
TOPAS: a Web-based Tool for Visualization of Mapping Algorithms
0. G. Monakhov, 0. J. Chunikhin, E. B. Grosbein

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences

Abstract

TOPAS (Test and Optimization of Parallel Algorithms and
Structures), a programming tool for visualization, animation and
investigation of algorithms of mapping graphs is presented. The
tool is implemented in Java and is accessed on WWW:
htip://rav.sscc.ru/~monakhov/topas.html.
Keywords: parallel algorithms, mapping, multicomputer system,
visualisation of methods, Java, network technologies, programming
environment.

1 Introduction

Methods for automatic mapping of a graph structure into another
graph structure are widespread, a lot of mapping algorithms is
built up and checked. These methods can be used for the mapping
of modules of parallel programs into processors of parallel
computing systems, as well as for special data decompositions and
solving the problems of operations research, graph theory,
combinatorial optimizations, networking, etc. In other word,
mapping algorithms are important for various applications. So, to
acquire the knowledge about these algorithms we are developing
the system TOPAS.

A system presented in this paper allows the users in their
graph research to be concentrated on work with algorithms and
models, leaving apart difficulties, related to creating and saving
entrance data, programming in conventional languages, etc. The
system supports visualization of graphs, mapping processes, as
well as visualization of mapping results. In addition, it can be
used to define some ''atomic" operations (for example,
partitioning of the complex data structures, e.g. irregular meshes)
for more complex problems being specified within the framework
of the VIM technology [I]. The system has been written in Java
and is an applet, that allows to place it into an HTML-page (
http://rav.sscc.ru/~monakhov/topas.html) and to demonstrate
algorithms at any point of the world where Internet is accessible
(this approach is analogous to [2]). We call this system as TOPAS
(Test and Optimization of Parallel Algorithms and Structures). In
general, it is related to the development of a problem-solving
environment which integrates multimedia, parallel and distributed
Internet technologies for specification (programming) of
application algorithms, and the control of mapping strategies and
data visualization.

Different parts of the subsystem (the window editor of graphs,
modules for imaging the entrance data, visualization and
animation of mapping algorithms, representing and saving the
results, etc.) can also be used independently.

2 Structure of TOPAS

The subsystem consists of the following parts:
1. Core. The TOPAS's core is an applet, which displays initial

data, calls the graph editor (for data editing) and starts necessary
algorithms.

2. Graph's icons. They are used by the core to display the
initial data and are small images of the graphs.

3. Graph editor. This editor allows to safe and restore
structures of weighted graphs, to modify them and insert
structures prepared, such as lattices, rings, hypercubes, etc.

4. Supervising module. This module displays intermediate
results of algorithms' work in a convenient form and allows to
stop the work and to study intermediate results in more detail.

5. Module for representing and saving results. This module
allows to represent results of the algorithm's work in an obvious
form, and also to save them on disk.

6. Libraries of sequental and parallel mapping algorithms.
7. Help module. This module displays information about

system, interfaces, problem and mapping algorithms.
8. Internal representation of graph structure. This format

allows to connect all components of the system.
9. Programmer's interface. It allows to easily insert new

algorithms into the system.
10. Distributed agent system. This modules allow to access

on-line to parallel computer systems for the execution of the
parallel mapping algorithms (under consiraction).

3 Algorithms of mapping a graph of a parallel
program into a graph of a parallel computing
system and data structures

We consider parallel programs consisting of modules which can
work simultaneously and exchange information. Such a program
is represented by a weighted graph, where nodes

Moscow, September 7-11 295

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

mean modules and edges are information links. Also we represent
parallel computing systems by weighted graphs in which nodes
are processors and edges are interconnections.

A graph mapping algorithm is to find out mapping one graph
inio another which gives minimal time of working a parallel
program on a parallel system. Now in TOPAS nine algorithms are
presented (Fig.I):
- two are evolution [3] and genetic algorithms,
- three are methods of simulated annealing,
- three use Kohonen neural networks [4]
- a local optimization algorithm [5].

The goal of the mapping algorithms is to produce an allo-
cation of the modules of a parallel program into processors of a
system with minimum of the objective cost function. The
objective function represents the interprocess or communication
cost and computational load balance of the processors during
execution of the program. A specific type of the objective
function can be chosen in the window of the mapping algorithm
parameters.

4 Visual components of the system 4.1

Graph editor

The graph editor is actually an independent part of the subsystem.
It can be used in any applet where dynamic graph editing is used.
It is implemented in a class GraphEditor which expands class
Frame. To start the editor it is necessary to create a copy of a class
GraphEditor by giving an object of a class Graph which requires
editing to its constructor.

The class Graph represents structures of weighted graphs. It
also contains some additional information on about subsystem
modules to be used. An object of Graph, thus, describes a
particular weighed graph. Classes Node and Edge are classes of
nodes and edges of this graph, respectively.

After creating a GraphEditor copy a window of the graph
editor appears on the screen (Fig.2). It consists of three parts: a
basic menu, a working area and a toolbar. A graph is displayed in
the working area and all manipulations of it (moving nodes,
removing and creating them, removing and creating edges,
changing their weights, etc.) are made there. To display regular
graphs with a big number of nodes the parametric representation
of the graphs is used.

The toolbar is located under the working area. There can be
three buttons: Done, Relax and Stop Editing. Pressing on button
Done means that the work is completed (it stops modifying the
graph and the working GraphEditor). Button Relax switches on
and off a mode "spring graph". In this mode the graph behaves so
as if it consists of weightless nodes connected to springs in very
"viscous" environment. Button Stop Editing switches off a mode
of editing the graph which is switched on through the basic menu.

The basic menu supports various manipulations of the graph:

1. Menu item Graph

New clears a current graph and makes itempty.

Load loads a graph from a file.

Merge adds a graph from a file to a current graph.

Save saves a current graph.

Save as ... saves a current graph in a file of a given
name.

Done finishes the work of the graph editor.

Note: the operations with files are possible only on a local
machine or if a web-browser allows to work with a disk.

2. Menu item Edit (Fig.2)

Add Node switches on a mode of adding nodes:
at pressing the mouse button with the cursor in the
working area, there will appear a new node of the
graph.

Remove Node switches on a mode of removing
nodes.
Add Link supports a mode of adding edges.

Remove Link is for removing edges.
Node Weight is for changing nodes' weights.
Link Weight is for changing edges' weights.
Fix Node allows to fix and to release nodes. A fixed
node cannot move in mode "spring graph".

Stop switches off any edit mode.

3. Menu item Ready-to-use allows to insert a subgraph of one
of six predefined types. After choosing an item from this
menu there appears a dialog window offering to set
parameters necessary for this subgraph. Now six types are
the following: a set of disconnected nodes, lines, rings,
grids, hypcrcubes and fully-connected structures.

4. Menu item Misc

Default weights sets weights of nodes and edges
used by default, for example, at the addition of nodes
or edges in the graph.
Recalc lengths recalculates lengths of springs so that
in mode "spring graph" the current state of the graph
becomes steady.

4.2 Graphs' icons

Graphs' icons are just objects each of which keeps a reference to a
graph object and displays all its changes.

296 GraphiCon'98

Figure I: The cover frame of the TOPAS system

Figure 2: The frame for representation of GraphEditor: system graph

Moscow, September 7-11

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

4.3 Supervising the algorithm execution and
animation

The supervising module also can be used independently. It is
implemented in class RunningAlgorithm which extends class
Frame. The user is to create an object of this class by giving to its
constructor two objects of class Graph (initial data, system and
program graphs) and an object of class Method (which describes
an algorithm to be used). Classes Graph and Method will be
described in section 5. After an initializing operation a window
appears on the screen. This window consists of three fields: a
system graph panel, a program graph panel and a control panel.
On the program graph panel a program graph is displayed. On the
system graph panel the animation of the mapping algorithm
execution is displayed (Fig.3). The control panel has two buttons:
Run and Interrupt. The first one is to run an algorithm and lo
change the button caption. The second one is to pause the
algorithm. For the algorithm being paused the user can check
intermediate results: clicking on a processor node in the system
graph panel marks all processes that are now put into this
processor, and clicking on a process node in the program graph
panel shows a processor on which this process is mapped as well
as all processes mapped on it. The Interrupt button stops the
algorithm execution.

After finishing the algorithm execution, the module of
representing and saving results begins working. The module is
also based on a window with two panels for graphs' images and a
control panel (Fig.4). Nodes of the system graph are numbered by
their orders and nodes of the program graphs are marked with
numbers of processors on which they are mapped. In addition,
processors are painted with different colors, and processes are
correspondingly painted, too.

The control panel has four buttons: Edit, Save, Cancel and
Result. Edit allows to correct the mapping by hands in the
graphical mode. Save allows to save results. Cancel closes the
window without saving and Result shows the information (which
will be saved) in a new window.

5 Non-visual components of the system

5.1 Graph structure

Structures representing the graphs of systems and programs are
defined in the class Graph. This class also contains functions for
adding and removing nodes and edges, calculating the matrix of
shortest distances between nodes. There are also used classes
Node and Edge that describe the corresponding elements of the
graph.

5.2 Programmer's interface

To install a new method into the subsystem a programmer should
create a new class which extends interface Method. This interface
contains functions that should be defined by the programmer. The

function Iteration describes one step of the algorithm, InitMelhod
initializes data structures needed for the algorithm to work and
gets two graphs that are initial data.

6 Conclusion

TOPAS is just a part of the project oriented on Web. The system
provides a convenient visual interface and special embedded
knowledge about mapping algorithms. TOPAS supports research
and development, visualization and animation, testing and
debugging new algorithms of mapping of the parallel program
graphs onto multicomputer systems. In addition, it is also very
suitable for making use of mapping algorithms as elementary
operations for specifications of sophisticated data decompositions
and more complex application methods.

References

[1] N. Mirenkov. VIM Language Paradigm, in: Lecture Notes in
Computer Science, 854. В. Buchberger, J. Volkert (Eds.),
Springer-Verlag, 1994, 569-580.

[2] S. Bridgeman, A. Card, R. Tamassia, A graph drawing and
translation service on the WWW, in: Graph Draw-ing'96
(Proc. GD'96). LNCS.voi.ll90, 1996.45-52.

[3] O.G. Monakhov, E.B. Grosbein. A parallel evolution algorithm
for graph mapping problem, in: Proc. Inter. Workshop on
Parallel Computation and Scheduling (PCS'97), CICESE,
Ensenada, Baja California, Mexico, 1997, 17-21.

[4] O.G. Monakhov, O.J. Chunikhin, Parallel mapping of program
graphs into parallel computers by self-organization algorithm,
in: Applied Parallel Computing (Proc. PARA'96). LNCS,
vol.1184, 1996, 525-528.

[5] O.G. Monakhov, Parallel mapping of parallel program graphs
into parallel computers, in: Proc. Int. Conf. Parallel
Computing-91, Elsevier Science Publishers, Amsterdam,
1992, 413-418.

Author(s):
Dr. Oleg G. Monakhov, the principal scientist of Institute of
Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences.

Oleg Chunikhin, student of Novosibirsk State University.
Eugene Grosbein, student of Novosibirsk State University.
Address: Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia

Phone: +7-3832-341066, Fax: +7-3832-324259
E-mail: monakhov@rav.sscc.ru

GraphiCon'98 298

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Figure 3: The frame for animation of mapping algorithm

Figure 4: The frame for representation of results

Moscow, September 7-11

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

	Abstract

