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Abstract 

In this paper, we present an approach of using binary tree 
structures for efficient progressive image compression. 
General ideas of progressive transmission and image 
approximation are discussed. We also present a specific 
technique, which provides compression ratios comparable 
to the ratios of the best algorithms known in the literature. 
Besides, it is computationally simple and specially 
designed for fast progressive reconstruction of image 
sketches. Practical results are also present in this paper. 

Keywords: Image, Lossy, Lossless, Progressive Image 
Compression, Binary Tree 

1. INTRODUCTION 

Progressive Image Compression refers to image 
compression techniques that allow both: (1) original image 
reconstruction without loss of any details; and (2) 
construction of picture approximations (sketches) with the 
accuracy level depending on the amount of data available. 

Lossless compression is highly important for images 
obtained at a great cost, such as space or medical images. 
In this case, even marginal loss of data may destroy some 
details required during further processing, or add artifacts 
that lead to erroneous interpretation.  

However, frequent incremental visual inspections of 
images may also be necessary. By the term “image 
inspection” we mean here fast extraction of image sketches 
with desired levels of accuracy. The speed of this operation 
depends on the amount of data that should be retrieved 
from the storage for sketch reconstruction, but with data 
transferring through potentially many network connections, 
it may not be fast enough. Nevertheless, in the case of non-
progressive compression, neither an approximation nor the 
original picture is available until the whole image data is 
retrieved. 

For these reasons, many applications require an image 
compression method that would perform: 

• Lossless image compression with good compression 
ratios in order to use data storage more efficiently; 

• Reconstruction of an image approximation if only a 
beginning part of a data stream is available. Obviously, 
it is preferable to obtain good-looking sketches by 
extraction of just small parts of the compressed data. 

Typically, users had to choose different methods depending 
on whether the compression or fast inspection is desired.  

Commonly used lossless compression techniques, such as 
GIF or PING, show very good performance, but all they 
can offer in order to provide progressive decompression is 
an interlaced order for pixel transmission. For example, the 
top-left pixels of 8x8 blocks can be stored in first pass; they 
are then followed by the pixels missed to produce blocks of 
4x4, and so on. Having received the first part of data, the 
decoder can reconstruct an image consisting of relatively 
large blocks filled with the colors of their top-left pixels. 
This approximation, obviously, has insufficient visual 
perception quality for multicolor images of high frequency. 

For lossy compression, but fast extraction of an image, 
some other methods, such as JPEG or wavelets, may be 
used. These techniques provide very good compression 
ratios, but the original image may not be reconstructed 
completely and significant details may be lost. 

This paper presents a new and efficient technique that 
successfully achieves both objectives - progressive image 
transmission and (ultimately) lossless compression. It is 
based on the hierarchical principle of a binary tree data 
structure and provides compression ratios comparable to 
the best algorithms known in the literature.  

Some compression methods also use hierarchical structures 
in order to perform progressive compression. One of the 
best known algorithms is the S (S+P) transform [1], which 
assumes that, in the general case, the entropy of an image 
can be decreased by applying special transformations (non-
linear, but still reversible). Thus, an image with lower 
entropy may be more efficiently compressed with entropy 
coding methods, such as Arithmetic or Huffman coding. 
However, this technique performs progressive 
reconstruction on a block basis regardless of the 
approximation quality. To solve this problem and increase 
the compression ratio, a set of partitioning schemes [2] may 
be applied. This modification (in the case of lossless 
compression) produces very good results, but still requires 
entropy encoding and some computational effort for sketch 
visualization. 

The technique presented in this paper is characterized by 
the following properties: 

• Lossless compression ratios are comparable to the best 
ratios known in the literature.  
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• Fast and simple compression/decompression 
algorithm. 

• Image approximations can be progressively updated in 
parallel to data extraction. When all the data is 
received, the entire original image will have been 
already constructed, this while previous (non-
complete) versions of the image are used in the 
interim. 

• As each moment passes, the decoder can estimate, 
without additional computations, the difference 
between the currently reconstructed sketch and the 
original, in terms of mean square error (MSE) or 
PSNR. 

• No entropy coding or other post-processing is 
required. 

This paper is organized as follows. The next section 
describes how binary tree structure can be used for raster 
image representation. It presents the general concept of tree 
usage for efficient compression, storage, and progressive 
reconstruction. Section 3 presents the, so-called, ‘3-ranged 
binary tree’ technique, which, by our estimation, is mostly 
efficient in terms of compression ratios and visual quality. 
This section along with Appendix A includes some 
practical results in comparison to other methods. The 
conclusion of the paper is in Section 4. 

2. BINARY TREE USAGE 

Here we describe how the binary tree data structure can be 
used in order to represent raster images. For simplicity of 
explanation, we consider only GrayScale (8 bits/pixel) 
images; however, all the following assertions can be easily 
adapted to TrueColor (24 bits/pixel) images considering 
each color component separately. 

2.1 Images in 3D space 
Let us consider the color (luminance) attribute of each 
pixel as it’s third coordinate in 3D space (the other two 
dimensions being screen space X and Y). Thus, an image 
may be represented by graph of the function 

),(),( yxelColorOfPixyxC = , (see Figure 1). 

 

Figure 1. GrayScale 8bpp image considered a surface in 
3D space. 

Obviously, considering 8bpp images, the color of the pixels 
does not exceed 256; therefore, the whole image is sure to 
be lying inside the parallelepiped 

[ ] [ ] [ ]255,0,0,0 ××= HeightWidthπ . 

2.2 Binary tree construction 
2.2.1 Contraction scheme 

Suppose we have a finite set of contraction operators 
defined on the segment [0,1]. Adding the identity operator 
to this set, we denote it with . Thus, Ψ

[ ]( ) [ ]{ }1,01,0,|...1, ⊂∀=∪=Ψ ii iNiid ϕϕ . 

Considering any segment [a,b] and denoting it’s linear 
transformation to [0,1] with l 

[ ]( ) [ ]1,0,: =ball , 

we can define Nii ...0, =ϕ on [a,b] by the formula 

[ ]( ) [ ]( )ballba ii ,, 1 ooϕϕ −= . 

Thus, we obtain the set of operators which map any 
segment [a,b] into the segment [c,d]⊆[a,b]. However, Ψ is 
required to have the following property in order to be used 
for image representation with a binary tree structure. 

Definition 1. The union of the identity operator 
and a finite set of contraction operators defined on [0,1] is 
called a contraction scheme if  
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where Diameter(⋅) refers to the length of the segment. 

The simplest example of a contraction scheme is one 
corresponding to the binary subdivision method of point 
localization. It is the following 
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Another example of the contraction scheme will be 
considered in the next chapter. 

2.2.2 Binary tree construction 

We discuss here a general procedure that is used to 
construct the binary tree, which represents a raster image. 
In the beginning, we are given an image considered as a 
surface C(x,y) in 3D space (Figure 1), and a contraction 
scheme Ψ. 

Each node of a tree corresponds to a parallelepiped  
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[ ] [ ] [ depthccheightyywidthxx +×+×+=Π ,,, ]  

which complies with the two following properties: 

(1) π⊆Π , where π is the parallelepiped containing 
the whole image (see Figure 1); 

(2) , i.e. the part 
of the image which corresponds to the XY 
rectangle of Π lies inside Π. 

[ ] [ ]( ) Π⊂+×+ heightyywidthxxC ,,

Initially, the root of the tree corresponds to π. For each 
node, we perform the following steps: 

• Check the depth of Π. If it is equal to 1, we stop 
construction of the tree branch, because according 
to condition (2) we are guaranteed that all points of 
the surface within the XY rectangle of Π belong to 
it. Therefore, the flat region of the surface has been 
accurately approximated. 

• Select a contraction operator from Ψ (not the 
identity one, if possible), so that if it is applied to 
the [c,c+depth] segment (see Figures 2,3), the 
resulting parallelepiped complies with (1) and (2) 
requirements. The identity operator does not 
change Π, so it may be chosen in any case. An 
identifier for selected operator is stored in the node. 

• Construct children. If the width or height of Π is 
greater than 1, we can split Π into two equally 
sized parallelepipeds bisecting the X or Y side 
depending on which is greater (see Figures 2,3). 
These two parallelepipeds, corresponding to the 
children, are processed in the same manner. 

Thus, the algorithm of tree building is recursive, generating 
children at each node, and applying the same procedure to 
them. It cyclically bisects the bounding parallelepipeds in 
the X and Y directions and contracts it’s color side 
whenever possible. The process of subdivision is stopped if 
the original image is localized and accurately 
approximated. 

i00

i10 i11

[ ] [ ] [ ]( )255,0,0,0:
0000 iHW ϕ××Π

π = [0,W]×[0,H]×[0,255]

[ ] [ ] [( )255,0,0,2:
001111 iiHWW ϕϕ××Π ]

[ ] [ ] [ ]( )255,0,02,0:
001010 iiHW ϕϕ××Π

Π00

Π10 Π11

[ ] [ ] [ ]( )255,02,02,0:
00112020 iiiHW ϕϕϕ××Π

[ ] [ ] [ ]( )255,0,22,0:
00112121 iiiHHW ϕϕϕ××Π

 
Figure 2. Binary tree construction. Starting from the root. 
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Figure 3. Binary tree construction. General case (bisecting 

in X direction). 

Because Ψ is the contraction scheme (see Definition 1), 
any image may be represented by the tree constructed by 
this procedure. Indeed, if the algorithm reaches the 
1×1×[c,c+depth] parallelepiped, it can stop bisections in X 
and Y directions, and just split the [c,c+depth] until the 
pixel color is localized. 

More formally, the algorithm performs the following: 

Node* GenerateNode( Π ) { 

if ( depth <= 1 ) return NULL; 
node = new Node; 

node->index = FindContraction(Π); 

Π = ApplyContraction(Π,node->index); 

Parallelepiped leftΠ=Π, rightΠ=Π; 

if ( Π.width > Π.height ) { 

leftΠ.width /= 2; 

rightΠ.width /= 2; 

rightΠ.x += rightΠ.width; 
} 

else if ( Π.height > 1 ) { 

leftΠ.height /= 2; 

rightΠ.height /= 2; 

rightΠ.y += rightΠ.height; 
} 

node->left = GenerateNode(leftΠ); 

node->right = GenerateNode(rightΠ); 
} 

As a result, a binary tree having one number (the index of a 
contraction operator) is stored (see Figure 4). Generally, it 
may not be height-balanced, because branch generation 
stops whenever the original image is localized by 
corresponding parallelepiped. 
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Figure 4. Binary tree as image representation. 

2.3 Binary tree storage 
Each node of a binary tree representing a raster image 
contains one value, which is the index of a contraction 
operator from the contraction scheme Ψ. These values 
along with the parent-children relationship allow precise 
reconstruction of the initial picture. Obviously, 
predecessors should be stored (extracted) before their 
ancestors. However, it may be achieved in different ways. 

2.3.1 Tree with pointers 

The simplest form of binary tree storage is writing node 
values followed by two pointers to the children.  Although 
this approach provides both the node value and the parent-
children relationship, it is very inefficient due to the 
necessity of storage space for 2 pointers per node. Because 
the contraction scheme typically consists of a small number 
of such operators, and, indexes require much less space 
then pointers, we consider this approach inefficient for 
storing the binary tree of an image. 

2.3.2 Layer-by-layer storage 

Another approach is based on the pyramidal form of a tree.  
The tree may be stored layer by layer, starting from the root 
(Figure 5). If the decoder knows which nodes are leaves, it 
can reconstruct the tree from this stream. 

This approach is more efficient than the previous one, 
because it stores all the most valuable node information 
without any pointers. It is very simple and efficient. 
However, there exist other schemes that may be used more 
efficiently in terms of progressive visualization. 
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i10 i11

i20 i21 i22 i23

i32 i33 i36 i37

ik⋅ik⋅ ik⋅ ik⋅ ik⋅ ik⋅

Layer 0

Layer 1

Layer 2

Layer 3

Layer k
 

Figure 5. Layer-by-layer tree storage 

2.3.3 Volume sorting 

Because the original image is being approximated by 
parallelepipeds in 3D space, we can consider the volume of 
these parallelepipeds as a good estimation of the quality of 
the approximation. 

( ) depthheightwidthV ××=Π . 

Two parallelepipeds of equal volume, but different depths 
are considered identical in terms of visual quality. This is 
because the original image is guaranteed to be 
reconstructed with better accuracy with the larger XY 
rectangle than with the smaller one. Therefore, we can 
define a strict ordering relationship on nodes judging them 
by the volumes of the corresponding parallelepipeds. 
Denoting the node which corresponds to Πij with Nij, we 
can write 
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Having sorted all of the nodes, we can then store them in 
the following manner: 

• The root goes first; 

• Amongst all non-terminal nodes, whose children 
have not been stored yet, find the first (largest) 
node and store (transmit) its children (see Figure 
6); 

• Repeat the previous step until all nodes are stored 
(transmitted).  

This approach provides better overall visual quality if only 
the beginning part of the data stream is available, because 
the mean square error (MSE) is more evenly distributed. 

1

3 2

9 6 4 5

10 11 7 8

1 | 3,2 | 4,5 | 9,6 | 7,8 | 10,11

Nodes sorting
order

Output stream
 

Figure 6. Output data stream considering volume sorting. 

2.4 Progressive image reconstruction 
The process of image reconstruction is the inverse of the 
process of tree construction. All these storage schemes start 
the data stream with the root value. The decoder initializes 
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its initial rectangle with π (parallelepiped containing the 
whole image’s surface) and begins the process of 
contraction in the color dimension and bisection in X and 
Y dimensions forming each node’s children.  

The correct order of operations is provided by the 
following properties of the storage schemes: 

• The root always transmitted first; 

• At every moment, the decoder determines which 
node is being transmitted by analysis of the 
parallelepipeds that have been already constructed; 
therefore, no additional information is required – 
the coder and decoder simply use the same 
algorithm for node extraction; 

• Children of a node are always transmitted after 
their  parents, providing the correct order of 
contractions. 

Progressive visualization may be implemented in the 
following manner. Let us consider a decoder having 
received the beginning part of a data stream, so it 
reconstructs just the top part of a tree. Enumerating all leaf 
nodes of the reconstructed part of a tree with  

[ ] [ ] [ ] Midcchyywxx iiiiiiiiii ...1,,,, =+×+×+=Π , 

we can state that 

[ ] [ ]( ) [ ] [ HeightWidthhyywxx
M

i
iiiiii ,0,0,,

1

×=+×+
=
U ] , 

where Width and Height refer to the width and height of the 
initial image, respectively. It should be emphasized, that by 
the leaf nodes of the reconstructed part of the tree, we 
mean it’s nodes which are terminal in the full tree, or, 
which do have children in the full tree, but they have not 
been transmitted. 

Besides, considering condition (2) in 2.2.2 we can deduce 
that 

[ ] [ ]( ) U
M

i
iHeightWidthC

1

,0,0
=

Π⊂× , i.e. 

the surface of an image belongs to the union of 
parallelepipeds corresponding to the leaf nodes. Therefore, 
by filling each [xi, xi+wi]×[ yi,yi+hi] rectangle with the 
middle value equal to ci+di/2, the decoder produces an 
approximation of an image. If the next portion of nodes is 
received, the decoder simply shifts the colors at the 
rectangles which are affected by new information. Thus, 
starting from the middle value of [0,255], which is spread 
over the whole image, the decoder, receiving node values 
of the tree, constructs more and more accurate 
approximations of an image. Having received the whole 
tree, it produces the precise reconstruction of the original. 

3. 3-RANGED BINARY TREE 

In this chapter, we present a contraction scheme that, by 
our observation, provides a very efficient progressive 
compression on images of different types. Efficiency is 
achieved in both compression ratio and computational 
complexity. 

3.1 3-Ranged binary tree introduction 
Guided by three desired properties, such as 

• fast and high-quality image approximation; 

• simple computations; 

• efficient and compact storage; 

we proposed to use the following contraction scheme: 
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Except for the identity operator, this scheme includes 3 
operators which halve the length of the of the segment. The 
first one selects the bottom “half” of a segment, the second 
selects the middle “half”, and the third contracts the 
segment into its top “half” (see Figure 7). 

ϕ1

ϕ2

ϕ3

m
iddle

top
bottom

0

1

0

1

1/2

1/4

3/4

 
Figure 7. Contraction operators of the 3-ranged scheme. 

Because the approximation of an image starts from the 
segment [0,255], which, in fact, can be considered as 
[0,256], all contraction operators may be applied using 
additions and bitwise shifts. Therefore, coding and 
decoding algorithms are very fast, very efficient, and they 
allow for hardware implementation. 

Figure 8 shows the process of building a 3-ranged tree 
using a 1-dimentional function, for illustration purposes. In 
the case of a 2D surface, we just use the XY rectangles 
instead of segments, and the process of children generation 
results in bisecting the greater of the X or Y dimension. 
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Figure 8. 3-ranged bynary tree construction. 

3.2 Compact storage of the 3-ranged tree 
As we have already proposed, the 3-ranged binary tree, 
which represents a raster image, may be stored in a layer-
by-layer or volume-dependent order. However, for each 
node, we store the index of a contraction operator from the 
contraction scheme Ψ, which is used for tree generation. In 
the case of a 3-ranged tree, the contraction scheme Ψ3 
consists of 4 operators. 

Having researched binary trees, constructed for images of 
several types, we propose to use two techniques in order to 
obtain high compression ratios, and, simultaneously, to 
fulfill all the desired conditions, such as progressive 
transmission. These techniques are tree limitation and 
multi-length node encoding. 

3.2.1 Tree truncation 

Our research showed that it is more efficient to construct a 
tree up to a certain level, which, however, varies from 
image to image. Before storing the tree, we can specify two 
parameters – the minimal parallelepiped’s depth and the 
minimal XY rectangle’s area, which is width×height. These 
parameters may also be layer number or minimal 
parallelepiped’s volume. Having specified these 
limitations, we construct the tree branches until one of the 
minimal parameters is reached. To produce lossless 
compression, we can store residual parts of images 
belonging to the parallelepipeds, considering these parts as 

separate images. Typically, much less than 8 bits are 
required for each pixel, because the encoder and the 
decoder have all the parameters of the leaf parallelepipeds, 
and they assume that the corresponding image part lies 
entirely within them. For example, if a leaf parallelepiped 
is 2×2×16 in size, 4 bits for each pixel are required. 

Thus, the storage of an image consists of two parts – the 
tree constructed up to a certain level, and the residual (see 
Figure 9), which provides for lossless compression. 
Generally, a tree is constructed up to the level which 
provides good visual quality, so all properties of 
progressive transmission are fulfilled.  

Image…

Residual

 
Figure 9. Tree with limits + residual storage scheme. 

There are three good reasons for dividing image storage to 
the tree part and the residual: 

• It is possible to achieve an optimal balance 
between compression ratio and progressive 
visualization. 

• By our estimation, the residual, coded with the 
number of bits required, may not generally be 
encoded by entropy coding methods with better 
ratios. The residual may be considered noise in 
most cases. 

• Having reconstructed the approximation from the 
tree, the decoder knows how the original differs 
from the reconstructed image. 

3.2.2 Multi-length node coding. 

As mentioned above, the residual may not be compressed 
with better ratios by entropy coding methods. However, 
these methods may be efficiently applied to the tree part. 
We propose a static Huffman encoding technique to store 
the tree nodes more efficiently.  

From the histogram of node frequencies, a Huffman tree 
may be constructed. Then, all node indexes are substituted 
by unique prefix codes, which can be read one by one from 
the continuos data stream. By our estimation, the codes, 
presented in Table 1, are appropriate for most images. 

Contraction operator Code 

ϕ0: identity 0 

ϕ1: bottom 110 

ϕ2: middle 10 

ϕ3: top 111 

Table 1. Codes of the 3-ranged tree nodes. 
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3.3 Practical results 
We have chosen the well-known image of Lena as a test 
sample for analyzing visual characteristics and for 
comparing our compression ratios to other techniques. This 
image is a grayscale 8bpp image of 256×256 pixels in size.  

The most suitable tree limits for this picture are 16 for the 
parallelepiped’s depth (color range) and 4 for the XY 
rectangle area. The algorithm stops building tree branches 
whenever one of these parameters is reached. The 
remainder is stored as-is, just using the information about 
the number of bits required for each pixel. The tree is 
stored using Huffman encoding, as shown in Table 1. 

With these limitations, the results for Lena are as 
following. 

3.3.1 Image storage 

Table 2 shows the storage requirements for the original 
Lena image and it’s compressed version using a 3-ranged 
binary tree, constructed up to a certain level, and the 
remainder. 

Image Size (in bytes) 

Original Lena (unpacked) 65536 (100%) 

Tree (limits ÷ depth = 16, area = 4) 7332 (11%) 

Residual 39515 (60%) 

Tree + Residual 46847 (71%) 

Table 2. Storage requirements for different parts of the 
image of Lena compressed with 3-ranged binary tree. 

3.3.2 Compression ratio comparison 

Table 3 shows the comparison of compression ratios 
obtained by packing the image of Lena with 3-ranged 
binary tree techniques and other well-known lossless 
compression schemes, including the best ones known in the 
literature. 

Compression Technique Size (in bytes) 

SPIHT [2] (entropy coding included) 42140 (65%) 

3-ranged binary tree 46847 (71%) 

PING (interlacing, LZW-based) 47383 (72%) 

Unpacked 65536 (100%) 

PCX (RLE) 73088 (112%) 

GIF (LZW) 74206 (113%) 

Table 3. Comparison of compression ratios for the image 
of Lena. 

3.3.3 PSNR of reconstructed sketches 

Here we present the graph of PSNR (Peak Signal to Noise 
Ratio) characteristics of the difference between the original 

Lena image, and a variety of it’s approximations, 
reconstructed from short initial sequences of compressed 
data. The visual quality of these images may be inspected 
in Appendix A. 
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3-ranged tree
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Figure 10. Comparison of PSNR for progressive 

visualization with 3-ranged tree and SPIHT 

It should be emphasized, that the SPIHT technique was 
designed to minimize the mean square error (MSE) when 
only the beginning part of a message is available; therefore, 
it may be considered optimal in this sense. However, this 
method does not allow transmission and reconstruction in 
parallel, besides it is relatively more complicated. 

4. CONCLUSION 

In this paper, we have presented the basic concept of binary 
trees in order to obtain progressive compression of raster 
images. We also presented a specific technique, the 3-
ranged binary tree compression, which is very efficient in 
terms of visual quality, compression ratio and 
computational complexity. Some practical results are also 
included. 

The 3-ranged binary tree technique provides lossless 
compression with ratios, which are among the best known 
in the literature. We also estimate that our technique 
provides better compression ratios then commonly used 
algorithms such as PCX, GIF and PING.  

The binary tree technique was designed to perform 
progressive transmission of compressed images. Image 
approximations may be constructed by a decoder in parallel 
with data reception, because, when the next portion of data 
becomes available, the decoder just improves the 
corresponding image parts, making it looking better. 
Besides, the decoder can automatically estimate the quality 
(PSNR) of the sketches obtained, without having the 
original or any additional information. For these reasons, 
this technique may be efficiently used for remote image 
inspections and observations.  
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The algorithm presented here is very efficient in terms of 
computational complexity. It may be implemented using 
additive and bitwise shifting operators, which are applied 
to pixel groups. Thus, MMX instructions may be used. 
Hardware implementation is also possible. 

We suggest that the 3-ranged binary tree technique be used 
for efficient lossless image compression with fast 
extraction of image approximations, as well as, for lossy 
compression. It successfully achieves both objectives; and 
considering this property along with it’s computational 
simplicity, we estimate that our compression method may 
be useful for many purposes. 
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Appendix A 

 
Original Image of Lena (8bpp) 

 
0.24 bpp (3%, 27.10 dB) 

 
1.36 bpp (17%, 36.03 dB) 

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/ 

mailto:csl@online.ru

	1. INTRODUCTION
	2. BINARY TREE USAGE
	2.1 Images in 3D space
	2.2 Binary tree construction
	2.2.1 Contraction scheme
	2.2.2 Binary tree construction

	2.3 Binary tree storage
	2.3.1 Tree with pointers
	2.3.2 Layer-by-layer storage
	2.3.3 Volume sorting

	2.4 Progressive image reconstruction

	3. 3-RANGED BINARY TREE
	3.1 3-Ranged binary tree introduction
	3.2 Compact storage of the 3-ranged tree
	3.2.1 Tree truncation
	3.2.2 Multi-length node coding.

	3.3 Practical results
	3.3.1 Image storage
	3.3.2 Compression ratio comparison
	3.3.3 PSNR of reconstructed sketches


	4. CONCLUSION
	5. ACKNOLEDGMENTS
	6. REFERENCES

