Visor++: A Visualisation Tool for Concurrent Object-Oriented
Programs

Michael J. Oudshoorn®
Hendra Widjaja?
University of Adelaide

Abstract

The use of program visualisation for understand-
ing and fine-tuning task-parallel object-oriented
programs is desirable. One reason is that such
programs typically involve complex interactions
between the program entities. Combined with
other tools, program visualisation tools can make
understanding and fine-tuning of such programs
easier. For maximum benefit, the visualisation
of task-parallel object-oriented programs should
not focus only on a small section of program fea-
tures, but rather on a wide cross section which
covers all the important program interactions.
The resulting views should be presented in ways
that facilitate ease of use, ease of relating one
view to another, and should assist users in build-
ing a mental model of the program. In other
words, a holistic approach to visualisation is re-
quired.

This paper discusses Visor++, a tool for visual-
ising CC++ programs. This tool embodies the
concepts of a holistic approach to present views
which are integrated and inter-related. Although
the underlying system of CC++4 does not sup-
port program visualisation, it is indeed possible
to devise such visualisation at the language level.
The usefulness of Visor++ is demonstrated by
some representative cases.

Keywords: software visualisation, visualisation,
concurrent, object-oriented, CC++.

1Departmnt of Computer Science, University of Adelaide, Ade-
laide, SA, 5005, Australia. E-mail: michaelcs.adelaide.edu.au

2Current address: Internet & Interactive Media Group, National
Computer Systems, Pte Ltd., 81 Science Park Drive, #04-3/04, The
Chadwick, Singapore 118257. E-mail: whendra@ncs.com.sg

1 INTRODUCTION

Concurrent object-oriented programming is a powerful para-
digm in that it allows the modelling of real-world entities as
objects which interact concurrently. However, understand-
ing the execution of concurrent object-oriented programs
can be difficult. This is due to the fact that the execution
of such programs may involve a complex interaction of ab-
stract objects which can be difficult to fathom [3]. Program
visualisation can help alleviate this problem.

Program visualisation is simply defined as the use of
graphical artifacts to enhance the understanding of pro-
grams [9, 15, 16]. In a wider context, it is sometimes also
called software visualisation [15]. Through program visu-
alisation, the operations of a program are represented by
graphical icons. Interactions among program entities are
then represented as interactions among those icons. Pro-
gram visualisation can be done at the abstract algorithmic
level, or at the language level. In any case, program visual-
isation can be used to help users, especially programmers,
to more easily relate the program execution to the original
mental model of the program [10, 12, 14].

This paper explores many aspects of visualising concur-
rent object-oriented programs, in particular task-parallel obj-
ect-oriented programs. It is partly motivated by the fact
that there are relatively few visualisation tools for concur-
rent object-oriented programs, particularly for task-parallel
object-oriented programs, and that the views provided by
these tools vary. Furthermore, most such visualisation tools
provide visualisation by using the information obtained at
the underlying systems level. In other words, the visuali-
sation is driven by program run-time data obtained at this
level. This requires changes to the operating systems, the
language run-time system, or the compiler. This paper ex-
plores the possibility of providing visualisation at the pro-
gram level. The paper also focuses on investigating the types
of views suitable for visualising task-parallel object-oriented
programs. Furthermore, investigation is also carried out to
determine how far such an approach allows the provision of
meaningful visualisation.

For experimentation, the CC++ language [7] is used
as the target of visualisation. The framework for visual-
ising such programs is realised by the tool Visor++, which
utilises Polka [17]. Polka itself is a graphical package which
is specially tailored to provide visualisation of concurrent
programs.

This paper describes the approach taken to provide such
program visualisation. Section 2 discusses some related work
in the visualisation of concurrent object-oriented programs.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

Section 3 highlights the rationale, architecture and the views
provided by Visor++. Some experimentation with Visor—+-+
and analysis thereof are covered in Section 4, followed by a
discussion in Section 5. Concluding remarks are given in
Section 6.

2 RELATED WORK

There are relatively few examples of the application of pro-
gram visualisation to the concurrent object-oriented para-
digm. One possible reason is that the paradigm is relatively
new. Some of these visualisation tools are discussed below.

MVD (Monitoring, Visualisation and Debugging) [5] is
a set of tools for visualising the execution of uC++ [4] pro-
grams. pCH4+ itself is a concurrent language, extending
C++4 with four basic abstractions: coroutines, monitors,
coroutine-monitors, and tasks. The visualisation support
that MVD provides focuses on these abstractions, to the
extent that only these abstractions and their interactions
are visualised. Other entities, such as object member func-
tion invocations, are not included. puC++ programs are vi-
sualised by using trace visualisation, which is visualisation
based on program execution traces. MVD also supports
statistical visualisation, in which statistics of program exe-
cution is displayed, such as task activity status, and stack
high-water marks.

The TAU [2, 13] visualisation tools are part of the pC++
programming language system [1]. pC++ itself is an ex-
tension of C++4, with several additional constructs to sup-
port data parallelism. The TAU tools are implemented as
a graphical hypertool, in which it is a composition of sev-
eral tools, each of which supports unique capabilities. The
tools are divided into two categories. The first category
consists of static analysis tools, including fancy for brows-
ing global functions and class methods, cagey for displaying
the static program call graph, and classy for displaying the
static class hierarchy. The second category comprises dy-
namic analysis tools, such as racy for displaying usage pro-
files of functions and concurrent object member functions,
easy for displaying program events on an X-Y graph, and
breezy, a breakpoint-based debugger. Similar to pC++4,
the pC++ system provides the necessary support to instru-
ment and obtain trace information from its programs.

The LAMINA program visualisation tool is used to vi-
sualise the execution of LAMINA [8] programs. This tool
provides a number of views which can be used for perfor-
mance debugging. The network-operator view displays
the processor-network view, along with the load on each
processor, and communication among them. Latency and
utilisation on each processor are also displayed. Another
view, the activity table, displays textually the activities
of each concurrent object, such as the number of messages
that have been processed, and the average execution time.

Another example is the visualisation system for PARC++
[18] programs. Similar to 4pC++ and pC++, this language
is derived from C++4. It extends C++ with the necessary
abstractions to support concurrency, such as thread man-
agement, thread communication, and thread synchronisa-
tion. PARC+4++ programs can be visualised by using sev-
eral tools, thereby providing different angles of visualisa-
tion. Some important program elements, however, do not
seem to be visualised in the views. For example, the tool
Visit [18] does not provide views of monitors, and the tool
POPALI [18] does not visualise thread executions, while both
monitors and threads are important concepts in PARC++.
Visualisation in PARC++4 does not provide views of static

program elements either, thereby making it difficult for users
to meaningfully compose their mental models.

All the tools cited above display language-level views,
that is, the views deal with language-level entities, in which
interactions among those entities are represented as icons.
The tools can also use statistical views for determining pro-
gram performance. The reason that such views are em-
ployed 1s clear: they assist programmers in understanding
programs, and pinpointing performance problems. However,
there are three difficulties.

Firstly, many such tools provide views which are loosely
inter-related. Different entities in different views may repre-
sent different concepts. Consistent coding can alleviate the
problem of linking the visual entities with the mental model
of the program. However, when the number of such entities
exceeds the capabilities of the human short-term memory
to cope with, explicit support must be used. Such support
should make it easier for users to interpret the meanings
of those entities and their colours, and how they explicitly
relate to the source code.

Secondly, many of the tools provide specialist support for
program understanding and fine-tuning. For example, some
tools specialise in visualising message passing and communi-
cation in message-passing programs. Some other tools spe-
cialise in visualising threads only. Although these are viable
approaches, this paper examines a more holistic approach: a
visualisation tool for program understanding and fine-tuning
should take into account not only specific program sections
or features, but also the other features that may play role
in determining the flow of program execution.

Thirdly, many such tools as represented above use lan-
guage support for providing information for driving pro-
gram visualisation. For example, uC++ and PARCH++ were
specifically created by incorporating features for easily ex-
tracting data for visualisation. Therefore, they are “visual-
isation-conscious” [13]. Other languages, such as LAMINA,
do not have such support. Nevertheless, their underlying
run-time systems permit easy incorporation of such sup-
port. However, the majority of concurrent object-oriented
languages are not visualisation-conscious [13]. Visualisation
is usually an after-thought. This is one difficulty which must
be addressed.

With the above problems in mind, the specific goals of
this paper are three-fold. Firstly, to examine the types of
views suitable for visualising task-parallel object-oriented
programs. The visualisation is targeted for use by program-
mers for understanding programs and tuning their perfor-
mance. Secondly, to examine ways such that the entities
in the views are strongly related to each other and to the
source code. Thirdly, to examine mechanisms which permit
languages that are not visualisation-conscious to be able to
support visualisation, and to examine to what extent such
support can be provided.

A framework called Visor++ is introduced for visualising
CC4+ programs. CC++ is ideal as an experimental vehicle,
for it is a task-parallel language which is not visualisation-
conscious.

3 VISOR++4

To appreciate the issues involved in the design of Visor++,
a brief overview of CC++ is given prior to the discussion of

Visor+-+.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

3.1 CC+++ and Visualisation

The CC++ language is a declarative, task-parallel language,
which is a strict superset of C++. The extensions to C++
allow the construction of parallel programs from simpler
components through the use of sequential, concurrent, and
parallel composition. To create a CC++ program, the best
sequential algorithms can be employed for each component,
which can later be composed to form a single concurrent, or
parallel program.

A CC++ program consists of one or more processor ob-
jects (POs) which reside on one or more physical proces-
sors. A PO is basically an abstraction of locality, in which
each such object has a separate address space. In turn, on
each PO, one or more threads can execute. In terms of
POs, a CC++ program is composed of one or more POs,
which in turn is composed of one or more threads. CC++
provides constructs for synchronisation among threads, and
constructs for RPCs among entities (for example: threads)

in different POs.

3.2 Design Considerations

In designing the views of Visor++, two main considerations
must be taken into account. Firstly, which language entities
should be the focus for visualisation, and secondly, what
views can be devised to appropriately visualise them?

3.2.1 Entities

In providing holistic program visualisation, the choice of
which language features to visualise are important. In Vi-
sor++, the language features chosen are those which are
relatively coarsely-grained which have relatively significant
impacts on program execution. In particular, the entities
are threads, functions, logical processor objects, and remote
procedure calls. Other entities, such as variables and pro-
gram data structures are ignored. This does not mean that
they are umimportant. The reason, rather, is that in task-
parallel object-oriented programs, it is the tasks and their
interactions which are of utmost importance. Variables and
data structures are, perhaps, better dealt with by a visual
debugger or by tools dealing with the visualisation of data-
parallel object-oriented programs. Thread synchronisation
constructs, on the other hand, are visually implicit in thread
views. As a result, a wide cross-section of language entities
are used, without sacrificing the levels of details that can be
visualised.

3.2.2 Views

As described in Section 1, program visualisation can be used
to help users, especially programmers, to more easily relate
program execution to the original mental model conceived
of a program [10, 12, 14]. This, then, makes it possible
for the programmers to understand the differences between
the original program specification and the real behaviour of
a program. Visor++4 assists in building mental model in
terms of the original source code.

To realise the above point, in Visor++, all views are
linked back to the source code, whenever possible. There are
two components that form such links: static views and dy-
namic links. Static views refer to the views depicting static
program information, including the source-code view, and
the class-hierarchy view. Dynamic links, on the other
hand, depict the relationships between dynamic views and

the static views. In Visor++, dynamic views are the views
depicting the dynamic operations of the programs in terms
of the visualisation entities (see Section 3.2.1).

In short, the views in Visor++ consist of static and dy-
namic views, in which the entities inside the dynamic views
may refer to the corresponding entities in the static views.
The reference can be to declaration points and invocation
points. Therefore, a programmer can find, for example,
where a function is declared, and where the function is in-
voked from.

Static and dynamic views are described in more detail
below.

1. Static views. Static views are the views of the static
properties of a program. They include the source-code
view, and the class hierarchy view. Both views are
shown in the right hand side of Figure 1.

2. Dynamic views. These views depict dynamic pro-
gram execution. To make the use of the views more
manageable, these dynamic views are arranged in a hi-
erarchical manner. This means that lower-level views
are hidden and can be displayed upon request. Cur-
rently, there are only two levels of views:

(a) Global views. These views depict the global
(computation-wide) operations or status of a pro-
gram execution. They include the following views:

e Processor- and processor-object-related
views. These display the statistics, such as
idle time and computation time of processor
and processor-objects.

¢ RPC-related views. These views display
the RPC activities occuring in a CC++ pro-
gram, including the call statistics.

e Function usage views. These views dis-
play the frequency of invocations for all the
functions computation-wide. The views can
be useful for optimising the functions which
are most often used, thereby shortening over-
all computation time.

(b) Local views. Local views depict the computa-
tion at the processor-object level. In Visor++,
these views are not displayed until the user specif-
ically requests them. Local views are comprised
of the two views described below:

e Thread view. The thread view displays the
threads which are active at each particular
point in time. This view is essentially a space-
time diagram, in which the vertical axis rep-
resents the threads, and the horizontal axis
represents time. Each thread is displayed as
a thin bar extending to the right, as execu-
tion time advances. In this view, each thread
is displayed as a sequence of function invo-
cations. FEach segment within a thread bar
represents the invocation of a particular func-
tion, in which each function is represented by
a distinctive colour.

e Function stack view. This view is similar
to the thread view, except that it shows the
stack of function calls being made by each
thread. Since this view and the thread view
are closely related, they are grouped together
as two sub-windows within a single window,

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

I

EEE R ERNE N EE RN BN NN

XXX LR

J

Figure 1: Visor++ in execution.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

T
Tk B4 ¢ 11

Lol Famction eall
il Eros_leln rogivi ichas =k

]

Figure 2: Auziliary view showing information of a function.

with the thread view at the top position. Fig-
ure 1 shows only the thread view portion of
this window.

It can be seen that the views in Visor++ are arranged
in a hierarchical way. The invocation or display of
lower-level views is activated only upon the user’s re-
quest. This means that lower-level views can be dis-
played or hidden accordingly.

3. Auxiliary views.

To make the views more strongly related, another kind
of view, the A-view (auxiliary view) is used. This view
has two purposes. Firstly, they can “remind” users of
what a particular display entity stands for. Secondly,
they can serve as a vehicle to link the entities in differ-
ent views representing the same concept. For example,
Figure 2 is an A-view which is displayed when the user
selects an entity in the function view.

Visor++ is implemented with the above concepts in mind.

3.3 Visor++4 Design

Visor++ is essentially composed of three subsystems, as
shown in Figure 3. Due to space limitations, only a brief
description is given below. A more complete description
can be found in [20].

The static and dynamic views are produced and driven
by the event visualisation subsystem by using the visuali-
sation tool POLKA. The static views are created by using
the static program information obtained during the static
analysis of a program. The dynamic views, however, are
created and driven based on the run-time data represent-
ing program states during execution. This data is collected
during program run-time, and consolidated into a database.
Therefore, Visor++ is a post-mortem program visualisation
system.

The key of producing the static and the dynamic views lie
on the program static analysis and program instrumentation
phases, respectively. Before a program is executed, it is first
statically analysed to determine its static structures, such as
program file structures, and class hierarchies. After static
analysis, the program is instrumented by inserting “probes”
inside the original program. These probes, together with
the original program, will emit data that reflects program
states during execution.

It should be noted that both the static analysis and the
program instrumentation are carried out at the source-code
level only. Furthermore, both are done automatically by
the system. This is particularly useful, since the user is
freed from the tedious and error-prone process of manually

carrying them out. Such an approach follows the one used
in TAU. The approach is effective for two reasons. Firstly,
it results in a highly portable system which does not rely
on the intricacies of the underlying system. Secondly, it can
indeed be used to produce the views as outlined previously.
In the next section, three experiments are conducted to
highlight the merits of the framework of Visor++.

4 USING VISORH+

The first experiment is the visualisation of a small and sim-
ple distributed master-slave program adapted from the tu-
torial for CC++ [6]. The program involves one master pro-
cessor object (PO) spawning one or more slave POs, each of
which sends a message to be printed back to the master PO
and then terminates. This is a very simple program consist-
ing only of RPCs. Visor++ is used to visualise their RPC
activities. The RPC activity view and the thread view reveal
that a considerable amount of RPC time is spent on the cre-
ation of POs. This can be explained by using the fact that
the creation of a PO means using RPCs to create a separate
execution address space, possibly on a different physical pro-
cessor. The same views also reveal that RPCs, in general,
are very expensive in terms of execution time. Although
this example is very simple, it illustrates how the usage of
Visor++ can reveal important facts about a program, hence
helping programmers to better understand their codes. In
the next two examples, it will be demonstrated how using
Visor++ views can help programmers both to understand
and to fine-tune their programs.

The second experiment is the optimisation of a distribut-
ed merge-sort program, also adapted from [6]. The program
uses a master-slave configuration in the form of a binary
tree of processor-objects (POs). The internal nodes are the
merge-POs which implement the merge operation, while the
leaves are the sort-POsimplementing the sorting operation.
Fach merge-PO divides the data it receives into two equal
halves, spawns two other merge-POs (or two sort-POs at
the leaves of the tree), merges the results, and passes them
back to its parent PO.

An analysis of a merge-sort program using a 4-level bi-
nary tree is conducted with Visor++. Using Visor++, the
program is automatically instrumented, and the execution
traces of the instrumented program is visualised. Initially,
each merge-PO is placed on a different physical processor
(see the left part of Figure 4), using 7 different machines.
The rationale is that as each merge-PO is computationally
expensive, it needs to be placed on a separate processor.
Each sort-PO, however, is placed on the same processor as
its parent. The rationale is that since a UNIX time-sharing
system is being used, as many processor cycles as possible
should be used for sorting, while at the same time reduc-
ing the amount of RPCs. Using Visor++4, the program is
automatically instrumented, and the execution traces of the
instrumented program are visualised.

During visualisation, the processor activity view reveals
that the POs do not have much idle time (Figure 1 is, in
fact, a snapshot of Visor++ when visualising this program).
However, the utilisation of the physical processors is rather
poor. As in the first example, by using the RPC activity
view and the thread views, and the link-back to the corre-
sponding source-code, it i1s found that synchronous RPCs
dominate the computation. While a merge-PO is perform-
ing two RPCs to its slave merge-POs (or sort-POs), it is
effectively blocked, hence being idle. This observation leads
to the idea of placing those POs into less physical nodes to

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

1] Event Event

Fnsfranmeentation Codlectron Viznalrsaton
Source — N
e Re "'i’ Fvene-
— . Visualbatkon
Hun—time
| Enviionincml Subsyuicm
L § -, i = y
Sranke
Il!-lrl.lll-ﬂllllr = | \
¥
- yeud Ewenn—
nx I| umom L‘Ll]ltl:.h
: H“."- Subwysirm Uwer Coanireld
¥
Cainipiles
! . 1 | . i | .
¥ Canrra | el wied Coord insded
1) a Ewene I'_'rr_rwm
nal |
Caspres Database W
Py

Figure 3: General framework of Visor++.

LEGENDS '
QzMergeNode

< > = Processor placement
D = Sort-Node T

Figure 4: Merge-sort using a 4-level binary tree. The left figure shows the initial placement of the nodes on processors, and
the right figure the optimised placement.

| | Un-instrumented | Instrumented | % change |

Original placement 18.057 secs 26.515 secs 16.8 %
Final placement 9.723 secs 11.981 secs 23.2 %
[Improvement I 185.70 % [22131%] - |

Table 1: Timing information from the merge-sort program.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

increase efficiency. The final placement is shown on the right
side of Figure 4.

Table 12 provides the timing information for sorting about
20,000 integers. The program with the initial PO placement
takes approximately 18 seconds to execute. With the alter-
native placement, execution time is reduced to 10 seconds
while using less processors. The column “instrumented”
gives the measurements of the instrumented versions of the
same programs. Further optimisations are, of course, possi-
ble. For example, the function view can be used to highlight
which functions are most frequently invoked or are longest
to execute, and optimise accordingly. However, it is the in-
tention of the paper to show that optimisation is possible
by cleverly arranging computation structures, even without
changing a single line of code. This insight is achieved by
using Visor—++

The final example is the visualisation of a parallel text-
searching program, which has been described in more detail
elsewhere [20]. The text-searching program searches for a
string text among a set of N text files. The final output is a
list of L files in which the string is found, where 0 < L < N.
In the implementation, P processor-objects (POs) are used,
in which N rem P of them are assigned [N/P] files each,
and each of the remainder is assigned | N/P| files. The pro-
gram is implemented as a branch-and-bound algorithm, in
which a master-PO allocates and places slave-POs on sep-
arate physical processors. The master-PO then initiates
RPCs to obtain results from the slave POs. To do this,
the master-PO creates P threads, each of which allocates,
places, and performs RPCs to a slave-PO.

Using Visor++ views, an optimisation loophole is pin-
pointed. The views show that the master-PO 1is idle while
the slave-POs are executing. Therefore, the master-PO could
be modified so that it participates in the search. After mod-
ification, using Visor++, it is found that in some cases, al-
though L files have been found by some slave-POs, yet many
other slave-POs continue executing the search. To optimise,
the program is modified so that when the master-PO de-
tects that it already has a list of L files found, it instructs
the slave-POs to stop computing. The results of this exper-
iment is presented in Table 2, where . =3, N =20, P = 3,
and the text string to be found is “biochemistry”.

5 DISCUSSION

The results in the previous section indicate that when prop-
erly used and interpreted, the views in Visor++ can help
users to understand and fine-tune their programs. By using
the views, once program understanding is achieved, fine-
tuning can be done. Such tuning may or may not involve
modification of source code, as previously demonstrated.
Consequently, a wide variety of programs can be analysed
in this way by using Visor++.

Using Visor++, many program facets can be uncovered.
This 1s possible, since Visor++ incorporates a holistic ap-
proach, i.e. incorporating a wide cross-section of program
features for visualisation. The views can be vertically-exp-
anded to include higher-level algorithmic views, and lower-
level system views.

The experiments with Visor++ also uncover the fact that
program instrumentation produces probe effects [11], which

2To level out the spikes in machine and network loads, the origi-
nal program, the un-instrumented and the instrumented versions, are
executed 10 times in an interleaved fashion, and the averages were
taken. The measurements for the improved program are carried out
likewise.

means that program execution and its flow are affected by
the insertion of the visualisation probes. This can be seen
from the two tables in Section 4. The exact effects of such
probes depend on the program being instrumented. How-
ever, some measures have been taken in Visor++ to min-
imise such effects. Observations have indicated that the ad-
ditional amount of time needed by an instrumented program
as opposed to its un-instrumented version varies consistently
between 10 % to 47 %. This is still acceptable, taking into
account that the resulting gain in execution time can be po-
tentially much more than such perturbations. Furthermore,
after executing visualisation and subsequently effecting nec-
essary changes to a program, the probes can be removed.
The experiments also have indicated that using the cur-
rent implementation, Visor++ is effective only for small to
medium-sized programs (about 5000 lines of code). The rea-
son 1s that large programs, when visualised, tend to have a
large number of entities displayed. A user or programmer
may be submerged by such a myriad of information. Under
such circumstances, a tool should have more intuitive and
more sophisticated visual cues to guide the user throughout
visualisation. Vertival extensions, as previously mentioned,
can also be used. Furthermore, the incorporated views must
have more spatial and semantic immediacy [19]. This means
that the views should be spatially arranged in such a way
that the interpretation or linkage of one view agains the oth-
ers should be made easier. More visual cues to help the user
to link the views semantically to the original program is also
needed. Given the complex nature of task-parallel object-
oriented programs, such extensions are yet to be examined.

6 SUMMARY AND CONCLUSIONS

This paper presents a framework for visualising the execu-
tion of task-parallel object-oriented programs. This frame-
work entails some important concepts. Firstly, the views
are inter-related through the use of view structuring, con-
sistent colour coding, and explicit referral to the static code
structures. Secondly, program visualisation for program un-
derstanding and fine-tuning should be based on a holistic
approach in that a fairly wide section of important pro-
gram features should be used for visualisation. Presented
in reasonable ways, the visualisation of these features assist
users to better understand and fine-tune programs. Finally,
language-level support for visualisation is indispensable, as
it allows a tight integration between the language and its
visualisation tools. Such support should be automated as
far as possible.

The above framework has been embodied in the tool Vi-
sor++ to visualise CC+4 programs. Several case studies
presented demonstrate the usefulness of the concepts. Prop-
erly used, these concepts could help users to better under-
stand and pin-point problems. This framework, however,
can still be improved, particularly for visualising large pro-
grams. These extensions include, among others, the verti-
cal extension of the views to include both lower-level views
and higher-level algorithmic views, which provide stronger
spatial and semantic immediacy to the user. More sophis-
ticated visual cues and intelligent agents can also be used.
Given the complex nature of task-parallel object-oriented
programs, however, these issues remain to be solved.

Despite the potentials of program visualisation, it is in-
deed no panacea to the problem of program understand-
ing and fine-tuning. Rather, program visualisation can be
used in conjunction with other tools for these purposes. A
proper coupling between program visualisation tools and

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

| Un-instrumented [Instrumented | % change |

Original program 28.076 secs 36.634 secs 30.5 %
Improved program 12.436 secs 14.359 secs 15.5 %
[Improvement I 225.77 % | 255.13 % | - |

Table 2: Timing information from the parallel text-searching programs.

other kinds of tools is potentially beneficial.

REFERENCES

(1]

[10]

F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesa-
van, A. Malony and B. Mohr. Implementing a Parallel
C++4 Runtime System for Scalable Parallel Systems.
In Proceedings of the 1993 Supercomputing Conference,
Portland, Oregon, pages 588-597, 1993.

D. Brown, S. Hackstadt, A. Malony and A. Malony.
Program Analysis Environments for Parallel Language
Systems: The TAU Environment. In Proceedings of the
2nd Workshop on Fnuvironments and Tools for Paral-
lel Scientific Computing, Townsend, Tennessee, USA,
pages 162-171, 1994.

M.H. Brown and R. Sedgewick. A System for Algorithm
Animation. Computer Graphics, Volume 18, Number 3,
pages 177-186, July 1984.

P.A. Buhr, G. Ditchfield, R.A. Stroobosscher, B.M.
Younger and C.R. Zarnke.
the Object-Oriented Language C++. Software- Practice
and Fzperience, Volume 22, Number 2, pages 137-172,
February 1992.

P.A. Buhr and M. Karsten. puC++ Monitoring, Visu-
alisation and Debugging, Annotated Reference Manual,
Preliminary Draft. Department of Computer Science,

University of Waterloo, Waterloo, Canada, version 1.0
edition, March 1996.

CCH4+ Designer Team. CC++ Tutorial. Department
of Computer Science, California Insitute of Technology,
Pasadena, California, 1994.

K.M. Chandy and C. Kesselman. CC++: A Declarative
Concurrent Object-Oriented Programming Notation.
In G. Agha, P. Wegner and A. Yonezawa (editors), Re-
search Directions in Concurrent Object-Oriented Pro-
gramming, Chapter 11, pages 282-313. The MIT Press,
Cambridge, Massachusetts, 1993.

B.A. Delagi, N.P. Saraiya and S. Nishimura. Monitor-
ing Concurrent Object-Based Programs. In G. Agha,
P. Wegner and A. Yonezawa (editors), Research Di-
rections in Concurrent Object-Oriented Programming,
Chapter 15, pages 479-509. The MIT Press, Cam-
bridge, Massachusetts, 1993.

S. Ellershaw and M.J. Oudshoorn. Program Visual-
isation — The State of the Art. Technical Report
TR94-19, Department of Computer Science, University
of Adelaide, November 1994.

V. Fix, S. Wiedenbeck and J. Scholtz. Mental Rep-
resentations of Programs by Novices and Experts. In
S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel
and T. White (editors), Proceedings of the Conference
on Human Factors in Computing Systems, INTFR-
ACT’93 and CHI’93, The Netherlands, pages 74-79.
ACM, April 1993.

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

E. Kraemer and J.T. Stasko. The Visualisation of
Parallel Systems: An Overview. Journal of Parallel
and Distributed Computing, Volume 18, pages 105-117,
1993.

P. Lyons, C. Simmons and M. Apperley. Hyperpascal:
A Visual Language to Model Idea Space. In Proceedings
of the 13th New Zealand Computer Society Conference,
pages 492-508, New Zealand, August 1993.

B. Mohr, D. Brown and A. Malony. TAU: A Portable
Parallel Program Analysis Environment for pC++. In
B. Buchberger and J. Volkert (editors), Lecture Notes
in Computer Science volume 854, Proceedings of the
International Conference on Vector and Parallel Pro-
cessing, CONPAR’94, pages 29-40. Springer-Verlag;
Berlin, Germany, 1994.

N. Pennington. Stimulus Structures and Mental Repre-
sentations in Expert Comprehension of Computer Pro-

grams. Cognitive Psychology, Volume 19, pages 295—
341, 1987.
uC++: Concurrency in [15] B.A. Price, R.M. Baecker and I.S. Small. A Principled

Taxonomy of Software Visualisation. Journal of Visual
Languages and Computing, Volume 4, Number 3, pages
211-266, September 1993.

G. Roman and K.C. Cox. Program Visualisation: The
Art of Mapping Programs to Pictures. In Proceedings
of the 14th International Conference on Software Fn-
gineering, Melbourne, Australia, pages 412-420, May
1992.

J.T. Stasko and E. Kraemer. A Methodology for Build-
ing Application-Specific Visualisations of Parallel Pro-
grams. Journal of Parallel and Distributed Computing,
Volume 18, pages 258-264, 1993.

K. Todter and C. Hammer. PARC4++: A Parallel C+4.
Software Practice and Faperience, Volume 25, Num-
ber 6, pages 623-636, June 1995.

D. Ungar, H. Lieberman and C. Fry. Debugging and
the Experience of Immediacy. Communications of the
ACM, Volume 40, Number 4, pages 3843, April 1997.

H. Widjaja and M.J. Oudshoorn. Concurrent Object-
Oriented Programming — A Visualisation Challenge.
In Proceedings of the Conference of Visual Data Ex-
ploration and Analysis IV, IS&T/SPIE Symposium on
Electronic Imaging: Science and Technology, San Jose,
California, February 1997, pages 310-321, San Jose,
California, February 1997.

International Conference Graphicon 1998, Moscow, Russia, http://www.graphicon.ru/

