
Implementation of the CAVE, Proceedings of SIGGRAPH
’93, Anaheim, 1993

[5] R. Dörner, V. Luckas, U. Spierling: Ubiquitous
Animation - An Element-based Concept to Make 3D
Animations Commonplace, Visual Proceedings of
SIGGRAPH ’97, Los Angeles, August 1997

[6] M. Gervautz, O. Beltcheva: An Approach for Object-
Oriented Animation Design, Institute for Computer
Graphics, Technical University of Vienna, August 1994

[7] P. H. Getto and D. E. Breen: An Object-Oriented
Architecture for a Computer Animation System, The Visual
Computer, Vol. 6, No. 2, 79-92, March 1990

[8] J. K. Hodgins, N. S. Pollard: Adapting Simulated
Behaviors For New Characters, Proceedings of
SIGGRAPH ‘97, Los Angeles, 153-162, August 1997

[9] D. Krömker, F. Loseries, V. Luckas, S. Wenzel, U.
Jessen: Realitätsnah planen – Die 3D-Visualisierung als
ideale Ergänzung zur Simulation, Proceedings zum
Workshop Visualisierungsverfahren beim Einsatz der

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Simulationstechnik in Produktion und Logistik, 7. ASIM
Fachtagung, Dortmund, 1996.

[10] J. C. Lafon, M. Mahieddine: An object-oriented
approach for modelling animated entities, N. Magnenat-
Thalmann, D. Thalmann, Computer Animation ’90, 177-
187, Springer-Verlag, 1990

[11] V. Luckas, T. Broll: CASUS - An Object - oriented
Three - dimensional Animation System for Event-oriented
Simulators, to be published in: Ed. N. Magnenat -
Thalmann, D. Thalmann: Proceedings of Computer
Animation ’97, University of Geneva and Swiss Federal
Institute of Technology in Lausanne, Geneva, 1997

[12] W. Müller, R. Ziegler, A. Bauer, H. Edgar: Virtual
Reality in Surgical Arthroscopic Training, In: Journal of
Image Guided Surgery, Wiley-Liss, New York, 1996

[13] S. Nakagawa, H. Ishida: Visual Behavior
Programming with Automatic Script Code Generation
Visual Proceedings of SIGGRAPH ’97, Los Angeles, 1997

[14] A. Schäfer, W. Müller, V. Luckas: A Java-based
VRML 2.0 Browser: CASUS Presenter, Proceedings of 6th

International World Wide Web Conference, POS 734,
Poster Presentation, Santa Clara, 1997

[15] C. Upson, Th. Faulhaber, D. Kamins, D. Laidlaw, D.
Schlegel, J. Vroom, R. Gurwitz, A. van Dam: The
Application Visualization System: A Computational
Environment for Scientific Visualization, IEEE Computer
Graphics & Applications, 30-42, July 1990

[16] J White: Kahlua: A Java Wrapper to the Open Inventor
3D Graphics Library,
http://www.cs.brown.edu/~jsw/kahlua/home.html,1996

Authors:

Wolfgang Müller, staff scientist at the Department of
Computer Science of Darmstadt University of Technology.
Address: Rundeturmstraße 6, D-64283 Darmstadt
E-mail: mueller@gris.informatik.tu-darmstadt.de

Ralf Dörner, staff scientist at the Department Animation
and Image Communication of Fraunhofer Institute for
Computer Graphics.
Address: Rundeturmstraße 6, D-64283 Darmstadt
E-mail: doerner@igd.fhg.de

Volker Luckas, staff scientist at the Department Animation
and Image Communication of Fraunhofer Institute for
Computer Graphics.
Address: Rundeturmstraße 6, D-64283 Darmstadt
E-mail: luckas@igd.fhg.de

Arno Schäfer, staff scientist at the Department Animation
and Image Communication of Fraunhofer Institute for
Computer Graphics.
Address: Rundeturmstraße 6, D-64283 Darmstadt
E-mail: aschaefe@igd.fhg.de

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

