
Progressive Image Compression Using Binary Trees

Denis V. Ivanov, Eugene P. Kuzmin, Sergey V. Burtsev

Mathematics and Mechanics Dept., Moscow State University
Moscow, Russia

Abstract

In this paper, we present an approach of using binary tree
structures for efficient progressive image compression.
General ideas of progressive transmission and image
approximation are discussed. We also present a specific
technique, which provides compression ratios comparable
to the ratios of the best algorithms known in the literature.
Besides, it is computationally simple and specially
designed for fast progressive reconstruction of image
sketches. Practical results are also present in this paper.

Keywords: Image, Lossy, Lossless, Progressive Image
Compression, Binary Tree

1. INTRODUCTION

Progressive Image Compression refers to image
compression techniques that allow both: (1) original image
reconstruction without loss of any details; and (2)
construction of picture approximations (sketches) with the
accuracy level depending on the amount of data available.

Lossless compression is highly important for images
obtained at a great cost, such as space or medical images.
In this case, even marginal loss of data may destroy some
details required during further processing, or add artifacts
that lead to erroneous interpretation.

However, frequent incremental visual inspections of
images may also be necessary. By the term “image
inspection” we mean here fast extraction of image sketches
with desired levels of accuracy. The speed of this operation
depends on the amount of data that should be retrieved
from the storage for sketch reconstruction, but with data
transferring through potentially many network connections,
it may not be fast enough. Nevertheless, in the case of non-
progressive compression, neither an approximation nor the
original picture is available until the whole image data is
retrieved.

For these reasons, many applications require an image
compression method that would perform:

• Lossless image compression with good compression
ratios in order to use data storage more efficiently;

• Reconstruction of an image approximation if only a
beginning part of a data stream is available. Obviously,
it is preferable to obtain good-looking sketches by
extraction of just small parts of the compressed data.

Typically, users had to choose different methods depending
on whether the compression or fast inspection is desired.

Commonly used lossless compression techniques, such as
GIF or PING, show very good performance, but all they
can offer in order to provide progressive decompression is
an interlaced order for pixel transmission. For example, the
top-left pixels of 8x8 blocks can be stored in first pass; they
are then followed by the pixels missed to produce blocks of
4x4, and so on. Having received the first part of data, the
decoder can reconstruct an image consisting of relatively
large blocks filled with the colors of their top-left pixels.
This approximation, obviously, has insufficient visual
perception quality for multicolor images of high frequency.

For lossy compression, but fast extraction of an image,
some other methods, such as JPEG or wavelets, may be
used. These techniques provide very good compression
ratios, but the original image may not be reconstructed
completely and significant details may be lost.

This paper presents a new and efficient technique that
successfully achieves both objectives - progressive image
transmission and (ultimately) lossless compression. It is
based on the hierarchical principle of a binary tree data
structure and provides compression ratios comparable to
the best algorithms known in the literature.

Some compression methods also use hierarchical structures
in order to perform progressive compression. One of the
best known algorithms is the S (S+P) transform [1], which
assumes that, in the general case, the entropy of an image
can be decreased by applying special transformations (non-
linear, but still reversible). Thus, an image with lower
entropy may be more efficiently compressed with entropy
coding methods, such as Arithmetic or Huffman coding.
However, this technique performs progressive
reconstruction on a block basis regardless of the
approximation quality. To solve this problem and increase
the compression ratio, a set of partitioning schemes [2] may
be applied. This modification (in the case of lossless
compression) produces very good results, but still requires
entropy encoding and some computational effort for sketch
visualization.

The technique presented in this paper is characterized by
the following properties:

• Lossless compression ratios are comparable to the best
ratios known in the literature.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

• Fast and simple compression/decompression
algorithm.

• Image approximations can be progressively updated in
parallel to data extraction. When all the data is
received, the entire original image will have been
already constructed, this while previous (non-
complete) versions of the image are used in the
interim.

• As each moment passes, the decoder can estimate,
without additional computations, the difference
between the currently reconstructed sketch and the
original, in terms of mean square error (MSE) or
PSNR.

• No entropy coding or other post-processing is
required.

This paper is organized as follows. The next section
describes how binary tree structure can be used for raster
image representation. It presents the general concept of tree
usage for efficient compression, storage, and progressive
reconstruction. Section 3 presents the, so-called, ‘3-ranged
binary tree’ technique, which, by our estimation, is mostly
efficient in terms of compression ratios and visual quality.
This section along with Appendix A includes some
practical results in comparison to other methods. The
conclusion of the paper is in Section 4.

2. BINARY TREE USAGE

Here we describe how the binary tree data structure can be
used in order to represent raster images. For simplicity of
explanation, we consider only GrayScale (8 bits/pixel)
images; however, all the following assertions can be easily
adapted to TrueColor (24 bits/pixel) images considering
each color component separately.

2.1 Images in 3D space
Let us consider the color (luminance) attribute of each
pixel as it’s third coordinate in 3D space (the other two
dimensions being screen space X and Y). Thus, an image
may be represented by graph of the function

),(),(yxelColorOfPixyxC = , (see Figure 1).

Figure 1. GrayScale 8bpp image considered a surface in
3D space.

Obviously, considering 8bpp images, the color of the pixels
does not exceed 256; therefore, the whole image is sure to
be lying inside the parallelepiped

[] [] []255,0,0,0 ××= HeightWidthπ .

2.2 Binary tree construction
2.2.1 Contraction scheme

Suppose we have a finite set of contraction operators
defined on the segment [0,1]. Adding the identity operator
to this set, we denote it with . Thus, Ψ

[]() []{ }1,01,0,|...1, ⊂∀=∪=Ψ ii iNiid ϕϕ .

Considering any segment [a,b] and denoting it’s linear
transformation to [0,1] with l

[]() []1,0,: =ball ,

we can define Nii ...0, =ϕ on [a,b] by the formula

[]() []()ballba ii ,, 1 ooϕϕ −= .

Thus, we obtain the set of operators which map any
segment [a,b] into the segment [c,d]⊆[a,b]. However, Ψ is
required to have the following property in order to be used
for image representation with a binary tree structure.

Definition 1. The union of the identity operator
and a finite set of contraction operators defined on [0,1] is
called a contraction scheme if

[]
[]() []()() εϕϕϕϕ

ε
<∨∈

∃∈∀>∀
1,0...1,0...

:...,1,0,0

11

1

MM iiii

M

DiameterP
iiP

oooo

where Diameter(⋅) refers to the length of the segment.

The simplest example of a contraction scheme is one
corresponding to the binary subdivision method of point
localization. It is the following

[]() []
[]() []
[]() []⎪

⎪
⎩

⎪⎪
⎨

⎧

=

=
=

=Ψ

1,2
11,0

2
1,01,0
1,01,0

2

1

0

ϕ

ϕ
ϕ

Another example of the contraction scheme will be
considered in the next chapter.

2.2.2 Binary tree construction

We discuss here a general procedure that is used to
construct the binary tree, which represents a raster image.
In the beginning, we are given an image considered as a
surface C(x,y) in 3D space (Figure 1), and a contraction
scheme Ψ.

Each node of a tree corresponds to a parallelepiped

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

[] [] [depthccheightyywidthxx +×+×+=Π ,,,]

which complies with the two following properties:

(1) π⊆Π , where π is the parallelepiped containing
the whole image (see Figure 1);

(2) , i.e. the part
of the image which corresponds to the XY
rectangle of Π lies inside Π.

[] []() Π⊂+×+ heightyywidthxxC ,,

Initially, the root of the tree corresponds to π. For each
node, we perform the following steps:

• Check the depth of Π. If it is equal to 1, we stop
construction of the tree branch, because according
to condition (2) we are guaranteed that all points of
the surface within the XY rectangle of Π belong to
it. Therefore, the flat region of the surface has been
accurately approximated.

• Select a contraction operator from Ψ (not the
identity one, if possible), so that if it is applied to
the [c,c+depth] segment (see Figures 2,3), the
resulting parallelepiped complies with (1) and (2)
requirements. The identity operator does not
change Π, so it may be chosen in any case. An
identifier for selected operator is stored in the node.

• Construct children. If the width or height of Π is
greater than 1, we can split Π into two equally
sized parallelepipeds bisecting the X or Y side
depending on which is greater (see Figures 2,3).
These two parallelepipeds, corresponding to the
children, are processed in the same manner.

Thus, the algorithm of tree building is recursive, generating
children at each node, and applying the same procedure to
them. It cyclically bisects the bounding parallelepipeds in
the X and Y directions and contracts it’s color side
whenever possible. The process of subdivision is stopped if
the original image is localized and accurately
approximated.

i00

i10 i11

[] [] []()255,0,0,0:
0000 iHW ϕ××Π

π = [0,W]×[0,H]×[0,255]

[] [] [()255,0,0,2:
001111 iiHWW ϕϕ××Π]

[] [] []()255,0,02,0:
001010 iiHW ϕϕ××Π

Π00

Π10 Π11

[] [] []()255,02,02,0:
00112020 iiiHW ϕϕϕ××Π

[] [] []()255,0,22,0:
00112121 iiiHHW ϕϕϕ××Π

Figure 2. Binary tree construction. Starting from the root.

[] [] []()255,0,,:
0 2

,∏
= ⎭⎬

⎫
⎩⎨
⎧

−

×+×+Π
k

i
likl

ik

hyywxx ϕ

[] [] []()255,0,,2:
1

0 2
12,12,1

1
∏

+

= ⎭⎬
⎫

⎩⎨
⎧ +++

−+

×+×++Π
k

i
lilk

ik

hyywxwx ϕ

[] [] []()255,0,2,:
1

0 2
2,2,1

1
∏

+

= ⎭⎬
⎫

⎩⎨
⎧+

−+

×+×+Π
k

i
lilk

ik

hyywxx ϕ

iklΠkl

Πk+1,2l Πk+1,2l+1

ik+1,2l+1ik+1,2l

Figure 3. Binary tree construction. General case (bisecting

in X direction).

Because Ψ is the contraction scheme (see Definition 1),
any image may be represented by the tree constructed by
this procedure. Indeed, if the algorithm reaches the
1×1×[c,c+depth] parallelepiped, it can stop bisections in X
and Y directions, and just split the [c,c+depth] until the
pixel color is localized.

More formally, the algorithm performs the following:

Node* GenerateNode(Π) {

if (depth <= 1) return NULL;
node = new Node;

node->index = FindContraction(Π);

Π = ApplyContraction(Π,node->index);

Parallelepiped leftΠ=Π, rightΠ=Π;

if (Π.width > Π.height) {

leftΠ.width /= 2;

rightΠ.width /= 2;

rightΠ.x += rightΠ.width;
}

else if (Π.height > 1) {

leftΠ.height /= 2;

rightΠ.height /= 2;

rightΠ.y += rightΠ.height;
}

node->left = GenerateNode(leftΠ);

node->right = GenerateNode(rightΠ);
}

As a result, a binary tree having one number (the index of a
contraction operator) is stored (see Figure 4). Generally, it
may not be height-balanced, because branch generation
stops whenever the original image is localized by
corresponding parallelepiped.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

i00

i10 i11

i20 i21 i22 i23

i32 i33 i36 i37

ik⋅ik⋅ ik⋅ ik⋅ ik⋅ ik⋅
Figure 4. Binary tree as image representation.

2.3 Binary tree storage
Each node of a binary tree representing a raster image
contains one value, which is the index of a contraction
operator from the contraction scheme Ψ. These values
along with the parent-children relationship allow precise
reconstruction of the initial picture. Obviously,
predecessors should be stored (extracted) before their
ancestors. However, it may be achieved in different ways.

2.3.1 Tree with pointers

The simplest form of binary tree storage is writing node
values followed by two pointers to the children. Although
this approach provides both the node value and the parent-
children relationship, it is very inefficient due to the
necessity of storage space for 2 pointers per node. Because
the contraction scheme typically consists of a small number
of such operators, and, indexes require much less space
then pointers, we consider this approach inefficient for
storing the binary tree of an image.

2.3.2 Layer-by-layer storage

Another approach is based on the pyramidal form of a tree.
The tree may be stored layer by layer, starting from the root
(Figure 5). If the decoder knows which nodes are leaves, it
can reconstruct the tree from this stream.

This approach is more efficient than the previous one,
because it stores all the most valuable node information
without any pointers. It is very simple and efficient.
However, there exist other schemes that may be used more
efficiently in terms of progressive visualization.

i00

i10 i11

i20 i21 i22 i23

i32 i33 i36 i37

ik⋅ik⋅ ik⋅ ik⋅ ik⋅ ik⋅

Layer 0

Layer 1

Layer 2

Layer 3

Layer k

Figure 5. Layer-by-layer tree storage

2.3.3 Volume sorting

Because the original image is being approximated by
parallelepipeds in 3D space, we can consider the volume of
these parallelepipeds as a good estimation of the quality of
the approximation.

() depthheightwidthV ××=Π .

Two parallelepipeds of equal volume, but different depths
are considered identical in terms of visual quality. This is
because the original image is guaranteed to be
reconstructed with better accuracy with the larger XY
rectangle than with the smaller one. Therefore, we can
define a strict ordering relationship on nodes judging them
by the volumes of the corresponding parallelepipeds.
Denoting the node which corresponds to Πij with Nij, we
can write

{ }
() ()()
() ()()
() ()()⎪⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

<∧=∧Π=Π
∨<∧Π=Π

∨Π>Π
⇔>

lnkmVV
kmVV

VV
NN

klmn

klmn

klmn

klmn

Having sorted all of the nodes, we can then store them in
the following manner:

• The root goes first;

• Amongst all non-terminal nodes, whose children
have not been stored yet, find the first (largest)
node and store (transmit) its children (see Figure
6);

• Repeat the previous step until all nodes are stored
(transmitted).

This approach provides better overall visual quality if only
the beginning part of the data stream is available, because
the mean square error (MSE) is more evenly distributed.

1

3 2

9 6 4 5

10 11 7 8

1 | 3,2 | 4,5 | 9,6 | 7,8 | 10,11

Nodes sorting
order

Output stream

Figure 6. Output data stream considering volume sorting.

2.4 Progressive image reconstruction
The process of image reconstruction is the inverse of the
process of tree construction. All these storage schemes start
the data stream with the root value. The decoder initializes

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

its initial rectangle with π (parallelepiped containing the
whole image’s surface) and begins the process of
contraction in the color dimension and bisection in X and
Y dimensions forming each node’s children.

The correct order of operations is provided by the
following properties of the storage schemes:

• The root always transmitted first;

• At every moment, the decoder determines which
node is being transmitted by analysis of the
parallelepipeds that have been already constructed;
therefore, no additional information is required –
the coder and decoder simply use the same
algorithm for node extraction;

• Children of a node are always transmitted after
their parents, providing the correct order of
contractions.

Progressive visualization may be implemented in the
following manner. Let us consider a decoder having
received the beginning part of a data stream, so it
reconstructs just the top part of a tree. Enumerating all leaf
nodes of the reconstructed part of a tree with

[] [] [] Midcchyywxx iiiiiiiiii ...1,,,, =+×+×+=Π ,

we can state that

[] []() [] [HeightWidthhyywxx
M

i
iiiiii ,0,0,,

1

×=+×+
=
U] ,

where Width and Height refer to the width and height of the
initial image, respectively. It should be emphasized, that by
the leaf nodes of the reconstructed part of the tree, we
mean it’s nodes which are terminal in the full tree, or,
which do have children in the full tree, but they have not
been transmitted.

Besides, considering condition (2) in 2.2.2 we can deduce
that

[] []() U
M

i
iHeightWidthC

1

,0,0
=

Π⊂× , i.e.

the surface of an image belongs to the union of
parallelepipeds corresponding to the leaf nodes. Therefore,
by filling each [xi, xi+wi]×[yi,yi+hi] rectangle with the
middle value equal to ci+di/2, the decoder produces an
approximation of an image. If the next portion of nodes is
received, the decoder simply shifts the colors at the
rectangles which are affected by new information. Thus,
starting from the middle value of [0,255], which is spread
over the whole image, the decoder, receiving node values
of the tree, constructs more and more accurate
approximations of an image. Having received the whole
tree, it produces the precise reconstruction of the original.

3. 3-RANGED BINARY TREE

In this chapter, we present a contraction scheme that, by
our observation, provides a very efficient progressive
compression on images of different types. Efficiency is
achieved in both compression ratio and computational
complexity.

3.1 3-Ranged binary tree introduction
Guided by three desired properties, such as

• fast and high-quality image approximation;

• simple computations;

• efficient and compact storage;

we proposed to use the following contraction scheme:

[]() []
[]() []
[]() []
[]() []⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=

−=

−=

−=

=Ψ

top

middle

bottom

identity

1,2
11,0:

4
3,4

11,0:
2

1,01,0:

1,01,0:

33

22

11

00

3

ϕϕ

ϕϕ

ϕϕ

ϕϕ

Except for the identity operator, this scheme includes 3
operators which halve the length of the of the segment. The
first one selects the bottom “half” of a segment, the second
selects the middle “half”, and the third contracts the
segment into its top “half” (see Figure 7).

ϕ1

ϕ2

ϕ3

m
iddle

top
bottom

0

1

0

1

1/2

1/4

3/4

Figure 7. Contraction operators of the 3-ranged scheme.

Because the approximation of an image starts from the
segment [0,255], which, in fact, can be considered as
[0,256], all contraction operators may be applied using
additions and bitwise shifts. Therefore, coding and
decoding algorithms are very fast, very efficient, and they
allow for hardware implementation.

Figure 8 shows the process of building a 3-ranged tree
using a 1-dimentional function, for illustration purposes. In
the case of a 2D surface, we just use the XY rectangles
instead of segments, and the process of children generation
results in bisecting the greater of the X or Y dimension.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

ϕ3 ϕ2

ϕ2 ϕ1 ϕ0 ϕ1

ϕ0ϕ0

ϕ3 ϕ2

ϕ2 ϕ1 ϕ0 ϕ1m
iddle

top

identity

bottom

bottom

m
iddle

identity

256

0

256

0

256

0
Width

Figure 8. 3-ranged bynary tree construction.

3.2 Compact storage of the 3-ranged tree
As we have already proposed, the 3-ranged binary tree,
which represents a raster image, may be stored in a layer-
by-layer or volume-dependent order. However, for each
node, we store the index of a contraction operator from the
contraction scheme Ψ, which is used for tree generation. In
the case of a 3-ranged tree, the contraction scheme Ψ3
consists of 4 operators.

Having researched binary trees, constructed for images of
several types, we propose to use two techniques in order to
obtain high compression ratios, and, simultaneously, to
fulfill all the desired conditions, such as progressive
transmission. These techniques are tree limitation and
multi-length node encoding.

3.2.1 Tree truncation

Our research showed that it is more efficient to construct a
tree up to a certain level, which, however, varies from
image to image. Before storing the tree, we can specify two
parameters – the minimal parallelepiped’s depth and the
minimal XY rectangle’s area, which is width×height. These
parameters may also be layer number or minimal
parallelepiped’s volume. Having specified these
limitations, we construct the tree branches until one of the
minimal parameters is reached. To produce lossless
compression, we can store residual parts of images
belonging to the parallelepipeds, considering these parts as

separate images. Typically, much less than 8 bits are
required for each pixel, because the encoder and the
decoder have all the parameters of the leaf parallelepipeds,
and they assume that the corresponding image part lies
entirely within them. For example, if a leaf parallelepiped
is 2×2×16 in size, 4 bits for each pixel are required.

Thus, the storage of an image consists of two parts – the
tree constructed up to a certain level, and the residual (see
Figure 9), which provides for lossless compression.
Generally, a tree is constructed up to the level which
provides good visual quality, so all properties of
progressive transmission are fulfilled.

Image…

Residual

Figure 9. Tree with limits + residual storage scheme.

There are three good reasons for dividing image storage to
the tree part and the residual:

• It is possible to achieve an optimal balance
between compression ratio and progressive
visualization.

• By our estimation, the residual, coded with the
number of bits required, may not generally be
encoded by entropy coding methods with better
ratios. The residual may be considered noise in
most cases.

• Having reconstructed the approximation from the
tree, the decoder knows how the original differs
from the reconstructed image.

3.2.2 Multi-length node coding.

As mentioned above, the residual may not be compressed
with better ratios by entropy coding methods. However,
these methods may be efficiently applied to the tree part.
We propose a static Huffman encoding technique to store
the tree nodes more efficiently.

From the histogram of node frequencies, a Huffman tree
may be constructed. Then, all node indexes are substituted
by unique prefix codes, which can be read one by one from
the continuos data stream. By our estimation, the codes,
presented in Table 1, are appropriate for most images.

Contraction operator Code

ϕ0: identity 0

ϕ1: bottom 110

ϕ2: middle 10

ϕ3: top 111

Table 1. Codes of the 3-ranged tree nodes.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

3.3 Practical results
We have chosen the well-known image of Lena as a test
sample for analyzing visual characteristics and for
comparing our compression ratios to other techniques. This
image is a grayscale 8bpp image of 256×256 pixels in size.

The most suitable tree limits for this picture are 16 for the
parallelepiped’s depth (color range) and 4 for the XY
rectangle area. The algorithm stops building tree branches
whenever one of these parameters is reached. The
remainder is stored as-is, just using the information about
the number of bits required for each pixel. The tree is
stored using Huffman encoding, as shown in Table 1.

With these limitations, the results for Lena are as
following.

3.3.1 Image storage

Table 2 shows the storage requirements for the original
Lena image and it’s compressed version using a 3-ranged
binary tree, constructed up to a certain level, and the
remainder.

Image Size (in bytes)

Original Lena (unpacked) 65536 (100%)

Tree (limits ÷ depth = 16, area = 4) 7332 (11%)

Residual 39515 (60%)

Tree + Residual 46847 (71%)

Table 2. Storage requirements for different parts of the
image of Lena compressed with 3-ranged binary tree.

3.3.2 Compression ratio comparison

Table 3 shows the comparison of compression ratios
obtained by packing the image of Lena with 3-ranged
binary tree techniques and other well-known lossless
compression schemes, including the best ones known in the
literature.

Compression Technique Size (in bytes)

SPIHT [2] (entropy coding included) 42140 (65%)

3-ranged binary tree 46847 (71%)

PING (interlacing, LZW-based) 47383 (72%)

Unpacked 65536 (100%)

PCX (RLE) 73088 (112%)

GIF (LZW) 74206 (113%)

Table 3. Comparison of compression ratios for the image
of Lena.

3.3.3 PSNR of reconstructed sketches

Here we present the graph of PSNR (Peak Signal to Noise
Ratio) characteristics of the difference between the original

Lena image, and a variety of it’s approximations,
reconstructed from short initial sequences of compressed
data. The visual quality of these images may be inspected
in Appendix A.

0 3010 20

20

40

Compression
Ratio (%)

PSNR (dB)

30
3-ranged tree

SPIHT

Figure 10. Comparison of PSNR for progressive

visualization with 3-ranged tree and SPIHT

It should be emphasized, that the SPIHT technique was
designed to minimize the mean square error (MSE) when
only the beginning part of a message is available; therefore,
it may be considered optimal in this sense. However, this
method does not allow transmission and reconstruction in
parallel, besides it is relatively more complicated.

4. CONCLUSION

In this paper, we have presented the basic concept of binary
trees in order to obtain progressive compression of raster
images. We also presented a specific technique, the 3-
ranged binary tree compression, which is very efficient in
terms of visual quality, compression ratio and
computational complexity. Some practical results are also
included.

The 3-ranged binary tree technique provides lossless
compression with ratios, which are among the best known
in the literature. We also estimate that our technique
provides better compression ratios then commonly used
algorithms such as PCX, GIF and PING.

The binary tree technique was designed to perform
progressive transmission of compressed images. Image
approximations may be constructed by a decoder in parallel
with data reception, because, when the next portion of data
becomes available, the decoder just improves the
corresponding image parts, making it looking better.
Besides, the decoder can automatically estimate the quality
(PSNR) of the sketches obtained, without having the
original or any additional information. For these reasons,
this technique may be efficiently used for remote image
inspections and observations.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

The algorithm presented here is very efficient in terms of
computational complexity. It may be implemented using
additive and bitwise shifting operators, which are applied
to pixel groups. Thus, MMX instructions may be used.
Hardware implementation is also possible.

We suggest that the 3-ranged binary tree technique be used
for efficient lossless image compression with fast
extraction of image approximations, as well as, for lossy
compression. It successfully achieves both objectives; and
considering this property along with it’s computational
simplicity, we estimate that our compression method may
be useful for many purposes.

5. ACKNOLEDGMENTS

This work was performed by the Computer Graphics
Group (Dept. of Math, Moscow State University) as a part
of a research program performed in accordance with the
Research Agreement between Department of Mathematics
and Mechanics of Moscow State University and Intel
Technologies, Inc. We would like to thank Mr. Jim Hurley
and Mr. Alexander Reshetov (Intel Technologies, Inc.) for
their careful reading and constructive criticism.

6. REFERENCES

[1] Amir Said and William A. Pearlman. An Image
Multiresolution Representation for Lossless and Lossy
Compression.

[2] Amir Said and William A. Pearlman. A new Fast and
Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees, 1996.

[3] Marcelo J. Weinberger, Gadiel Serroussi, and
Guillermo Sapiro. LOCO-I: A Low Complexity, Context-
Based, Lossless Image Compression Algorithm, 1996.

[4]Manfred Kopp. Lossless Wavelet Based Image
Compression with Adaptive 2D Decomposition.

Author(s):

Denis V. Ivanov, Dept. of Math, MSU.

Dr. Eugene P. Kuzmin, Dept. of Math, MSU.

Dr. Sergey V. Burtsev, Dept. of Math, MSU.

Address: Mathematics and Mechanics Dept., Moscow State
University, Vorobyovy Gory, Moscow, Russia, 119899

E-mail: csl@online.ru

Appendix A

Original Image of Lena (8bpp)

0.24 bpp (3%, 27.10 dB)

1.36 bpp (17%, 36.03 dB)

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

mailto:csl@online.ru

	1. INTRODUCTION
	2. BINARY TREE USAGE
	2.1 Images in 3D space
	2.2 Binary tree construction
	2.2.1 Contraction scheme
	2.2.2 Binary tree construction

	2.3 Binary tree storage
	2.3.1 Tree with pointers
	2.3.2 Layer-by-layer storage
	2.3.3 Volume sorting

	2.4 Progressive image reconstruction

	3. 3-RANGED BINARY TREE
	3.1 3-Ranged binary tree introduction
	3.2 Compact storage of the 3-ranged tree
	3.2.1 Tree truncation
	3.2.2 Multi-length node coding.

	3.3 Practical results
	3.3.1 Image storage
	3.3.2 Compression ratio comparison
	3.3.3 PSNR of reconstructed sketches

	4. CONCLUSION
	5. ACKNOLEDGMENTS
	6. REFERENCES

